Properties

Label 2667.2.a.p.1.4
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $1$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,-6,-18,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} - 11 x^{16} + 123 x^{15} - 35 x^{14} - 982 x^{13} + 988 x^{12} + 3872 x^{11} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.40246\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.40246 q^{2} -1.00000 q^{3} +3.77179 q^{4} -0.666645 q^{5} +2.40246 q^{6} +1.00000 q^{7} -4.25666 q^{8} +1.00000 q^{9} +1.60159 q^{10} -5.05203 q^{11} -3.77179 q^{12} +5.76961 q^{13} -2.40246 q^{14} +0.666645 q^{15} +2.68284 q^{16} -0.396381 q^{17} -2.40246 q^{18} +3.56828 q^{19} -2.51445 q^{20} -1.00000 q^{21} +12.1373 q^{22} -4.24325 q^{23} +4.25666 q^{24} -4.55558 q^{25} -13.8612 q^{26} -1.00000 q^{27} +3.77179 q^{28} +0.519685 q^{29} -1.60159 q^{30} +3.84273 q^{31} +2.06791 q^{32} +5.05203 q^{33} +0.952288 q^{34} -0.666645 q^{35} +3.77179 q^{36} -7.00515 q^{37} -8.57264 q^{38} -5.76961 q^{39} +2.83768 q^{40} +3.06775 q^{41} +2.40246 q^{42} -4.79677 q^{43} -19.0552 q^{44} -0.666645 q^{45} +10.1942 q^{46} +11.2665 q^{47} -2.68284 q^{48} +1.00000 q^{49} +10.9446 q^{50} +0.396381 q^{51} +21.7618 q^{52} -1.29111 q^{53} +2.40246 q^{54} +3.36791 q^{55} -4.25666 q^{56} -3.56828 q^{57} -1.24852 q^{58} -1.96260 q^{59} +2.51445 q^{60} -9.45403 q^{61} -9.23199 q^{62} +1.00000 q^{63} -10.3337 q^{64} -3.84628 q^{65} -12.1373 q^{66} -8.88556 q^{67} -1.49507 q^{68} +4.24325 q^{69} +1.60159 q^{70} -8.51845 q^{71} -4.25666 q^{72} -6.50942 q^{73} +16.8296 q^{74} +4.55558 q^{75} +13.4588 q^{76} -5.05203 q^{77} +13.8612 q^{78} +14.8928 q^{79} -1.78850 q^{80} +1.00000 q^{81} -7.37013 q^{82} +13.6579 q^{83} -3.77179 q^{84} +0.264246 q^{85} +11.5240 q^{86} -0.519685 q^{87} +21.5047 q^{88} -12.6023 q^{89} +1.60159 q^{90} +5.76961 q^{91} -16.0047 q^{92} -3.84273 q^{93} -27.0673 q^{94} -2.37878 q^{95} -2.06791 q^{96} +9.21904 q^{97} -2.40246 q^{98} -5.05203 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 6 q^{2} - 18 q^{3} + 22 q^{4} - 10 q^{5} + 6 q^{6} + 18 q^{7} - 21 q^{8} + 18 q^{9} - 4 q^{10} - 9 q^{11} - 22 q^{12} - 25 q^{13} - 6 q^{14} + 10 q^{15} + 34 q^{16} - 17 q^{17} - 6 q^{18} - 5 q^{19}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.40246 −1.69879 −0.849396 0.527755i \(-0.823034\pi\)
−0.849396 + 0.527755i \(0.823034\pi\)
\(3\) −1.00000 −0.577350
\(4\) 3.77179 1.88590
\(5\) −0.666645 −0.298133 −0.149066 0.988827i \(-0.547627\pi\)
−0.149066 + 0.988827i \(0.547627\pi\)
\(6\) 2.40246 0.980798
\(7\) 1.00000 0.377964
\(8\) −4.25666 −1.50496
\(9\) 1.00000 0.333333
\(10\) 1.60159 0.506466
\(11\) −5.05203 −1.52324 −0.761622 0.648022i \(-0.775597\pi\)
−0.761622 + 0.648022i \(0.775597\pi\)
\(12\) −3.77179 −1.08882
\(13\) 5.76961 1.60020 0.800101 0.599866i \(-0.204779\pi\)
0.800101 + 0.599866i \(0.204779\pi\)
\(14\) −2.40246 −0.642083
\(15\) 0.666645 0.172127
\(16\) 2.68284 0.670710
\(17\) −0.396381 −0.0961366 −0.0480683 0.998844i \(-0.515307\pi\)
−0.0480683 + 0.998844i \(0.515307\pi\)
\(18\) −2.40246 −0.566264
\(19\) 3.56828 0.818620 0.409310 0.912395i \(-0.365769\pi\)
0.409310 + 0.912395i \(0.365769\pi\)
\(20\) −2.51445 −0.562248
\(21\) −1.00000 −0.218218
\(22\) 12.1373 2.58768
\(23\) −4.24325 −0.884780 −0.442390 0.896823i \(-0.645869\pi\)
−0.442390 + 0.896823i \(0.645869\pi\)
\(24\) 4.25666 0.868886
\(25\) −4.55558 −0.911117
\(26\) −13.8612 −2.71841
\(27\) −1.00000 −0.192450
\(28\) 3.77179 0.712802
\(29\) 0.519685 0.0965030 0.0482515 0.998835i \(-0.484635\pi\)
0.0482515 + 0.998835i \(0.484635\pi\)
\(30\) −1.60159 −0.292408
\(31\) 3.84273 0.690175 0.345087 0.938571i \(-0.387849\pi\)
0.345087 + 0.938571i \(0.387849\pi\)
\(32\) 2.06791 0.365558
\(33\) 5.05203 0.879445
\(34\) 0.952288 0.163316
\(35\) −0.666645 −0.112684
\(36\) 3.77179 0.628632
\(37\) −7.00515 −1.15164 −0.575820 0.817577i \(-0.695317\pi\)
−0.575820 + 0.817577i \(0.695317\pi\)
\(38\) −8.57264 −1.39067
\(39\) −5.76961 −0.923876
\(40\) 2.83768 0.448677
\(41\) 3.06775 0.479102 0.239551 0.970884i \(-0.423000\pi\)
0.239551 + 0.970884i \(0.423000\pi\)
\(42\) 2.40246 0.370707
\(43\) −4.79677 −0.731501 −0.365750 0.930713i \(-0.619188\pi\)
−0.365750 + 0.930713i \(0.619188\pi\)
\(44\) −19.0552 −2.87268
\(45\) −0.666645 −0.0993776
\(46\) 10.1942 1.50306
\(47\) 11.2665 1.64339 0.821696 0.569926i \(-0.193028\pi\)
0.821696 + 0.569926i \(0.193028\pi\)
\(48\) −2.68284 −0.387235
\(49\) 1.00000 0.142857
\(50\) 10.9446 1.54780
\(51\) 0.396381 0.0555045
\(52\) 21.7618 3.01781
\(53\) −1.29111 −0.177348 −0.0886740 0.996061i \(-0.528263\pi\)
−0.0886740 + 0.996061i \(0.528263\pi\)
\(54\) 2.40246 0.326933
\(55\) 3.36791 0.454129
\(56\) −4.25666 −0.568820
\(57\) −3.56828 −0.472630
\(58\) −1.24852 −0.163939
\(59\) −1.96260 −0.255509 −0.127755 0.991806i \(-0.540777\pi\)
−0.127755 + 0.991806i \(0.540777\pi\)
\(60\) 2.51445 0.324614
\(61\) −9.45403 −1.21046 −0.605232 0.796049i \(-0.706920\pi\)
−0.605232 + 0.796049i \(0.706920\pi\)
\(62\) −9.23199 −1.17246
\(63\) 1.00000 0.125988
\(64\) −10.3337 −1.29172
\(65\) −3.84628 −0.477073
\(66\) −12.1373 −1.49399
