Properties

Label 2667.2.a.p.1.11
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $1$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,-6,-18,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} - 11 x^{16} + 123 x^{15} - 35 x^{14} - 982 x^{13} + 988 x^{12} + 3872 x^{11} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(-0.375443\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.375443 q^{2} -1.00000 q^{3} -1.85904 q^{4} +2.49678 q^{5} -0.375443 q^{6} +1.00000 q^{7} -1.44885 q^{8} +1.00000 q^{9} +0.937397 q^{10} -0.0439826 q^{11} +1.85904 q^{12} +1.23685 q^{13} +0.375443 q^{14} -2.49678 q^{15} +3.17413 q^{16} -4.66254 q^{17} +0.375443 q^{18} -4.55600 q^{19} -4.64162 q^{20} -1.00000 q^{21} -0.0165129 q^{22} -5.31043 q^{23} +1.44885 q^{24} +1.23390 q^{25} +0.464365 q^{26} -1.00000 q^{27} -1.85904 q^{28} -5.23792 q^{29} -0.937397 q^{30} +0.715277 q^{31} +4.08940 q^{32} +0.0439826 q^{33} -1.75052 q^{34} +2.49678 q^{35} -1.85904 q^{36} +7.90706 q^{37} -1.71052 q^{38} -1.23685 q^{39} -3.61746 q^{40} -4.97134 q^{41} -0.375443 q^{42} +0.341392 q^{43} +0.0817655 q^{44} +2.49678 q^{45} -1.99376 q^{46} +11.4407 q^{47} -3.17413 q^{48} +1.00000 q^{49} +0.463260 q^{50} +4.66254 q^{51} -2.29935 q^{52} -4.41842 q^{53} -0.375443 q^{54} -0.109815 q^{55} -1.44885 q^{56} +4.55600 q^{57} -1.96654 q^{58} +9.78565 q^{59} +4.64162 q^{60} -9.42399 q^{61} +0.268546 q^{62} +1.00000 q^{63} -4.81291 q^{64} +3.08813 q^{65} +0.0165129 q^{66} +0.00811780 q^{67} +8.66785 q^{68} +5.31043 q^{69} +0.937397 q^{70} -4.91418 q^{71} -1.44885 q^{72} -11.8395 q^{73} +2.96865 q^{74} -1.23390 q^{75} +8.46980 q^{76} -0.0439826 q^{77} -0.464365 q^{78} -1.44620 q^{79} +7.92509 q^{80} +1.00000 q^{81} -1.86645 q^{82} -7.62022 q^{83} +1.85904 q^{84} -11.6413 q^{85} +0.128173 q^{86} +5.23792 q^{87} +0.0637241 q^{88} -11.8328 q^{89} +0.937397 q^{90} +1.23685 q^{91} +9.87232 q^{92} -0.715277 q^{93} +4.29534 q^{94} -11.3753 q^{95} -4.08940 q^{96} -8.97251 q^{97} +0.375443 q^{98} -0.0439826 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 6 q^{2} - 18 q^{3} + 22 q^{4} - 10 q^{5} + 6 q^{6} + 18 q^{7} - 21 q^{8} + 18 q^{9} - 4 q^{10} - 9 q^{11} - 22 q^{12} - 25 q^{13} - 6 q^{14} + 10 q^{15} + 34 q^{16} - 17 q^{17} - 6 q^{18} - 5 q^{19}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.375443 0.265478 0.132739 0.991151i \(-0.457623\pi\)
0.132739 + 0.991151i \(0.457623\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.85904 −0.929521
\(5\) 2.49678 1.11659 0.558297 0.829641i \(-0.311455\pi\)
0.558297 + 0.829641i \(0.311455\pi\)
\(6\) −0.375443 −0.153274
\(7\) 1.00000 0.377964
\(8\) −1.44885 −0.512246
\(9\) 1.00000 0.333333
\(10\) 0.937397 0.296431
\(11\) −0.0439826 −0.0132612 −0.00663062 0.999978i \(-0.502111\pi\)
−0.00663062 + 0.999978i \(0.502111\pi\)
\(12\) 1.85904 0.536659
\(13\) 1.23685 0.343039 0.171520 0.985181i \(-0.445132\pi\)
0.171520 + 0.985181i \(0.445132\pi\)
\(14\) 0.375443 0.100341
\(15\) −2.49678 −0.644665
\(16\) 3.17413 0.793531
\(17\) −4.66254 −1.13083 −0.565416 0.824806i \(-0.691284\pi\)
−0.565416 + 0.824806i \(0.691284\pi\)
\(18\) 0.375443 0.0884927
\(19\) −4.55600 −1.04522 −0.522609 0.852572i \(-0.675041\pi\)
−0.522609 + 0.852572i \(0.675041\pi\)
\(20\) −4.64162 −1.03790
\(21\) −1.00000 −0.218218
\(22\) −0.0165129 −0.00352057
\(23\) −5.31043 −1.10730 −0.553651 0.832749i \(-0.686766\pi\)
−0.553651 + 0.832749i \(0.686766\pi\)
\(24\) 1.44885 0.295745
\(25\) 1.23390 0.246780
\(26\) 0.464365 0.0910694
\(27\) −1.00000 −0.192450
\(28\) −1.85904 −0.351326
\(29\) −5.23792 −0.972657 −0.486329 0.873776i \(-0.661664\pi\)
−0.486329 + 0.873776i \(0.661664\pi\)
\(30\) −0.937397 −0.171145
\(31\) 0.715277 0.128468 0.0642338 0.997935i \(-0.479540\pi\)
0.0642338 + 0.997935i \(0.479540\pi\)
\(32\) 4.08940 0.722911
\(33\) 0.0439826 0.00765638