\(67\) −8.88556 −1.08554 −0.542772 0.839880i \(-0.682625\pi\)
−0.542772 + 0.839880i \(0.682625\pi\)
\(68\) −1.49507 −0.181304
\(69\) 4.24325 0.510828
\(70\) 1.60159 0.191426
\(71\) −8.51845 −1.01095 −0.505477 0.862840i \(-0.668683\pi\)
−0.505477 + 0.862840i \(0.668683\pi\)
\(72\) −4.25666 −0.501652
\(73\) −6.50942 −0.761870 −0.380935 0.924602i \(-0.624398\pi\)
−0.380935 + 0.924602i \(0.624398\pi\)
\(74\) 16.8296 1.95640
\(75\) 4.55558 0.526034
\(76\) 13.4588 1.54383
\(77\) −5.05203 −0.575732
\(78\) 13.8612 1.56947
\(79\) 14.8928 1.67557 0.837783 0.546004i \(-0.183852\pi\)
0.837783 + 0.546004i \(0.183852\pi\)
\(80\) −1.78850 −0.199961
\(81\) 1.00000 0.111111
\(82\) −7.37013 −0.813894
\(83\) 13.6579 1.49915 0.749575 0.661919i \(-0.230258\pi\)
0.749575 + 0.661919i \(0.230258\pi\)
\(84\) −3.77179 −0.411536
\(85\) 0.264246 0.0286615
\(86\) 11.5240 1.24267
\(87\) −0.519685 −0.0557161
\(88\) 21.5047 2.29241
\(89\) −12.6023 −1.33585 −0.667923 0.744231i \(-0.732816\pi\)
−0.667923 + 0.744231i \(0.732816\pi\)
\(90\) 1.60159 0.168822
\(91\) 5.76961 0.604819
\(92\) −16.0047 −1.66860
\(93\) −3.84273 −0.398473
\(94\) −27.0673 −2.79178
\(95\) −2.37878 −0.244058
\(96\) −2.06791 −0.211055
\(97\) 9.21904 0.936052 0.468026 0.883715i \(-0.344965\pi\)
0.468026 + 0.883715i \(0.344965\pi\)
\(98\) −2.40246 −0.242685
\(99\) −5.05203 −0.507748
\(100\) −17.1827 −1.71827
\(101\) 5.22301 0.519709 0.259855 0.965648i \(-0.416325\pi\)
0.259855 + 0.965648i \(0.416325\pi\)
\(102\) −0.952288 −0.0942906
\(103\) −1.04722 −0.103185 −0.0515926 0.998668i \(-0.516430\pi\)
−0.0515926 + 0.998668i \(0.516430\pi\)
\(104\) −24.5592 −2.40823
\(105\) 0.666645 0.0650579
\(106\) 3.10184 0.301277
\(107\) 15.4399 1.49263 0.746317 0.665590i \(-0.231820\pi\)
0.746317 + 0.665590i \(0.231820\pi\)
\(108\) −3.77179 −0.362941
\(109\) 8.22589 0.787897 0.393949 0.919132i \(-0.371109\pi\)
0.393949 + 0.919132i \(0.371109\pi\)
\(110\) −8.09126 −0.771471
\(111\) 7.00515 0.664900
\(112\) 2.68284 0.253505
\(113\) −2.61402 −0.245906 −0.122953 0.992412i \(-0.539236\pi\)
−0.122953 + 0.992412i \(0.539236\pi\)
\(114\) 8.57264 0.802901
\(115\) 2.82875 0.263782
\(116\) 1.96014 0.181995
\(117\) 5.76961 0.533400
\(118\) 4.71506 0.434057
\(119\) −0.396381 −0.0363362
\(120\) −2.83768 −0.259044
\(121\) 14.5230 1.32027
\(122\) 22.7129 2.05633
\(123\) −3.06775 −0.276609
\(124\) 14.4940 1.30160
\(125\) 6.37019 0.569767
\(126\) −2.40246 −0.214028
\(127\) 1.00000 0.0887357
\(128\) 20.6905 1.82880
\(129\) 4.79677 0.422332
\(130\) 9.24052 0.810447
\(131\) 14.8530 1.29771 0.648855 0.760912i \(-0.275248\pi\)
0.648855 + 0.760912i \(0.275248\pi\)
\(132\) 19.0552 1.65854
\(133\) 3.56828 0.309409
\(134\) 21.3472 1.84411
\(135\) 0.666645 0.0573757
\(136\) 1.68726 0.144681
\(137\) −20.4969 −1.75117 −0.875583 0.483068i \(-0.839522\pi\)
−0.875583 + 0.483068i \(0.839522\pi\)
\(138\) −10.1942 −0.867791
\(139\) −3.53740 −0.300039 −0.150019 0.988683i \(-0.547934\pi\)
−0.150019 + 0.988683i \(0.547934\pi\)
\(140\) −2.51445 −0.212510
\(141\) −11.2665 −0.948813
\(142\) 20.4652 1.71740
\(143\) −29.1482 −2.43750
\(144\) 2.68284 0.223570
\(145\) −0.346445 −0.0287707
\(146\) 15.6386 1.29426
\(147\) −1.00000 −0.0824786
\(148\) −26.4220 −2.17187
\(149\) −19.9965 −1.63817 −0.819087 0.573669i \(-0.805520\pi\)
−0.819087 + 0.573669i \(0.805520\pi\)
\(150\) −10.9446 −0.893622
\(151\) 18.2975 1.48903 0.744516 0.667605i \(-0.232680\pi\)
0.744516 + 0.667605i \(0.232680\pi\)
\(152\) −15.1889 −1.23199
\(153\) −0.396381 −0.0320455
\(154\) 12.1373 0.978049
\(155\) −2.56174 −0.205764
\(156\) −21.7618 −1.74234
\(157\) −23.8970 −1.90718 −0.953592 0.301100i \(-0.902646\pi\)
−0.953592 + 0.301100i \(0.902646\pi\)
\(158\) −35.7792 −2.84644
\(159\) 1.29111 0.102392
\(160\) −1.37856 −0.108985
\(161\) −4.24325 −0.334415
\(162\) −2.40246 −0.188755
\(163\) −14.7857 −1.15810 −0.579051 0.815291i \(-0.696577\pi\)
−0.579051 + 0.815291i \(0.696577\pi\)
\(164\) 11.5709 0.903536
\(165\) −3.36791 −0.262192
\(166\) −32.8125 −2.54675
\(167\) 21.2454 1.64402 0.822010 0.569474i \(-0.192853\pi\)
0.822010 + 0.569474i \(0.192853\pi\)
\(168\) 4.25666 0.328408
\(169\) 20.2884 1.56064
\(170\) −0.634839 −0.0486899
\(171\) 3.56828 0.272873
\(172\) −18.0924 −1.37954
\(173\) −8.03384 −0.610802 −0.305401 0.952224i \(-0.598790\pi\)
−0.305401 + 0.952224i \(0.598790\pi\)
\(174\) 1.24852 0.0946500
\(175\) −4.55558 −0.344370
\(176\) −13.5538 −1.02165
\(177\) 1.96260 0.147518
\(178\) 30.2766 2.26932
\(179\) −18.5927 −1.38968 −0.694840 0.719164i \(-0.744525\pi\)
−0.694840 + 0.719164i \(0.744525\pi\)
\(180\) −2.51445 −0.187416
\(181\) 10.8782 0.808569 0.404284 0.914633i \(-0.367521\pi\)
0.404284 + 0.914633i \(0.367521\pi\)
\(182\) −13.8612 −1.02746
\(183\) 9.45403 0.698862
\(184\) 18.0621 1.33155
\(185\) 4.66995 0.343342
\(186\) 9.23199 0.676922
\(187\) 2.00253 0.146439
\(188\) 42.4950 3.09927
\(189\) −1.00000 −0.0727393
\(190\) 5.71491 0.414603
\(191\) 19.0877 1.38114 0.690570 0.723266i \(-0.257360\pi\)
0.690570 + 0.723266i \(0.257360\pi\)
\(192\) 10.3337 0.745773
\(193\) −16.5306 −1.18990 −0.594951 0.803762i \(-0.702828\pi\)
−0.594951 + 0.803762i \(0.702828\pi\)
\(194\) −22.1483 −1.59016
\(195\) 3.84628 0.275438
\(196\) 3.77179 0.269414
\(197\) −26.3357 −1.87634 −0.938169 0.346178i \(-0.887479\pi\)
−0.938169 + 0.346178i \(0.887479\pi\)
\(198\) 12.1373 0.862558
\(199\) −0.679810 −0.0481905 −0.0240952 0.999710i \(-0.507670\pi\)
−0.0240952 + 0.999710i \(0.507670\pi\)
\(200\) 19.3916 1.37119
\(201\) 8.88556 0.626739
\(202\) −12.5481 −0.882878
\(203\) 0.519685 0.0364747
\(204\) 1.49507 0.104676
\(205\) −2.04510 −0.142836
\(206\) 2.51589 0.175290
\(207\) −4.24325 −0.294927
\(208\) 15.4789 1.07327
\(209\) −18.0271 −1.24696
\(210\) −1.60159 −0.110520
\(211\) 17.0443 1.17338 0.586688 0.809813i \(-0.300432\pi\)
0.586688 + 0.809813i \(0.300432\pi\)
\(212\) −4.86981 −0.334460
\(213\) 8.51845 0.583674
\(214\) −37.0938 −2.53568
\(215\) 3.19775 0.218084
\(216\) 4.25666 0.289629
\(217\) 3.84273 0.260862
\(218\) −19.7623 −1.33847
\(219\) 6.50942 0.439866
\(220\) 12.7031 0.856441
\(221\) −2.28696 −0.153838
\(222\) −16.8296 −1.12953
\(223\) −20.7478 −1.38938 −0.694689 0.719311i \(-0.744458\pi\)
−0.694689 + 0.719311i \(0.744458\pi\)
\(224\) 2.06791 0.138168
\(225\) −4.55558 −0.303706
\(226\) 6.28006 0.417744
\(227\) −10.9843 −0.729051 −0.364525 0.931193i \(-0.618769\pi\)
−0.364525 + 0.931193i \(0.618769\pi\)
\(228\) −13.4588 −0.891332
\(229\) −3.69557 −0.244210 −0.122105 0.992517i \(-0.538964\pi\)
−0.122105 + 0.992517i \(0.538964\pi\)
\(230\) −6.79594 −0.448111
\(231\) 5.05203 0.332399
\(232\) −2.21212 −0.145233
\(233\) −27.0298 −1.77078 −0.885389 0.464851i \(-0.846108\pi\)
−0.885389 + 0.464851i \(0.846108\pi\)
\(234\) −13.8612 −0.906137
\(235\) −7.51078 −0.489949
\(236\) −7.40253 −0.481864
\(237\) −14.8928 −0.967388
\(238\) 0.952288 0.0617277
\(239\) 2.63505 0.170447 0.0852235 0.996362i \(-0.472840\pi\)
0.0852235 + 0.996362i \(0.472840\pi\)
\(240\) 1.78850 0.115447
\(241\) 16.8404 1.08478 0.542392 0.840125i \(-0.317519\pi\)
0.542392 + 0.840125i \(0.317519\pi\)
\(242\) −34.8908 −2.24287
\(243\) −1.00000 −0.0641500
\(244\) −35.6587 −2.28281
\(245\) −0.666645 −0.0425904
\(246\) 7.37013 0.469902
\(247\) 20.5876 1.30996
\(248\) −16.3572 −1.03868
\(249\) −13.6579 −0.865535
\(250\) −15.3041 −0.967916
\(251\) −22.7185 −1.43398 −0.716990 0.697083i \(-0.754481\pi\)
−0.716990 + 0.697083i \(0.754481\pi\)
\(252\) 3.77179 0.237601
\(253\) 21.4370 1.34774
\(254\) −2.40246 −0.150743
\(255\) −0.264246 −0.0165477
\(256\) −29.0406 −1.81504
\(257\) −16.8856 −1.05330 −0.526648 0.850084i \(-0.676551\pi\)
−0.526648 + 0.850084i \(0.676551\pi\)
\(258\) −11.5240 −0.717455
\(259\) −7.00515 −0.435279
\(260\) −14.5074 −0.899710
\(261\) 0.519685 0.0321677
\(262\) −35.6836 −2.20454
\(263\) −14.4874 −0.893334 −0.446667 0.894700i \(-0.647389\pi\)
−0.446667 + 0.894700i \(0.647389\pi\)
\(264\) −21.5047 −1.32353
\(265\) 0.860714 0.0528733
\(266\) −8.57264 −0.525622
\(267\) 12.6023 0.771251
\(268\) −33.5145 −2.04722
\(269\) 19.0894 1.16390 0.581952 0.813223i \(-0.302289\pi\)
0.581952 + 0.813223i \(0.302289\pi\)
\(270\) −1.60159 −0.0974694
\(271\) −12.5847 −0.764467 −0.382234 0.924066i \(-0.624845\pi\)
−0.382234 + 0.924066i \(0.624845\pi\)
\(272\) −1.06343 −0.0644798
\(273\) −5.76961 −0.349192
\(274\) 49.2428 2.97487
\(275\) 23.0149 1.38785
\(276\) 16.0047 0.963369
\(277\) −23.5452 −1.41470 −0.707348 0.706866i \(-0.750108\pi\)
−0.707348 + 0.706866i \(0.750108\pi\)
\(278\) 8.49845 0.509703
\(279\) 3.84273 0.230058
\(280\) 2.83768 0.169584
\(281\) −17.3606 −1.03565 −0.517824 0.855487i \(-0.673258\pi\)
−0.517824 + 0.855487i \(0.673258\pi\)
\(282\) 27.0673 1.61184
\(283\) −28.0114 −1.66511 −0.832554 0.553945i \(-0.813122\pi\)
−0.832554 + 0.553945i \(0.813122\pi\)
\(284\) −32.1298 −1.90655
\(285\) 2.37878 0.140907
\(286\) 70.0273 4.14080
\(287\) 3.06775 0.181083
\(288\) 2.06791 0.121853
\(289\) −16.8429 −0.990758
\(290\) 0.832320 0.0488755
\(291\) −9.21904 −0.540430
\(292\) −24.5522 −1.43681
\(293\) 22.0696 1.28932 0.644661 0.764469i \(-0.276999\pi\)
0.644661 + 0.764469i \(0.276999\pi\)
\(294\) 2.40246 0.140114
\(295\) 1.30836 0.0761756
\(296\) 29.8185 1.73317
\(297\) 5.05203 0.293148
\(298\) 48.0406 2.78292
\(299\) −24.4819 −1.41583
\(300\) 17.1827 0.992045
\(301\) −4.79677 −0.276481
\(302\) −43.9590 −2.52956
\(303\) −5.22301 −0.300054
\(304\) 9.57313 0.549057
\(305\) 6.30249 0.360879
\(306\) 0.952288 0.0544387
\(307\) −17.8522 −1.01888 −0.509439 0.860507i \(-0.670147\pi\)
−0.509439 + 0.860507i \(0.670147\pi\)
\(308\) −19.0552 −1.08577
\(309\) 1.04722 0.0595740
\(310\) 6.15447 0.349550
\(311\) −15.7490 −0.893045 −0.446522 0.894772i \(-0.647338\pi\)
−0.446522 + 0.894772i \(0.647338\pi\)
\(312\) 24.5592 1.39039
\(313\) −15.8596 −0.896439 −0.448219 0.893924i \(-0.647942\pi\)
−0.448219 + 0.893924i \(0.647942\pi\)
\(314\) 57.4114 3.23991
\(315\) −0.666645 −0.0375612
\(316\) 56.1724 3.15994
\(317\) 28.1773 1.58259 0.791296 0.611433i \(-0.209407\pi\)
0.791296 + 0.611433i \(0.209407\pi\)
\(318\) −3.10184 −0.173943
\(319\) −2.62546 −0.146998
\(320\) 6.88894 0.385103
\(321\) −15.4399 −0.861773
\(322\) 10.1942 0.568102
\(323\) −1.41440 −0.0786993