\(34\) −1.75052 −0.300211
\(35\) 2.49678 0.422033
\(36\) −1.85904 −0.309840
\(37\) 7.90706 1.29991 0.649956 0.759972i \(-0.274787\pi\)
0.649956 + 0.759972i \(0.274787\pi\)
\(38\) −1.71052 −0.277483
\(39\) −1.23685 −0.198054
\(40\) −3.61746 −0.571970
\(41\) −4.97134 −0.776393 −0.388197 0.921577i \(-0.626902\pi\)
−0.388197 + 0.921577i \(0.626902\pi\)
\(42\) −0.375443 −0.0579321
\(43\) 0.341392 0.0520618 0.0260309 0.999661i \(-0.491713\pi\)
0.0260309 + 0.999661i \(0.491713\pi\)
\(44\) 0.0817655 0.0123266
\(45\) 2.49678 0.372198
\(46\) −1.99376 −0.293964
\(47\) 11.4407 1.66880 0.834402 0.551157i \(-0.185813\pi\)
0.834402 + 0.551157i \(0.185813\pi\)
\(48\) −3.17413 −0.458145
\(49\) 1.00000 0.142857
\(50\) 0.463260 0.0655148
\(51\) 4.66254 0.652886
\(52\) −2.29935 −0.318862
\(53\) −4.41842 −0.606916 −0.303458 0.952845i \(-0.598141\pi\)
−0.303458 + 0.952845i \(0.598141\pi\)
\(54\) −0.375443 −0.0510913
\(55\) −0.109815 −0.0148074
\(56\) −1.44885 −0.193611
\(57\) 4.55600 0.603457
\(58\) −1.96654 −0.258219
\(59\) 9.78565 1.27398 0.636991 0.770871i \(-0.280179\pi\)
0.636991 + 0.770871i \(0.280179\pi\)
\(60\) 4.64162 0.599230
\(61\) −9.42399 −1.20662 −0.603309 0.797508i \(-0.706151\pi\)
−0.603309 + 0.797508i \(0.706151\pi\)
\(62\) 0.268546 0.0341053
\(63\) 1.00000 0.125988
\(64\) −4.81291 −0.601614
\(65\) 3.08813 0.383035
\(66\) 0.0165129 0.00203260
\(67\) 0.00811780 0.000991748 0 0.000495874 1.00000i \(-0.499842\pi\)
0.000495874 1.00000i \(0.499842\pi\)
\(68\) 8.66785 1.05113
\(69\) 5.31043 0.639301
\(70\) 0.937397 0.112040
\(71\) −4.91418 −0.583206 −0.291603 0.956539i \(-0.594189\pi\)
−0.291603 + 0.956539i \(0.594189\pi\)
\(72\) −1.44885 −0.170749
\(73\) −11.8395 −1.38571 −0.692856 0.721076i \(-0.743648\pi\)
−0.692856 + 0.721076i \(0.743648\pi\)
\(74\) 2.96865 0.345098
\(75\) −1.23390 −0.142479
\(76\) 8.46980 0.971553
\(77\) −0.0439826 −0.00501228
\(78\) −0.464365 −0.0525790
\(79\) −1.44620 −0.162710 −0.0813552 0.996685i \(-0.525925\pi\)
−0.0813552 + 0.996685i \(0.525925\pi\)
\(80\) 7.92509 0.886052
\(81\) 1.00000 0.111111
\(82\) −1.86645 −0.206115
\(83\) −7.62022 −0.836428 −0.418214 0.908349i \(-0.637344\pi\)
−0.418214 + 0.908349i \(0.637344\pi\)
\(84\) 1.85904 0.202838
\(85\) −11.6413 −1.26268
\(86\) 0.128173 0.0138213
\(87\) 5.23792 0.561564
\(88\) 0.0637241 0.00679301
\(89\) −11.8328 −1.25427 −0.627137 0.778909i \(-0.715773\pi\)
−0.627137 + 0.778909i \(0.715773\pi\)
\(90\) 0.937397 0.0988104
\(91\) 1.23685 0.129657
\(92\) 9.87232 1.02926
\(93\) −0.715277 −0.0741708
\(94\) 4.29534 0.443031
\(95\) −11.3753 −1.16708
\(96\) −4.08940 −0.417373
\(97\) −8.97251 −0.911020 −0.455510 0.890231i \(-0.650543\pi\)
−0.455510 + 0.890231i \(0.650543\pi\)
\(98\) 0.375443 0.0379255
\(99\) −0.0439826 −0.00442041
\(100\) −2.29388 −0.229388
\(101\) 11.8979 1.18389 0.591943 0.805980i \(-0.298361\pi\)
0.591943 + 0.805980i \(0.298361\pi\)
\(102\) 1.75052 0.173327
\(103\) 3.32884 0.328000 0.164000 0.986460i \(-0.447560\pi\)
0.164000 + 0.986460i \(0.447560\pi\)
\(104\) −1.79200 −0.175720
\(105\) −2.49678 −0.243661
\(106\) −1.65886 −0.161123
\(107\) −11.7272 −1.13371 −0.566856 0.823817i \(-0.691841\pi\)
−0.566856 + 0.823817i \(0.691841\pi\)
\(108\) 1.85904 0.178886
\(109\) −12.3647 −1.18432 −0.592161 0.805820i \(-0.701725\pi\)
−0.592161 + 0.805820i \(0.701725\pi\)
\(110\) −0.0412291 −0.00393104
\(111\) −7.90706 −0.750505
\(112\) 3.17413 0.299927
\(113\) −11.5463 −1.08618 −0.543092 0.839673i \(-0.682747\pi\)
−0.543092 + 0.839673i \(0.682747\pi\)
\(114\) 1.71052 0.160205
\(115\) −13.2590 −1.23641
\(116\) 9.73752 0.904106
\(117\) 1.23685 0.114346
\(118\) 3.67395 0.338215
\(119\) −4.66254 −0.427414
\(120\) 3.61746 0.330227
\(121\) −10.9981 −0.999824
\(122\) −3.53817 −0.320331
\(123\) 4.97134 0.448251
\(124\) −1.32973 −0.119413
\(125\) −9.40311 −0.841040