\(324\) 3.77179 0.209544
\(325\) −26.2839 −1.45797
\(326\) 35.5219 1.96738
\(327\) −8.22589 −0.454893
\(328\) −13.0583 −0.721026
\(329\) 11.2665 0.621144
\(330\) 8.09126 0.445409
\(331\) −27.8507 −1.53081 −0.765406 0.643547i \(-0.777462\pi\)
−0.765406 + 0.643547i \(0.777462\pi\)
\(332\) 51.5148 2.82724
\(333\) −7.00515 −0.383880
\(334\) −51.0412 −2.79285
\(335\) 5.92352 0.323636
\(336\) −2.68284 −0.146361
\(337\) −7.64516 −0.416458 −0.208229 0.978080i \(-0.566770\pi\)
−0.208229 + 0.978080i \(0.566770\pi\)
\(338\) −48.7419 −2.65121
\(339\) 2.61402 0.141974
\(340\) 0.996680 0.0540526
\(341\) −19.4136 −1.05130
\(342\) −8.57264 −0.463555
\(343\) 1.00000 0.0539949
\(344\) 20.4182 1.10088
\(345\) −2.82875 −0.152295
\(346\) 19.3010 1.03763
\(347\) 22.1004 1.18641 0.593205 0.805052i \(-0.297863\pi\)
0.593205 + 0.805052i \(0.297863\pi\)
\(348\) −1.96014 −0.105075
\(349\) 7.12427 0.381353 0.190677 0.981653i \(-0.438932\pi\)
0.190677 + 0.981653i \(0.438932\pi\)
\(350\) 10.9446 0.585013
\(351\) −5.76961 −0.307959
\(352\) −10.4471 −0.556833
\(353\) −14.0285 −0.746662 −0.373331 0.927698i \(-0.621784\pi\)
−0.373331 + 0.927698i \(0.621784\pi\)
\(354\) −4.71506 −0.250603
\(355\) 5.67878 0.301399
\(356\) −47.5334 −2.51927
\(357\) 0.396381 0.0209787
\(358\) 44.6680 2.36078
\(359\) 6.03937 0.318746 0.159373 0.987218i \(-0.449053\pi\)
0.159373 + 0.987218i \(0.449053\pi\)
\(360\) 2.83768 0.149559
\(361\) −6.26736 −0.329861
\(362\) −26.1343 −1.37359
\(363\) −14.5230 −0.762259
\(364\) 21.7618 1.14063
\(365\) 4.33948 0.227139
\(366\) −22.7129 −1.18722
\(367\) −12.6586 −0.660775 −0.330387 0.943845i \(-0.607179\pi\)
−0.330387 + 0.943845i \(0.607179\pi\)
\(368\) −11.3840 −0.593431
\(369\) 3.06775 0.159701
\(370\) −11.2194 −0.583267
\(371\) −1.29111 −0.0670312
\(372\) −14.4940 −0.751478
\(373\) 16.3249 0.845269 0.422635 0.906300i \(-0.361105\pi\)
0.422635 + 0.906300i \(0.361105\pi\)
\(374\) −4.81099 −0.248770
\(375\) −6.37019 −0.328955
\(376\) −47.9577 −2.47323
\(377\) 2.99838 0.154424
\(378\) 2.40246 0.123569
\(379\) 16.1793 0.831074 0.415537 0.909576i \(-0.363594\pi\)
0.415537 + 0.909576i \(0.363594\pi\)
\(380\) −8.97226 −0.460267
\(381\) −1.00000 −0.0512316
\(382\) −45.8574 −2.34627
\(383\) −14.1963 −0.725399 −0.362699 0.931906i \(-0.618145\pi\)
−0.362699 + 0.931906i \(0.618145\pi\)
\(384\) −20.6905 −1.05586
\(385\) 3.36791 0.171645
\(386\) 39.7141 2.02140
\(387\) −4.79677 −0.243834
\(388\) 34.7723 1.76530
\(389\) 1.32405 0.0671318 0.0335659 0.999437i \(-0.489314\pi\)
0.0335659 + 0.999437i \(0.489314\pi\)
\(390\) −9.24052 −0.467912
\(391\) 1.68195 0.0850597
\(392\) −4.25666 −0.214994
\(393\) −14.8530 −0.749233
\(394\) 63.2702 3.18751
\(395\) −9.92819 −0.499541
\(396\) −19.0552 −0.957560
\(397\) −33.9588 −1.70434 −0.852172 0.523262i \(-0.824715\pi\)
−0.852172 + 0.523262i \(0.824715\pi\)
\(398\) 1.63321 0.0818656
\(399\) −3.56828 −0.178638
\(400\) −12.2219 −0.611095
\(401\) −3.27288 −0.163440 −0.0817198 0.996655i \(-0.526041\pi\)
−0.0817198 + 0.996655i \(0.526041\pi\)
\(402\) −21.3472 −1.06470
\(403\) 22.1710 1.10442
\(404\) 19.7001 0.980118
\(405\) −0.666645 −0.0331259
\(406\) −1.24852 −0.0619630
\(407\) 35.3902 1.75423
\(408\) −1.68726 −0.0835317
\(409\) 7.93648 0.392434 0.196217 0.980561i \(-0.437134\pi\)
0.196217 + 0.980561i \(0.437134\pi\)
\(410\) 4.91326 0.242649
\(411\) 20.4969 1.01104
\(412\) −3.94988 −0.194597
\(413\) −1.96260 −0.0965733
\(414\) 10.1942 0.501019
\(415\) −9.10498 −0.446946
\(416\) 11.9310 0.584966
\(417\) 3.53740 0.173227
\(418\) 43.3092 2.11832
\(419\) −21.1144 −1.03151 −0.515754 0.856737i \(-0.672488\pi\)
−0.515754 + 0.856737i \(0.672488\pi\)
\(420\) 2.51445 0.122693
\(421\) −30.0789 −1.46596 −0.732978 0.680252i \(-0.761870\pi\)
−0.732978 + 0.680252i \(0.761870\pi\)
\(422\) −40.9481 −1.99332
\(423\) 11.2665 0.547797
\(424\) 5.49582 0.266901
\(425\) 1.80575 0.0875916
\(426\) −20.4652 −0.991542
\(427\) −9.45403 −0.457513
\(428\) 58.2362 2.81495
\(429\) 29.1482 1.40729
\(430\) −7.68244 −0.370480
\(431\) −16.0258 −0.771938 −0.385969 0.922512i \(-0.626133\pi\)
−0.385969 + 0.922512i \(0.626133\pi\)
\(432\) −2.68284 −0.129078
\(433\) 7.23386 0.347637 0.173819 0.984778i \(-0.444389\pi\)
0.173819 + 0.984778i \(0.444389\pi\)
\(434\) −9.23199 −0.443150
\(435\) 0.346445 0.0166108
\(436\) 31.0264 1.48589
\(437\) −15.1411 −0.724298
\(438\) −15.6386 −0.747241
\(439\) −10.4196 −0.497300 −0.248650 0.968593i \(-0.579987\pi\)
−0.248650 + 0.968593i \(0.579987\pi\)
\(440\) −14.3360 −0.683444
\(441\) 1.00000 0.0476190
\(442\) 5.49433 0.261339
\(443\) −9.43052 −0.448057 −0.224029 0.974583i \(-0.571921\pi\)
−0.224029 + 0.974583i \(0.571921\pi\)
\(444\) 26.4220 1.25393
\(445\) 8.40129 0.398259
\(446\) 49.8457 2.36026
\(447\) 19.9965 0.945800
\(448\) −10.3337 −0.488223
\(449\) −6.74268 −0.318207 −0.159103 0.987262i \(-0.550860\pi\)
−0.159103 + 0.987262i \(0.550860\pi\)
\(450\) 10.9446 0.515933
\(451\) −15.4983 −0.729788
\(452\) −9.85954 −0.463754
\(453\) −18.2975 −0.859693
\(454\) 26.3892 1.23851
\(455\) −3.84628 −0.180316
\(456\) 15.1889 0.711288
\(457\) 5.04899 0.236182 0.118091 0.993003i \(-0.462323\pi\)