\(126\) 0.375443 0.0334471
\(127\) 1.00000 0.0887357
\(128\) −9.98578 −0.882626
\(129\) −0.341392 −0.0300579
\(130\) 1.15942 0.101688
\(131\) 1.63563 0.142906 0.0714529 0.997444i \(-0.477236\pi\)
0.0714529 + 0.997444i \(0.477236\pi\)
\(132\) −0.0817655 −0.00711677
\(133\) −4.55600 −0.395056
\(134\) 0.00304777 0.000263287 0
\(135\) −2.49678 −0.214888
\(136\) 6.75531 0.579263
\(137\) 4.20337 0.359118 0.179559 0.983747i \(-0.442533\pi\)
0.179559 + 0.983747i \(0.442533\pi\)
\(138\) 1.99376 0.169720
\(139\) −1.83457 −0.155606 −0.0778030 0.996969i \(-0.524791\pi\)
−0.0778030 + 0.996969i \(0.524791\pi\)
\(140\) −4.64162 −0.392288
\(141\) −11.4407 −0.963484
\(142\) −1.84499 −0.154828
\(143\) −0.0543996 −0.00454913
\(144\) 3.17413 0.264510
\(145\) −13.0779 −1.08606
\(146\) −4.44506 −0.367876
\(147\) −1.00000 −0.0824786
\(148\) −14.6996 −1.20830
\(149\) −14.6708 −1.20188 −0.600940 0.799294i \(-0.705207\pi\)
−0.600940 + 0.799294i \(0.705207\pi\)
\(150\) −0.463260 −0.0378250
\(151\) 7.31356 0.595169 0.297585 0.954695i \(-0.403819\pi\)
0.297585 + 0.954695i \(0.403819\pi\)
\(152\) 6.60096 0.535409
\(153\) −4.66254 −0.376944
\(154\) −0.0165129 −0.00133065
\(155\) 1.78589 0.143446
\(156\) 2.29935 0.184095
\(157\) 5.65707 0.451483 0.225742 0.974187i \(-0.427519\pi\)
0.225742 + 0.974187i \(0.427519\pi\)
\(158\) −0.542966 −0.0431961
\(159\) 4.41842 0.350403
\(160\) 10.2103 0.807198
\(161\) −5.31043 −0.418521
\(162\) 0.375443 0.0294976
\(163\) 16.3284 1.27894 0.639470 0.768816i \(-0.279154\pi\)
0.639470 + 0.768816i \(0.279154\pi\)
\(164\) 9.24194 0.721674
\(165\) 0.109815 0.00854906
\(166\) −2.86096 −0.222053
\(167\) −12.9310 −1.00063 −0.500314 0.865844i \(-0.666782\pi\)
−0.500314 + 0.865844i \(0.666782\pi\)
\(168\) 1.44885 0.111781
\(169\) −11.4702 −0.882324
\(170\) −4.37065 −0.335213
\(171\) −4.55600 −0.348406
\(172\) −0.634663 −0.0483926
\(173\) 9.17036 0.697209 0.348605 0.937270i \(-0.386656\pi\)
0.348605 + 0.937270i \(0.386656\pi\)
\(174\) 1.96654 0.149083
\(175\) 1.23390 0.0932742
\(176\) −0.139606 −0.0105232
\(177\) −9.78565 −0.735534
\(178\) −4.44254 −0.332982
\(179\) −4.47476 −0.334459 −0.167230 0.985918i \(-0.553482\pi\)
−0.167230 + 0.985918i \(0.553482\pi\)
\(180\) −4.64162 −0.345966
\(181\) −10.6152 −0.789023 −0.394511 0.918891i \(-0.629086\pi\)
−0.394511 + 0.918891i \(0.629086\pi\)
\(182\) 0.464365 0.0344210
\(183\) 9.42399 0.696641
\(184\) 7.69402 0.567210
\(185\) 19.7422 1.45147
\(186\) −0.268546 −0.0196907
\(187\) 0.205070 0.0149962
\(188\) −21.2688 −1.55119
\(189\) −1.00000 −0.0727393
\(190\) −4.27079 −0.309835
\(191\) 10.6972 0.774020 0.387010 0.922075i \(-0.373508\pi\)
0.387010 + 0.922075i \(0.373508\pi\)
\(192\) 4.81291 0.347342
\(193\) 3.42294 0.246388 0.123194 0.992383i \(-0.460686\pi\)
0.123194 + 0.992383i \(0.460686\pi\)
\(194\) −3.36866 −0.241856
\(195\) −3.08813 −0.221146
\(196\) −1.85904 −0.132789
\(197\) 12.6206 0.899181 0.449591 0.893235i \(-0.351570\pi\)
0.449591 + 0.893235i \(0.351570\pi\)
\(198\) −0.0165129 −0.00117352
\(199\) 21.2114 1.50364 0.751819 0.659369i \(-0.229177\pi\)
0.751819 + 0.659369i \(0.229177\pi\)
\(200\) −1.78774 −0.126412
\(201\) −0.00811780 −0.000572586 0
\(202\) 4.46699 0.314296
\(203\) −5.23792 −0.367630
\(204\) −8.66785 −0.606871
\(205\) −12.4123 −0.866915
\(206\) 1.24979 0.0870769
\(207\) −5.31043 −0.369100
\(208\) 3.92590 0.272212
\(209\) 0.200385 0.0138609
\(210\) −0.937397 −0.0646866
\(211\) 1.41420 0.0973575 0.0486788 0.998814i \(-0.484499\pi\)
0.0486788 + 0.998814i \(0.484499\pi\)
\(212\) 8.21403 0.564142
\(213\) 4.91418 0.336714
\(214\) −4.40290 −0.300976
\(215\) 0.852381 0.0581319
\(216\) 1.44885 0.0985817
\(217\) 0.715277 0.0485562
\(218\) −4.64223 −0.314411
\(219\) 11.8395 0.800041
\(220\) 0.204150 0.0137638
\(221\) −5.76684 −0.387919
\(222\) −2.96865 −0.199243