0.118091 + 0.993003i \(0.462323\pi\)
\(458\) 8.87844 0.414862
\(459\) 0.396381 0.0185015
\(460\) 10.6694 0.497466
\(461\) −12.8408 −0.598056 −0.299028 0.954244i \(-0.596662\pi\)
−0.299028 + 0.954244i \(0.596662\pi\)
\(462\) −12.1373 −0.564677
\(463\) −7.31274 −0.339852 −0.169926 0.985457i \(-0.554353\pi\)
−0.169926 + 0.985457i \(0.554353\pi\)
\(464\) 1.39423 0.0647256
\(465\) 2.56174 0.118798
\(466\) 64.9378 3.00818
\(467\) −20.4933 −0.948317 −0.474159 0.880439i \(-0.657248\pi\)
−0.474159 + 0.880439i \(0.657248\pi\)
\(468\) 21.7618 1.00594
\(469\) −8.88556 −0.410297
\(470\) 18.0443 0.832322
\(471\) 23.8970 1.10111
\(472\) 8.35412 0.384530
\(473\) 24.2334 1.11425
\(474\) 35.7792 1.64339
\(475\) −16.2556 −0.745858
\(476\) −1.49507 −0.0685263
\(477\) −1.29111 −0.0591160
\(478\) −6.33058 −0.289554
\(479\) 42.2742 1.93156 0.965778 0.259371i \(-0.0835152\pi\)
0.965778 + 0.259371i \(0.0835152\pi\)
\(480\) 1.37856 0.0629224
\(481\) −40.4170 −1.84286
\(482\) −40.4583 −1.84282
\(483\) 4.24325 0.193075
\(484\) 54.7777 2.48989
\(485\) −6.14583 −0.279068
\(486\) 2.40246 0.108978
\(487\) 11.3695 0.515202 0.257601 0.966251i \(-0.417068\pi\)
0.257601 + 0.966251i \(0.417068\pi\)
\(488\) 40.2426 1.82170
\(489\) 14.7857 0.668631
\(490\) 1.60159 0.0723523
\(491\) −8.86723 −0.400172 −0.200086 0.979778i \(-0.564122\pi\)
−0.200086 + 0.979778i \(0.564122\pi\)
\(492\) −11.5709 −0.521657
\(493\) −0.205993 −0.00927747
\(494\) −49.4608 −2.22534
\(495\) 3.36791 0.151376
\(496\) 10.3094 0.462907
\(497\) −8.51845 −0.382105
\(498\) 32.8125 1.47036
\(499\) 4.93677 0.221000 0.110500 0.993876i \(-0.464755\pi\)
0.110500 + 0.993876i \(0.464755\pi\)
\(500\) 24.0270 1.07452
\(501\) −21.2454 −0.949175
\(502\) 54.5802 2.43604
\(503\) 23.9458 1.06769 0.533846 0.845582i \(-0.320746\pi\)
0.533846 + 0.845582i \(0.320746\pi\)
\(504\) −4.25666 −0.189607
\(505\) −3.48190 −0.154942
\(506\) −51.5015 −2.28952
\(507\) −20.2884 −0.901038
\(508\) 3.77179 0.167346
\(509\) −21.1558 −0.937716 −0.468858 0.883273i \(-0.655334\pi\)
−0.468858 + 0.883273i \(0.655334\pi\)
\(510\) 0.634839 0.0281111
\(511\) −6.50942 −0.287960
\(512\) 28.3877 1.25457
\(513\) −3.56828 −0.157543
\(514\) 40.5669 1.78933
\(515\) 0.698122 0.0307629
\(516\) 18.0924 0.796475
\(517\) −56.9188 −2.50329
\(518\) 16.8296 0.739449
\(519\) 8.03384 0.352647
\(520\) 16.3723 0.717973
\(521\) 28.8671 1.26469 0.632346 0.774686i \(-0.282092\pi\)
0.632346 + 0.774686i \(0.282092\pi\)
\(522\) −1.24852 −0.0546462
\(523\) 13.2821 0.580785 0.290393 0.956908i \(-0.406214\pi\)
0.290393 + 0.956908i \(0.406214\pi\)
\(524\) 56.0223 2.44735
\(525\) 4.55558 0.198822
\(526\) 34.8054 1.51759
\(527\) −1.52319 −0.0663510
\(528\) 13.5538 0.589853
\(529\) −4.99479 −0.217165
\(530\) −2.06783 −0.0898207
\(531\) −1.96260 −0.0851697
\(532\) 13.4588 0.583514
\(533\) 17.6997 0.766659
\(534\) −30.2766 −1.31020
\(535\) −10.2930 −0.445004
\(536\) 37.8228 1.63370
\(537\) 18.5927 0.802332
\(538\) −45.8616 −1.97723
\(539\) −5.05203 −0.217606
\(540\) 2.51445 0.108205
\(541\) 35.5192 1.52709 0.763545 0.645754i \(-0.223457\pi\)
0.763545 + 0.645754i \(0.223457\pi\)
\(542\) 30.2342 1.29867
\(543\) −10.8782 −0.466827
\(544\) −0.819679 −0.0351435
\(545\) −5.48375 −0.234898
\(546\) 13.8612 0.593206
\(547\) −1.19586 −0.0511314 −0.0255657 0.999673i \(-0.508139\pi\)
−0.0255657 + 0.999673i \(0.508139\pi\)
\(548\) −77.3100 −3.30252
\(549\) −9.45403 −0.403488
\(550\) −55.2924 −2.35767
\(551\) 1.85438 0.0789993
\(552\) −18.0621 −0.768773
\(553\) 14.8928 0.633304
\(554\) 56.5664 2.40327
\(555\) −4.66995 −0.198228
\(556\) −13.3424 −0.565842
\(557\) 0.640333 0.0271318 0.0135659 0.999908i \(-0.495682\pi\)
0.0135659 + 0.999908i \(0.495682\pi\)
\(558\) −9.23199 −0.390821
\(559\) −27.6755 −1.17055
\(560\) −1.78850 −0.0755781
\(561\) −2.00253 −0.0845468
\(562\) 41.7081 1.75935
\(563\) 0.399140 0.0168217 0.00841086 0.999965i \(-0.497323\pi\)
0.00841086 + 0.999965i \(0.497323\pi\)
\(564\) −42.4950 −1.78936
\(565\) 1.74262 0.0733127
\(566\) 67.2962 2.82867
\(567\) 1.00000 0.0419961
\(568\) 36.2601 1.52144
\(569\) −10.0883 −0.422924 −0.211462 0.977386i \(-0.567823\pi\)
−0.211462 + 0.977386i \(0.567823\pi\)
\(570\) −5.71491 −0.239371
\(571\) 5.05274 0.211451 0.105725 0.994395i \(-0.466284\pi\)
0.105725 + 0.994395i \(0.466284\pi\)
\(572\) −109.941 −4.59687
\(573\) −19.0877 −0.797401
\(574\) −7.37013 −0.307623
\(575\) 19.3305 0.806138
\(576\) −10.3337 −0.430572
\(577\) −16.5648 −0.689601 −0.344800 0.938676i \(-0.612053\pi\)
−0.344800 + 0.938676i \(0.612053\pi\)
\(578\) 40.4643 1.68309
\(579\) 16.5306 0.686990
\(580\) −1.30672 −0.0542586
\(581\) 13.6579 0.566626
\(582\) 22.1483 0.918078
\(583\) 6.52273 0.270144
\(584\) 27.7084 1.14658
\(585\) −3.84628 −0.159024
\(586\) −53.0213 −2.19029
\(587\) −15.6730 −0.646896 −0.323448 0.946246i \(-0.604842\pi\)
−0.323448 + 0.946246i \(0.604842\pi\)
\(588\) −3.77179 −0.155546
\(589\) 13.7119 0.564991
\(590\) −3.14328 −0.129407
\(591\) 26.3357 1.08330
\(592\) −18.7937 −0.772417
\(593\) 2.34319 0.0962235 0.0481117 0.998842i \(-0.484680\pi\)
0.0481117 + 0.998842i \(0.484680\pi\)
\(594\) −12.1373 −0.497998
\(595\) 0.264246 0.0108330
\(596\) −75.4225 −3.08943
\(597\) 0.679810 0.0278228
\(598\) 58.8167 2.40519
\(599\) −19.0363 −0.777802 −0.388901 0.921280i \(-0.627145\pi\)
−0.388901 + 0.921280i \(0.627145\pi\)
\(600\) −19.3916 −0.791657
\(601\) 23.0581 0.940560 0.470280 0.882517i \(-0.344153\pi\)
0.470280 + 0.882517i \(0.344153\pi\)
\(602\) 11.5240 0.469684
\(603\) −8.88556 −0.361848
\(604\) 69.0145 2.80816
\(605\) −9.68168 −0.393616
\(606\) 12.5481 0.509730
\(607\) 16.5040 0.669878 0.334939 0.942240i \(-0.391284\pi\)
0.334939 + 0.942240i \(0.391284\pi\)
\(608\) 7.37887 0.299253
\(609\) −0.519685 −0.0210587
\(610\) −15.1414 −0.613059
\(611\) 65.0034 2.62976
\(612\) −1.49507 −0.0604345
\(613\) −13.9856 −0.564872 −0.282436 0.959286i \(-0.591142\pi\)
−0.282436 + 0.959286i \(0.591142\pi\)
\(614\) 42.8891 1.73086
\(615\) 2.04510 0.0824664
\(616\) 21.5047 0.866451
\(617\) 43.4723 1.75013 0.875064 0.484007i \(-0.160819\pi\)
0.875064 + 0.484007i \(0.160819\pi\)
\(618\) −2.51589 −0.101204
\(619\) 40.2578 1.61810 0.809049 0.587741i \(-0.199983\pi\)
0.809049 + 0.587741i \(0.199983\pi\)
\(620\) −9.66235 −0.388049
\(621\) 4.24325 0.170276
\(622\) 37.8363 1.51710
\(623\) −12.6023 −0.504902
\(624\) −15.4789 −0.619653
\(625\) 18.5313 0.741251
\(626\) 38.1020 1.52286
\(627\) 18.0271 0.719931
\(628\) −90.1344 −3.59675
\(629\) 2.77671 0.110715
\(630\) 1.60159 0.0638087
\(631\) 0.191328 0.00761664 0.00380832 0.999993i \(-0.498788\pi\)
0.00380832 + 0.999993i \(0.498788\pi\)
\(632\) −63.3933 −2.52165
\(633\) −17.0443 −0.677449
\(634\) −67.6946 −2.68850
\(635\) −0.666645 −0.0264550
\(636\) 4.86981 0.193101
\(637\) 5.76961 0.228600
\(638\) 6.30756 0.249719
\(639\) −8.51845 −0.336985
\(640\) −13.7932 −0.545226
\(641\) 16.7190 0.660361 0.330181 0.943918i \(-0.392890\pi\)
0.330181 + 0.943918i \(0.392890\pi\)
\(642\) 37.0938 1.46397
\(643\) −27.9484 −1.10218 −0.551088 0.834447i \(-0.685787\pi\)
−0.551088 + 0.834447i \(0.685787\pi\)
\(644\) −16.0047 −0.630673
\(645\) −3.19775 −0.125911
\(646\) 3.39803 0.133694
\(647\) −20.8215 −0.818578 −0.409289 0.912405i \(-0.634223\pi\)
−0.409289 + 0.912405i \(0.634223\pi\)
\(648\) −4.25666 −0.167217
\(649\) 9.91512 0.389202
\(650\) 63.1460 2.47679
\(651\) −3.84273 −0.150608
\(652\) −55.7685 −2.18406
\(653\) 4.58740 0.179519 0.0897594 0.995963i \(-0.471390\pi\)
0.0897594 + 0.995963i \(0.471390\pi\)
\(654\) 19.7623 0.772768
\(655\) −9.90167 −0.386890
\(656\) 8.23028 0.321338
\(657\) −6.50942 −0.253957
\(658\) −27.0673 −1.05519
\(659\) −12.5704 −0.489674 −0.244837 0.969564i \(-0.578734\pi\)
−0.244837 + 0.969564i \(0.578734\pi\)
\(660\) −12.7031 −0.494466
\(661\) 25.8123 1.00398 0.501991 0.864873i \(-0.332601\pi\)
0.501991 + 0.864873i \(0.332601\pi\)
\(662\) 66.9101 2.60053
\(663\) 2.28696 0.0888183
\(664\) −58.1370 −2.25615
\(665\) −2.37878 −0.0922451
\(666\) 16.8296 0.652133
\(667\) −2.20515 −0.0853839
\(668\) 80.1333 3.10045
\(669\) 20.7478 0.802157
\(670\) −14.2310 −0.549791
\(671\) 47.7620 1.84383
\(672\) −2.06791 −0.0797712
\(673\) −46.6132 −1.79681 −0.898403 0.439172i \(-0.855272\pi\)
−0.898403 + 0.439172i \(0.855272\pi\)
\(674\) 18.3672 0.707476
\(675\) 4.55558 0.175345
\(676\) 76.5235 2.94321
\(677\) −15.3276 −0.589087 −0.294544 0.955638i \(-0.595168\pi\)
−0.294544 + 0.955638i \(0.595168\pi\)
\(678\) −6.28006 −0.241184
\(679\) 9.21904 0.353794
\(680\) −1.12480 −0.0431342
\(681\) 10.9843 0.420918
\(682\) 46.6403 1.78595
\(683\) 1.55964 0.0596778 0.0298389 0.999555i \(-0.490501\pi\)
0.0298389 + 0.999555i \(0.490501\pi\)
\(684\) 13.4588 0.514611
\(685\) 13.6641 0.522080
\(686\) −2.40246 −0.0917262
\(687\) 3.69557 0.140995
\(688\) −12.8690 −0.490625
\(689\) −7.44921 −0.283792
\(690\) 6.79594 0.258717
\(691\) −13.6905 −0.520810 −0.260405 0.965499i \(-0.583856\pi\)
−0.260405 + 0.965499i \(0.583856\pi\)
\(692\) −30.3020 −1.15191
\(693\) −5.05203 −0.191911
\(694\) −53.0951 −2.01546
\(695\) 2.35819 0.0894514
\(696\) 2.21212 0.0838502
\(697\) −1.21600 −0.0460592
\(698\) −17.1157 −0.647840
\(699\) 27.0298 1.02236
\(700\) −17.1827 −0.649446
\(701\) 35.3818 1.33635 0.668176 0.744003i \(-0.267075\pi\)
0.668176 + 0.744003i \(0.267075\pi\)
\(702\) 13.8612 0.523158
\(703\) −24.9964 −0.942756
\(704\) 52.2063 1.96760
\(705\) 7.51078 0.282872
\(706\) 33.7028 1.26842
\(707\) 5.22301 0.196432
\(708\) 7.40253 0.278204
\(709\) 2.44584 0.0918554 0.0459277 0.998945i \(-0.485376\pi\)
0.0459277 + 0.998945i \(0.485376\pi\)
\(710\) −13.6430 −0.512014
\(711\) 14.8928 0.558522
\(712\) 53.6438 2.01039
\(713\) −16.3057 −0.610653
\(714\) −0.952288 −0.0356385
\(715\) 19.4315 0.726698
\(716\) −70.1277 −2.62079
\(717\) −2.63505 −0.0984076
\(718\) −14.5093 −0.541483
\(719\) −14.0093 −0.522459 −0.261229 0.965277i \(-0.584128\pi\)
−0.261229 + 0.965277i \(0.584128\pi\)
\(720\) −1.78850 −0.0666536
\(721\) −1.04722 −0.0390004
\(722\) 15.0571 0.560366
\(723\) −16.8404 −0.626301
\(724\) 41.0303 1.52488
\(725\) −2.36747 −0.0879255
\(726\) 34.8908 1.29492
\(727\) 5.51126 0.204401 0.102201 0.994764i \(-0.467412\pi\)
0.102201 + 0.994764i \(0.467412\pi\)
\(728\) −24.5592 −0.910226