\(223\) −11.6705 −0.781512 −0.390756 0.920494i \(-0.627786\pi\)
−0.390756 + 0.920494i \(0.627786\pi\)
\(224\) 4.08940 0.273235
\(225\) 1.23390 0.0822601
\(226\) −4.33497 −0.288358
\(227\) −6.98427 −0.463562 −0.231781 0.972768i \(-0.574455\pi\)
−0.231781 + 0.972768i \(0.574455\pi\)
\(228\) −8.46980 −0.560926
\(229\) 3.76335 0.248689 0.124345 0.992239i \(-0.460317\pi\)
0.124345 + 0.992239i \(0.460317\pi\)
\(230\) −4.97798 −0.328239
\(231\) 0.0439826 0.00289384
\(232\) 7.58896 0.498240
\(233\) −6.17050 −0.404243 −0.202121 0.979360i \(-0.564784\pi\)
−0.202121 + 0.979360i \(0.564784\pi\)
\(234\) 0.464365 0.0303565
\(235\) 28.5650 1.86337
\(236\) −18.1919 −1.18419
\(237\) 1.44620 0.0939409
\(238\) −1.75052 −0.113469
\(239\) 5.01726 0.324540 0.162270 0.986746i \(-0.448118\pi\)
0.162270 + 0.986746i \(0.448118\pi\)
\(240\) −7.92509 −0.511562
\(241\) −4.66693 −0.300623 −0.150312 0.988639i \(-0.548028\pi\)
−0.150312 + 0.988639i \(0.548028\pi\)
\(242\) −4.12914 −0.265431
\(243\) −1.00000 −0.0641500
\(244\) 17.5196 1.12158
\(245\) 2.49678 0.159513
\(246\) 1.86645 0.119001
\(247\) −5.63507 −0.358551
\(248\) −1.03633 −0.0658070
\(249\) 7.62022 0.482912
\(250\) −3.53033 −0.223278
\(251\) −14.9362 −0.942765 −0.471382 0.881929i \(-0.656245\pi\)
−0.471382 + 0.881929i \(0.656245\pi\)
\(252\) −1.85904 −0.117109
\(253\) 0.233566 0.0146842
\(254\) 0.375443 0.0235574
\(255\) 11.6413 0.729008
\(256\) 5.87674 0.367296
\(257\) 2.50206 0.156074 0.0780370 0.996950i \(-0.475135\pi\)
0.0780370 + 0.996950i \(0.475135\pi\)
\(258\) −0.128173 −0.00797972
\(259\) 7.90706 0.491321
\(260\) −5.74096 −0.356040
\(261\) −5.23792 −0.324219
\(262\) 0.614086 0.0379383
\(263\) −3.74847 −0.231141 −0.115570 0.993299i \(-0.536870\pi\)
−0.115570 + 0.993299i \(0.536870\pi\)
\(264\) −0.0637241 −0.00392195
\(265\) −11.0318 −0.677679
\(266\) −1.71052 −0.104879
\(267\) 11.8328 0.724155
\(268\) −0.0150913 −0.000921851 0
\(269\) 8.16292 0.497702 0.248851 0.968542i \(-0.419947\pi\)
0.248851 + 0.968542i \(0.419947\pi\)
\(270\) −0.937397 −0.0570482
\(271\) −8.16035 −0.495706 −0.247853 0.968798i \(-0.579725\pi\)
−0.247853 + 0.968798i \(0.579725\pi\)
\(272\) −14.7995 −0.897350
\(273\) −1.23685 −0.0748573
\(274\) 1.57812 0.0953380
\(275\) −0.0542702 −0.00327261
\(276\) −9.87232 −0.594244
\(277\) −19.5232 −1.17304 −0.586519 0.809935i \(-0.699502\pi\)
−0.586519 + 0.809935i \(0.699502\pi\)
\(278\) −0.688775 −0.0413100
\(279\) 0.715277 0.0428225
\(280\) −3.61746 −0.216184
\(281\) −13.5957 −0.811052 −0.405526 0.914084i \(-0.632912\pi\)
−0.405526 + 0.914084i \(0.632912\pi\)
\(282\) −4.29534 −0.255784
\(283\) 24.0199 1.42783 0.713917 0.700230i \(-0.246919\pi\)
0.713917 + 0.700230i \(0.246919\pi\)
\(284\) 9.13567 0.542102
\(285\) 11.3753 0.673816
\(286\) −0.0204240 −0.00120769
\(287\) −4.97134 −0.293449
\(288\) 4.08940 0.240970
\(289\) 4.73924 0.278779
\(290\) −4.91001 −0.288326
\(291\) 8.97251 0.525978
\(292\) 22.0102 1.28805
\(293\) −27.5825 −1.61138 −0.805692 0.592334i \(-0.798206\pi\)
−0.805692 + 0.592334i \(0.798206\pi\)
\(294\) −0.375443 −0.0218963
\(295\) 24.4326 1.42252
\(296\) −11.4561 −0.665875
\(297\) 0.0439826 0.00255213
\(298\) −5.50806 −0.319073
\(299\) −6.56818 −0.379848
\(300\) 2.29388 0.132437
\(301\) 0.341392 0.0196775
\(302\) 2.74582 0.158004
\(303\) −11.8979 −0.683517
\(304\) −14.4613 −0.829414
\(305\) −23.5296 −1.34730
\(306\) −1.75052 −0.100070
\(307\) −24.8153 −1.41629 −0.708143 0.706069i \(-0.750467\pi\)
−0.708143 + 0.706069i \(0.750467\pi\)
\(308\) 0.0817655 0.00465902
\(309\) −3.32884 −0.189371
\(310\) 0.670499 0.0380818
\(311\) −0.788961 −0.0447379 −0.0223689 0.999750i \(-0.507121\pi\)
−0.0223689 + 0.999750i \(0.507121\pi\)
\(312\) 1.79200 0.101452
\(313\) 16.4791 0.931453 0.465727 0.884929i \(-0.345793\pi\)
0.465727 + 0.884929i \(0.345793\pi\)
\(314\) 2.12391 0.119859
\(315\) 2.49678 0.140678
\(316\) 2.68855 0.151243
\(317\) 15.2893 0.858735 0.429367 0.903130i \(-0.358737\pi\)
0.429367 + 0.903130i \(0.358737\pi\)
\(318\) 1.65886 0.0930244
\(319\) 0.230377 0.0128986
\(320\) −12.0168 −0.671758
\(321\) 11.7272 0.654549
\(322\) −1.99376 −0.111108
\(323\) 21.2425 1.18197
\(324\) −1.85904 −0.103280
\(325\) 1.52615 0.0846554
\(326\) 6.13039 0.339531
\(327\) 12.3647 0.683768
\(328\) 7.20273 0.397704
\(329\) 11.4407 0.630748
\(330\) 0.0412291 0.00226959
\(331\) −8.79412 −0.483369 −0.241684 0.970355i \(-0.577700\pi\)
−0.241684 + 0.970355i \(0.577700\pi\)
\(332\) 14.1663 0.777477
\(333\) 7.90706 0.433304
\(334\) −4.85484 −0.265645
\(335\) 0.0202684 0.00110738
\(336\) −3.17413 −0.173163
\(337\) 10.3907 0.566015 0.283008 0.959118i \(-0.408668\pi\)
0.283008 + 0.959118i \(0.408668\pi\)
\(338\) −4.30641 −0.234238
\(339\) 11.5463 0.627109
\(340\) 21.6417 1.17369
\(341\) −0.0314597 −0.00170364
\(342\) −1.71052 −0.0924943
\(343\) 1.00000 0.0539949
\(344\) −0.494626 −0.0266684
\(345\) 13.2590 0.713839
\(346\) 3.44294 0.185094
\(347\) −3.73798 −0.200665 −0.100333 0.994954i \(-0.531991\pi\)
−0.100333 + 0.994954i \(0.531991\pi\)
\(348\) −9.73752 −0.521986
\(349\) 13.8895 0.743487 0.371744 0.928335i \(-0.378760\pi\)
0.371744 + 0.928335i \(0.378760\pi\)
\(350\) 0.463260 0.0247623
\(351\) −1.23685 −0.0660179
\(352\) −0.179862 −0.00958670
\(353\) −29.3769 −1.56357 −0.781787 0.623546i \(-0.785691\pi\)
−0.781787 + 0.623546i \(0.785691\pi\)
\(354\) −3.67395 −0.195268
\(355\) −12.2696 −0.651204
\(356\) 21.9977 1.16587
\(357\) 4.66254 0.246768
\(358\) −1.68002 −0.0887917
\(359\) −3.99547 −0.210873 −0.105436 0.994426i \(-0.533624\pi\)
−0.105436 + 0.994426i \(0.533624\pi\)
\(360\) −3.61746 −0.190657
\(361\) 1.75716 0.0924823
\(362\) −3.98541 −0.209468
\(363\) 10.9981 0.577249
\(364\) −2.29935 −0.120519
\(365\) −29.5607 −1.54728
\(366\) 3.53817 0.184943
\(367\) −15.8689 −0.828348 −0.414174 0.910198i \(-0.635929\pi\)
−0.414174 + 0.910198i \(0.635929\pi\)
\(368\) −16.8560 −0.878678
\(369\) −4.97134 −0.258798
\(370\) 7.41206 0.385335
\(371\) −4.41842 −0.229393
\(372\) 1.32973 0.0689434
\(373\) −1.79342 −0.0928595 −0.0464298 0.998922i \(-0.514784\pi\)
−0.0464298 + 0.998922i \(0.514784\pi\)
\(374\) 0.0769922 0.00398117
\(375\) 9.40311 0.485575
\(376\) −16.5759 −0.854837
\(377\) −6.47850 −0.333660
\(378\) −0.375443 −0.0193107
\(379\) 30.6924 1.57656 0.788280 0.615316i \(-0.210972\pi\)
0.788280 + 0.615316i \(0.210972\pi\)
\(380\) 21.1472 1.08483
\(381\) −1.00000 −0.0512316
\(382\) 4.01618 0.205485
\(383\) −13.9575 −0.713194 −0.356597 0.934258i \(-0.616063\pi\)
−0.356597 + 0.934258i \(0.616063\pi\)
\(384\) 9.98578 0.509585
\(385\) −0.109815 −0.00559668
\(386\) 1.28512 0.0654107
\(387\) 0.341392 0.0173539
\(388\) 16.6803 0.846813
\(389\) 31.4166 1.59288 0.796442 0.604715i \(-0.206713\pi\)
0.796442 + 0.604715i \(0.206713\pi\)
\(390\) −1.15942 −0.0587093
\(391\) 24.7601 1.25217
\(392\) −1.44885 −0.0731780
\(393\) −1.63563 −0.0825067
\(394\) 4.73832 0.238713
\(395\) −3.61085 −0.181681
\(396\) 0.0817655 0.00410887
\(397\) 4.14664 0.208114 0.104057 0.994571i \(-0.466818\pi\)
0.104057 + 0.994571i \(0.466818\pi\)
\(398\) 7.96368 0.399183
\(399\) 4.55600 0.228085
\(400\) 3.91656 0.195828
\(401\) 23.0458 1.15085 0.575427 0.817853i \(-0.304836\pi\)
0.575427 + 0.817853i \(0.304836\pi\)
\(402\) −0.00304777 −0.000152009 0
\(403\) 0.884688 0.0440694
\(404\) −22.1187 −1.10045
\(405\) 2.49678 0.124066
\(406\) −1.96654 −0.0975977
\(407\) −0.347773 −0.0172385
\(408\) −6.75531 −0.334438
\(409\) 10.6304 0.525639 0.262819 0.964845i \(-0.415348\pi\)
0.262819 + 0.964845i \(0.415348\pi\)
\(410\) −4.66012 −0.230147
\(411\) −4.20337 −0.207337
\(412\) −6.18845 −0.304883
\(413\) 9.78565 0.481520
\(414\) −1.99376 −0.0979881