\(729\) 1.00000 0.0370370
\(730\) −10.4254 −0.385861
\(731\) 1.90135 0.0703240
\(732\) 35.6587 1.31798
\(733\) −7.42286 −0.274170 −0.137085 0.990559i \(-0.543773\pi\)
−0.137085 + 0.990559i \(0.543773\pi\)
\(734\) 30.4118 1.12252
\(735\) 0.666645 0.0245896
\(736\) −8.77465 −0.323438
\(737\) 44.8901 1.65355
\(738\) −7.37013 −0.271298
\(739\) 31.5583 1.16089 0.580445 0.814299i \(-0.302879\pi\)
0.580445 + 0.814299i \(0.302879\pi\)
\(740\) 17.6141 0.647507
\(741\) −20.5876 −0.756304
\(742\) 3.10184 0.113872
\(743\) −34.9462 −1.28205 −0.641027 0.767519i \(-0.721491\pi\)
−0.641027 + 0.767519i \(0.721491\pi\)
\(744\) 16.3572 0.599683
\(745\) 13.3306 0.488394
\(746\) −39.2198 −1.43594
\(747\) 13.6579 0.499717
\(748\) 7.55313 0.276170
\(749\) 15.4399 0.564163
\(750\) 15.3041 0.558826
\(751\) 47.6101 1.73732 0.868659 0.495410i \(-0.164982\pi\)
0.868659 + 0.495410i \(0.164982\pi\)
\(752\) 30.2263 1.10224
\(753\) 22.7185 0.827909
\(754\) −7.20347 −0.262335
\(755\) −12.1980 −0.443929
\(756\) −3.77179 −0.137179
\(757\) −7.55653 −0.274647 −0.137323 0.990526i \(-0.543850\pi\)
−0.137323 + 0.990526i \(0.543850\pi\)
\(758\) −38.8700 −1.41182
\(759\) −21.4370 −0.778115
\(760\) 10.1256 0.367296
\(761\) −2.24334 −0.0813209 −0.0406605 0.999173i \(-0.512946\pi\)
−0.0406605 + 0.999173i \(0.512946\pi\)
\(762\) 2.40246 0.0870318
\(763\) 8.22589 0.297797
\(764\) 71.9950 2.60469
\(765\) 0.264246 0.00955382
\(766\) 34.1061 1.23230
\(767\) −11.3234 −0.408866
\(768\) 29.0406 1.04791
\(769\) −31.4607 −1.13450 −0.567250 0.823546i \(-0.691993\pi\)
−0.567250 + 0.823546i \(0.691993\pi\)
\(770\) −8.09126 −0.291589
\(771\) 16.8856 0.608121
\(772\) −62.3501 −2.24403
\(773\) 7.68396 0.276373 0.138186 0.990406i \(-0.455873\pi\)
0.138186 + 0.990406i \(0.455873\pi\)
\(774\) 11.5240 0.414223
\(775\) −17.5059 −0.628830
\(776\) −39.2423 −1.40872
\(777\) 7.00515 0.251308
\(778\) −3.18096 −0.114043
\(779\) 10.9466 0.392202
\(780\) 14.5074 0.519448
\(781\) 43.0354 1.53993
\(782\) −4.04080 −0.144499
\(783\) −0.519685 −0.0185720
\(784\) 2.68284 0.0958157
\(785\) 15.9308 0.568595
\(786\) 35.6836 1.27279
\(787\) −4.63829 −0.165337 −0.0826686 0.996577i \(-0.526344\pi\)
−0.0826686 + 0.996577i \(0.526344\pi\)
\(788\) −99.3326 −3.53858
\(789\) 14.4874 0.515767
\(790\) 23.8520 0.848617
\(791\) −2.61402 −0.0929438
\(792\) 21.5047 0.764138
\(793\) −54.5461 −1.93699
\(794\) 81.5845 2.89533
\(795\) −0.860714 −0.0305264
\(796\) −2.56410 −0.0908823
\(797\) 50.7223 1.79668 0.898338 0.439304i \(-0.144775\pi\)
0.898338 + 0.439304i \(0.144775\pi\)
\(798\) 8.57264 0.303468
\(799\) −4.46584 −0.157990
\(800\) −9.42052 −0.333066
\(801\) −12.6023 −0.445282
\(802\) 7.86294 0.277650
\(803\) 32.8858 1.16051
\(804\) 33.5145 1.18197
\(805\) 2.82875 0.0997002
\(806\) −53.2650 −1.87618
\(807\) −19.0894 −0.671980
\(808\) −22.2326 −0.782139
\(809\) −8.25319 −0.290167 −0.145083 0.989419i \(-0.546345\pi\)
−0.145083 + 0.989419i \(0.546345\pi\)
\(810\) 1.60159 0.0562740
\(811\) −42.5309 −1.49346 −0.746731 0.665127i \(-0.768378\pi\)
−0.746731 + 0.665127i \(0.768378\pi\)
\(812\) 1.96014 0.0687876
\(813\) 12.5847 0.441366
\(814\) −85.0234 −2.98007
\(815\) 9.85679 0.345268
\(816\) 1.06343 0.0372274
\(817\) −17.1162 −0.598821
\(818\) −19.0670 −0.666664
\(819\) 5.76961 0.201606
\(820\) −7.71369 −0.269374
\(821\) 34.7449 1.21260 0.606302 0.795235i \(-0.292652\pi\)
0.606302 + 0.795235i \(0.292652\pi\)
\(822\) −49.2428 −1.71754
\(823\) 6.45981 0.225175 0.112587 0.993642i \(-0.464086\pi\)
0.112587 + 0.993642i \(0.464086\pi\)
\(824\) 4.45764 0.155289
\(825\) −23.0149 −0.801277
\(826\) 4.71506 0.164058
\(827\) −32.2022 −1.11978 −0.559889 0.828567i \(-0.689156\pi\)
−0.559889 + 0.828567i \(0.689156\pi\)
\(828\) −16.0047 −0.556201
\(829\) 17.8107 0.618593 0.309296 0.950966i \(-0.399906\pi\)
0.309296 + 0.950966i \(0.399906\pi\)
\(830\) 21.8743 0.759269
\(831\) 23.5452 0.816775
\(832\) −59.6216 −2.06701
\(833\) −0.396381 −0.0137338
\(834\) −8.49845 −0.294277
\(835\) −14.1632 −0.490136
\(836\) −67.9943 −2.35163
\(837\) −3.84273 −0.132824
\(838\) 50.7265 1.75232
\(839\) 11.6047 0.400639 0.200319 0.979731i \(-0.435802\pi\)
0.200319 + 0.979731i \(0.435802\pi\)
\(840\) −2.83768 −0.0979093
\(841\) −28.7299 −0.990687
\(842\) 72.2633 2.49036
\(843\) 17.3606 0.597931
\(844\) 64.2875 2.21287
\(845\) −13.5251 −0.465279
\(846\) −27.0673 −0.930594
\(847\) 14.5230 0.499016
\(848\) −3.46385 −0.118949
\(849\) 28.0114 0.961350
\(850\) −4.33823 −0.148800
\(851\) 29.7246 1.01895
\(852\) 32.1298 1.10075
\(853\) 34.3397 1.17577 0.587884 0.808945i \(-0.299961\pi\)
0.587884 + 0.808945i \(0.299961\pi\)
\(854\) 22.7129 0.777219
\(855\) −2.37878 −0.0813525
\(856\) −65.7225 −2.24635
\(857\) 14.3054 0.488664 0.244332 0.969692i \(-0.421431\pi\)
0.244332 + 0.969692i \(0.421431\pi\)
\(858\) −70.0273 −2.39069
\(859\) −49.4636 −1.68768 −0.843838 0.536597i \(-0.819709\pi\)
−0.843838 + 0.536597i \(0.819709\pi\)
\(860\) 12.0612 0.411285
\(861\) −3.06775 −0.104549
\(862\) 38.5014 1.31136
\(863\) −39.0263 −1.32847 −0.664235 0.747524i \(-0.731243\pi\)
−0.664235 + 0.747524i \(0.731243\pi\)