\(415\) −19.0260 −0.933950
\(416\) 5.05796 0.247987
\(417\) 1.83457 0.0898391
\(418\) 0.0752330 0.00367977
\(419\) 0.439830 0.0214871 0.0107436 0.999942i \(-0.496580\pi\)
0.0107436 + 0.999942i \(0.496580\pi\)
\(420\) 4.64162 0.226488
\(421\) 30.3492 1.47913 0.739564 0.673087i \(-0.235032\pi\)
0.739564 + 0.673087i \(0.235032\pi\)
\(422\) 0.530951 0.0258463
\(423\) 11.4407 0.556268
\(424\) 6.40162 0.310890
\(425\) −5.75311 −0.279067
\(426\) 1.84499 0.0893903
\(427\) −9.42399 −0.456059
\(428\) 21.8014 1.05381
\(429\) 0.0543996 0.00262644
\(430\) 0.320020 0.0154327
\(431\) 8.63673 0.416017 0.208008 0.978127i \(-0.433302\pi\)
0.208008 + 0.978127i \(0.433302\pi\)
\(432\) −3.17413 −0.152715
\(433\) 9.34002 0.448853 0.224426 0.974491i \(-0.427949\pi\)
0.224426 + 0.974491i \(0.427949\pi\)
\(434\) 0.268546 0.0128906
\(435\) 13.0779 0.627038
\(436\) 22.9865 1.10085
\(437\) 24.1943 1.15737
\(438\) 4.44506 0.212393
\(439\) 4.79533 0.228869 0.114434 0.993431i \(-0.463494\pi\)
0.114434 + 0.993431i \(0.463494\pi\)
\(440\) 0.159105 0.00758503
\(441\) 1.00000 0.0476190
\(442\) −2.16512 −0.102984
\(443\) −9.57969 −0.455145 −0.227572 0.973761i \(-0.573079\pi\)
−0.227572 + 0.973761i \(0.573079\pi\)
\(444\) 14.6996 0.697610
\(445\) −29.5439 −1.40051
\(446\) −4.38159 −0.207474
\(447\) 14.6708 0.693906
\(448\) −4.81291 −0.227389
\(449\) −22.2178 −1.04852 −0.524262 0.851557i \(-0.675659\pi\)
−0.524262 + 0.851557i \(0.675659\pi\)
\(450\) 0.463260 0.0218383
\(451\) 0.218652 0.0102959
\(452\) 21.4651 1.00963
\(453\) −7.31356 −0.343621
\(454\) −2.62219 −0.123066
\(455\) 3.08813 0.144774
\(456\) −6.60096 −0.309118
\(457\) 32.8310 1.53577 0.767884 0.640589i \(-0.221310\pi\)
0.767884 + 0.640589i \(0.221310\pi\)
\(458\) 1.41292 0.0660216
\(459\) 4.66254 0.217629
\(460\) 24.6490 1.14927
\(461\) −7.65926 −0.356727 −0.178364 0.983965i \(-0.557080\pi\)
−0.178364 + 0.983965i \(0.557080\pi\)
\(462\) 0.0165129 0.000768251 0
\(463\) 38.3105 1.78044 0.890220 0.455530i \(-0.150550\pi\)
0.890220 + 0.455530i \(0.150550\pi\)
\(464\) −16.6258 −0.771834
\(465\) −1.78589 −0.0828186
\(466\) −2.31667 −0.107318
\(467\) −35.9613 −1.66409 −0.832046 0.554707i \(-0.812830\pi\)
−0.832046 + 0.554707i \(0.812830\pi\)
\(468\) −2.29935 −0.106287
\(469\) 0.00811780 0.000374845 0
\(470\) 10.7245 0.494685
\(471\) −5.65707 −0.260664
\(472\) −14.1779 −0.652592
\(473\) −0.0150153 −0.000690404 0
\(474\) 0.542966 0.0249393
\(475\) −5.62166 −0.257939
\(476\) 8.66785 0.397290
\(477\) −4.41842 −0.202305
\(478\) 1.88370 0.0861582
\(479\) 9.37274 0.428251 0.214126 0.976806i \(-0.431310\pi\)
0.214126 + 0.976806i \(0.431310\pi\)
\(480\) −10.2103 −0.466036
\(481\) 9.77981 0.445921
\(482\) −1.75217 −0.0798089
\(483\) 5.31043 0.241633
\(484\) 20.4459 0.929358
\(485\) −22.4024 −1.01724
\(486\) −0.375443 −0.0170304
\(487\) 41.8227 1.89517 0.947584 0.319507i \(-0.103517\pi\)
0.947584 + 0.319507i \(0.103517\pi\)
\(488\) 13.6539 0.618085
\(489\) −16.3284 −0.738397
\(490\) 0.937397 0.0423473
\(491\) 15.2407 0.687802 0.343901 0.939006i \(-0.388252\pi\)
0.343901 + 0.939006i \(0.388252\pi\)
\(492\) −9.24194 −0.416659
\(493\) 24.4220 1.09991
\(494\) −2.11565 −0.0951875
\(495\) −0.109815 −0.00493580
\(496\) 2.27038 0.101943
\(497\) −4.91418 −0.220431
\(498\) 2.86096 0.128203
\(499\) 18.6214 0.833608 0.416804 0.908996i \(-0.363150\pi\)
0.416804 + 0.908996i \(0.363150\pi\)
\(500\) 17.4808 0.781765
\(501\) 12.9310 0.577713
\(502\) −5.60769 −0.250283
\(503\) −40.6766 −1.81368 −0.906841 0.421474i \(-0.861513\pi\)
−0.906841 + 0.421474i \(0.861513\pi\)
\(504\) −1.44885 −0.0645369
\(505\) 29.7064 1.32192
\(506\) 0.0876908 0.00389833
\(507\) 11.4702 0.509410
\(508\) −1.85904 −0.0824817
\(509\) 33.9922 1.50668 0.753340 0.657631i \(-0.228442\pi\)
0.753340 + 0.657631i \(0.228442\pi\)
\(510\) 4.37065 0.193536
\(511\) −11.8395 −0.523750
\(512\) 22.1779 0.980136
\(513\) 4.55600 0.201152
\(514\) 0.939379 0.0414342
\(515\) 8.31137 0.366243
\(516\) 0.634663 0.0279395
\(517\) −0.503193 −0.0221304
\(518\) 2.96865 0.130435
\(519\) −9.17036 −0.402534
\(520\) −4.47424 −0.196208
\(521\) −1.31867 −0.0577722 −0.0288861 0.999583i \(-0.509196\pi\)
−0.0288861 + 0.999583i \(0.509196\pi\)
\(522\) −1.96654 −0.0860731
\(523\) −30.7412 −1.34422 −0.672109 0.740452i \(-0.734611\pi\)
−0.672109 + 0.740452i \(0.734611\pi\)
\(524\) −3.04071 −0.132834
\(525\) −1.23390 −0.0538519
\(526\) −1.40734 −0.0613628
\(527\) −3.33501 −0.145275
\(528\) 0.139606 0.00607558
\(529\) 5.20068 0.226116
\(530\) −4.14181 −0.179909
\(531\) 9.78565 0.424661
\(532\) 8.46980 0.367213
\(533\) −6.14878 −0.266333
\(534\) 4.44254 0.192247
\(535\) −29.2803 −1.26590
\(536\) −0.0117615 −0.000508019 0
\(537\) 4.47476 0.193100
\(538\) 3.06471 0.132129
\(539\) −0.0439826 −0.00189446
\(540\) 4.64162 0.199743
\(541\) 16.8366 0.723860 0.361930 0.932205i \(-0.382118\pi\)
0.361930 + 0.932205i \(0.382118\pi\)
\(542\) −3.06374 −0.131599
\(543\) 10.6152 0.455542
\(544\) −19.0670 −0.817490
\(545\) −30.8719 −1.32241
\(546\) −0.464365 −0.0198730
\(547\) 16.8752 0.721531 0.360766 0.932656i \(-0.382515\pi\)
0.360766 + 0.932656i \(0.382515\pi\)
\(548\) −7.81424 −0.333808
\(549\) −9.42399 −0.402206
\(550\) −0.0203753 −0.000868807 0
\(551\) 23.8640 1.01664
\(552\) −7.69402 −0.327479
\(553\) −1.44620 −0.0614988
\(554\) −7.32986 −0.311416
\(555\) −19.7422 −0.838009
\(556\) 3.41054 0.144639
\(557\) −31.2255 −1.32307 −0.661534 0.749915i \(-0.730094\pi\)
−0.661534 + 0.749915i \(0.730094\pi\)
\(558\) 0.268546 0.0113684
\(559\) 0.422249 0.0178592
\(560\) 7.92509 0.334896
\(561\) −0.205070 −0.00865807
\(562\) −5.10441 −0.215317
\(563\) −12.2339 −0.515595 −0.257798 0.966199i \(-0.582997\pi\)
−0.257798 + 0.966199i \(0.582997\pi\)
\(564\) 21.2688 0.895579
\(565\) −28.8285 −1.21283
\(566\) 9.01810 0.379059
\(567\) 1.00000 0.0419961
\(568\) 7.11991 0.298745
\(569\) −16.3199 −0.684164 −0.342082 0.939670i \(-0.611132\pi\)
−0.342082 + 0.939670i \(0.611132\pi\)
\(570\) 4.27079 0.178884
\(571\) 0.774915 0.0324292 0.0162146 0.999869i \(-0.494839\pi\)
0.0162146 + 0.999869i \(0.494839\pi\)
\(572\) 0.101131 0.00422851
\(573\) −10.6972 −0.446881
\(574\) −1.86645 −0.0779043
\(575\) −6.55255 −0.273260
\(576\) −4.81291 −0.200538
\(577\) 13.3038 0.553845 0.276922 0.960892i \(-0.410685\pi\)
0.276922 + 0.960892i \(0.410685\pi\)
\(578\) 1.77931 0.0740097
\(579\) −3.42294 −0.142252
\(580\) 24.3124 1.00952
\(581\) −7.62022 −0.316140
\(582\) 3.36866 0.139636
\(583\) 0.194333 0.00804846
\(584\) 17.1537 0.709825
\(585\) 3.08813 0.127678
\(586\) −10.3556 −0.427787
\(587\) 1.02046 0.0421187 0.0210594 0.999778i \(-0.493296\pi\)
0.0210594 + 0.999778i \(0.493296\pi\)
\(588\) 1.85904 0.0766656
\(589\) −3.25881 −0.134277
\(590\) 9.17304 0.377648
\(591\) −12.6206 −0.519143
\(592\) 25.0980 1.03152
\(593\) −22.7116 −0.932655 −0.466327 0.884612i \(-0.654423\pi\)
−0.466327 + 0.884612i \(0.654423\pi\)
\(594\) 0.0165129 0.000677534 0
\(595\) −11.6413 −0.477248
\(596\) 27.2737 1.11717
\(597\) −21.2114 −0.868126
\(598\) −2.46598 −0.100841
\(599\) 25.5601 1.04436 0.522180 0.852835i \(-0.325119\pi\)
0.522180 + 0.852835i \(0.325119\pi\)
\(600\) 1.78774 0.0729841
\(601\) −26.9352 −1.09871 −0.549355 0.835589i \(-0.685127\pi\)
−0.549355 + 0.835589i \(0.685127\pi\)
\(602\) 0.128173 0.00522395
\(603\) 0.00811780 0.000330583 0
\(604\) −13.5962 −0.553222
\(605\) −27.4597 −1.11640
\(606\) −4.46699 −0.181459
\(607\) 37.3334 1.51532 0.757659 0.652651i \(-0.226343\pi\)
0.757659 + 0.652651i \(0.226343\pi\)
\(608\) −18.6313 −0.755600
\(609\) 5.23792 0.212251
\(610\) −8.83402 −0.357679
\(611\) 14.1504 0.572465
\(612\) 8.66785 0.350377
\(613\) 24.7374 0.999135 0.499568 0.866275i \(-0.333492\pi\)