\(864\) −2.06791 −0.0703516
\(865\) 5.35572 0.182100
\(866\) −17.3790 −0.590564
\(867\) 16.8429 0.572014
\(868\) 14.4940 0.491958
\(869\) −75.2386 −2.55229
\(870\) −0.832320 −0.0282183
\(871\) −51.2662 −1.73709
\(872\) −35.0148 −1.18575
\(873\) 9.21904 0.312017
\(874\) 36.3759 1.23043
\(875\) 6.37019 0.215352
\(876\) 24.5522 0.829542
\(877\) −32.8794 −1.11026 −0.555129 0.831764i \(-0.687331\pi\)
−0.555129 + 0.831764i \(0.687331\pi\)
\(878\) 25.0326 0.844809
\(879\) −22.0696 −0.744390
\(880\) 9.03557 0.304589
\(881\) −23.5044 −0.791884 −0.395942 0.918275i \(-0.629582\pi\)
−0.395942 + 0.918275i \(0.629582\pi\)
\(882\) −2.40246 −0.0808949
\(883\) 3.78292 0.127305 0.0636527 0.997972i \(-0.479725\pi\)
0.0636527 + 0.997972i \(0.479725\pi\)
\(884\) −8.62596 −0.290122
\(885\) −1.30836 −0.0439800
\(886\) 22.6564 0.761156
\(887\) 16.0603 0.539253 0.269627 0.962965i \(-0.413100\pi\)
0.269627 + 0.962965i \(0.413100\pi\)
\(888\) −29.8185 −1.00064
\(889\) 1.00000 0.0335389
\(890\) −20.1837 −0.676560
\(891\) −5.05203 −0.169249
\(892\) −78.2565 −2.62022
\(893\) 40.2021 1.34531
\(894\) −48.0406 −1.60672
\(895\) 12.3947 0.414309
\(896\) 20.6905 0.691222
\(897\) 24.4819 0.817427
\(898\) 16.1990 0.540567
\(899\) 1.99701 0.0666040
\(900\) −17.1827 −0.572757
\(901\) 0.511773 0.0170496
\(902\) 37.2341 1.23976
\(903\) 4.79677 0.159627
\(904\) 11.1270 0.370078
\(905\) −7.25189 −0.241061
\(906\) 43.9590 1.46044
\(907\) −3.13873 −0.104220 −0.0521099 0.998641i \(-0.516595\pi\)
−0.0521099 + 0.998641i \(0.516595\pi\)
\(908\) −41.4304 −1.37491
\(909\) 5.22301 0.173236
\(910\) 9.24052 0.306320
\(911\) 5.56286 0.184306 0.0921530 0.995745i \(-0.470625\pi\)
0.0921530 + 0.995745i \(0.470625\pi\)
\(912\) −9.57313 −0.316998
\(913\) −69.0001 −2.28357
\(914\) −12.1300 −0.401224
\(915\) −6.30249 −0.208354
\(916\) −13.9389 −0.460555
\(917\) 14.8530 0.490488
\(918\) −0.952288 −0.0314302
\(919\) −55.9312 −1.84500 −0.922501 0.385995i \(-0.873858\pi\)
−0.922501 + 0.385995i \(0.873858\pi\)
\(920\) −12.0410 −0.396980
\(921\) 17.8522 0.588249
\(922\) 30.8494 1.01597
\(923\) −49.1481 −1.61773
\(924\) 19.0552 0.626870
\(925\) 31.9126 1.04928
\(926\) 17.5685 0.577338
\(927\) −1.04722 −0.0343951
\(928\) 1.07466 0.0352774
\(929\) 15.0146 0.492612 0.246306 0.969192i \(-0.420783\pi\)
0.246306 + 0.969192i \(0.420783\pi\)
\(930\) −6.15447 −0.201813
\(931\) 3.56828 0.116946
\(932\) −101.951 −3.33950
\(933\) 15.7490 0.515600
\(934\) 49.2343 1.61099
\(935\) −1.33498 −0.0436584
\(936\) −24.5592 −0.802744
\(937\) 6.36422 0.207910 0.103955 0.994582i \(-0.466850\pi\)
0.103955 + 0.994582i \(0.466850\pi\)
\(938\) 21.3472 0.697010
\(939\) 15.8596 0.517559
\(940\) −28.3291 −0.923994
\(941\) −40.4525 −1.31871 −0.659357 0.751830i \(-0.729171\pi\)
−0.659357 + 0.751830i \(0.729171\pi\)
\(942\) −57.4114 −1.87056
\(943\) −13.0172 −0.423899
\(944\) −5.26535 −0.171372
\(945\) 0.666645 0.0216860
\(946\) −58.2197 −1.89289
\(947\) −48.6835 −1.58200 −0.791000 0.611816i \(-0.790439\pi\)
−0.791000 + 0.611816i \(0.790439\pi\)
\(948\) −56.1724 −1.82439
\(949\) −37.5568 −1.21915
\(950\) 39.0534 1.26706
\(951\) −28.1773 −0.913710
\(952\) 1.68726 0.0546844
\(953\) 2.87131 0.0930110 0.0465055 0.998918i \(-0.485191\pi\)
0.0465055 + 0.998918i \(0.485191\pi\)
\(954\) 3.10184 0.100426
\(955\) −12.7247 −0.411763
\(956\) 9.93885 0.321445
\(957\) 2.62546 0.0848691
\(958\) −101.562 −3.28131
\(959\) −20.4969 −0.661878
\(960\) −6.88894 −0.222340
\(961\) −16.2334 −0.523659
\(962\) 97.1000 3.13063
\(963\) 15.4399 0.497545
\(964\) 63.5185 2.04579
\(965\) 11.0201 0.354749
\(966\) −10.1942 −0.327994
\(967\) 45.1711 1.45261 0.726303 0.687375i \(-0.241237\pi\)
0.726303 + 0.687375i \(0.241237\pi\)
\(968\) −61.8193 −1.98695
\(969\) 1.41440 0.0454371
\(970\) 14.7651 0.474079
\(971\) −30.5373 −0.979990 −0.489995 0.871725i \(-0.663001\pi\)
−0.489995 + 0.871725i \(0.663001\pi\)
\(972\) −3.77179 −0.120980
\(973\) −3.53740 −0.113404
\(974\) −27.3147 −0.875221
\(975\) 26.2839 0.841759
\(976\) −25.3637 −0.811871
\(977\) −51.3484 −1.64278 −0.821391 0.570365i \(-0.806802\pi\)
−0.821391 + 0.570365i \(0.806802\pi\)
\(978\) −35.5219 −1.13587
\(979\) 63.6674 2.03482
\(980\) −2.51445 −0.0803211
\(981\) 8.22589 0.262632
\(982\) 21.3031 0.679810
\(983\) 17.9373 0.572111 0.286055 0.958213i \(-0.407656\pi\)
0.286055 + 0.958213i \(0.407656\pi\)
\(984\) 13.0583 0.416285
\(985\) 17.5565 0.559398
\(986\) 0.494890 0.0157605
\(987\) −11.2665 −0.358618
\(988\) 77.6521 2.47044
\(989\) 20.3539 0.647217
\(990\) −8.09126 −0.257157
\(991\) 1.31878 0.0418924 0.0209462 0.999781i \(-0.493332\pi\)
0.0209462 + 0.999781i \(0.493332\pi\)
\(992\) 7.94641 0.252299
\(993\) 27.8507 0.883815
\(994\) 20.4652 0.649116
\(995\) 0.453193 0.0143672
\(996\) −51.5148 −1.63231
\(997\) −4.64514 −0.147113 −0.0735565 0.997291i \(-0.523435\pi\)
−0.0735565 + 0.997291i \(0.523435\pi\)
\(998\) −11.8604 −0.375433
\(999\) 7.00515 0.221633
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.p.1.4 18
3.2 odd 2 8001.2.a.u.1.15 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.p.1.4 18 1.1 even 1 trivial
8001.2.a.u.1.15 18 3.2 odd 2