0.499568 + 0.866275i \(0.333492\pi\)
\(614\) −9.31674 −0.375993
\(615\) 12.4123 0.500514
\(616\) 0.0637241 0.00256752
\(617\) 1.99796 0.0804347 0.0402173 0.999191i \(-0.487195\pi\)
0.0402173 + 0.999191i \(0.487195\pi\)
\(618\) −1.24979 −0.0502739
\(619\) −12.8044 −0.514654 −0.257327 0.966324i \(-0.582842\pi\)
−0.257327 + 0.966324i \(0.582842\pi\)
\(620\) −3.32004 −0.133336
\(621\) 5.31043 0.213100
\(622\) −0.296210 −0.0118769
\(623\) −11.8328 −0.474071
\(624\) −3.92590 −0.157162
\(625\) −29.6470 −1.18588
\(626\) 6.18696 0.247280
\(627\) −0.200385 −0.00800259
\(628\) −10.5167 −0.419663
\(629\) −36.8670 −1.46998
\(630\) 0.937397 0.0373468
\(631\) 48.1211 1.91567 0.957836 0.287315i \(-0.0927625\pi\)
0.957836 + 0.287315i \(0.0927625\pi\)
\(632\) 2.09533 0.0833477
\(633\) −1.41420 −0.0562094
\(634\) 5.74027 0.227975
\(635\) 2.49678 0.0990816
\(636\) −8.21403 −0.325707
\(637\) 1.23685 0.0490056
\(638\) 0.0864934 0.00342431
\(639\) −4.91418 −0.194402
\(640\) −24.9323 −0.985535
\(641\) −27.7591 −1.09642 −0.548209 0.836341i \(-0.684690\pi\)
−0.548209 + 0.836341i \(0.684690\pi\)
\(642\) 4.40290 0.173769
\(643\) 10.3622 0.408647 0.204323 0.978903i \(-0.434501\pi\)
0.204323 + 0.978903i \(0.434501\pi\)
\(644\) 9.87232 0.389024
\(645\) −0.852381 −0.0335625
\(646\) 7.97535 0.313786
\(647\) 27.9465 1.09869 0.549345 0.835596i \(-0.314877\pi\)
0.549345 + 0.835596i \(0.314877\pi\)
\(648\) −1.44885 −0.0569162
\(649\) −0.430398 −0.0168946
\(650\) 0.572981 0.0224741
\(651\) −0.715277 −0.0280339
\(652\) −30.3552 −1.18880
\(653\) 28.5640 1.11780 0.558898 0.829237i \(-0.311225\pi\)
0.558898 + 0.829237i \(0.311225\pi\)
\(654\) 4.64223 0.181526
\(655\) 4.08381 0.159568
\(656\) −15.7797 −0.616092
\(657\) −11.8395 −0.461904
\(658\) 4.29534 0.167450
\(659\) −21.4088 −0.833967 −0.416983 0.908914i \(-0.636913\pi\)
−0.416983 + 0.908914i \(0.636913\pi\)
\(660\) −0.204150 −0.00794654
\(661\) −9.97679 −0.388052 −0.194026 0.980996i \(-0.562155\pi\)
−0.194026 + 0.980996i \(0.562155\pi\)
\(662\) −3.30169 −0.128324
\(663\) 5.76684 0.223965
\(664\) 11.0406 0.428457
\(665\) −11.3753 −0.441116
\(666\) 2.96865 0.115033
\(667\) 27.8156 1.07702
\(668\) 24.0392 0.930105
\(669\) 11.6705 0.451206
\(670\) 0.00760961 0.000293985 0
\(671\) 0.414491 0.0160012
\(672\) −4.08940 −0.157752
\(673\) 13.9270 0.536846 0.268423 0.963301i \(-0.413498\pi\)
0.268423 + 0.963301i \(0.413498\pi\)
\(674\) 3.90110 0.150265
\(675\) −1.23390 −0.0474929
\(676\) 21.3236 0.820139
\(677\) 36.3413 1.39671 0.698355 0.715752i \(-0.253916\pi\)
0.698355 + 0.715752i \(0.253916\pi\)
\(678\) 4.33497 0.166484
\(679\) −8.97251 −0.344333
\(680\) 16.8665 0.646802
\(681\) 6.98427 0.267638
\(682\) −0.0118113 −0.000452279 0
\(683\) 29.4074 1.12524 0.562621 0.826715i \(-0.309793\pi\)
0.562621 + 0.826715i \(0.309793\pi\)
\(684\) 8.46980 0.323851
\(685\) 10.4949 0.400989
\(686\) 0.375443 0.0143345
\(687\) −3.76335 −0.143581
\(688\) 1.08362 0.0413127
\(689\) −5.46490 −0.208196
\(690\) 4.97798 0.189509
\(691\) −30.7917 −1.17137 −0.585685 0.810539i \(-0.699175\pi\)
−0.585685 + 0.810539i \(0.699175\pi\)
\(692\) −17.0481 −0.648071
\(693\) −0.0439826 −0.00167076
\(694\) −1.40340 −0.0532722
\(695\) −4.58051 −0.173749
\(696\) −7.58896 −0.287659
\(697\) 23.1791 0.877970
\(698\) 5.21471 0.197380
\(699\) 6.17050 0.233390
\(700\) −2.29388 −0.0867004
\(701\) 18.0737 0.682636 0.341318 0.939948i \(-0.389127\pi\)
0.341318 + 0.939948i \(0.389127\pi\)
\(702\) −0.464365 −0.0175263
\(703\) −36.0246 −1.35869
\(704\) 0.211684 0.00797815
\(705\) −28.5650 −1.07582
\(706\) −11.0293 −0.415095
\(707\) 11.8979 0.447467
\(708\) 18.1919 0.683695
\(709\) −16.5066 −0.619919 −0.309960 0.950750i \(-0.600316\pi\)
−0.309960 + 0.950750i \(0.600316\pi\)
\(710\) −4.60654 −0.172880
\(711\) −1.44620 −0.0542368
\(712\) 17.1439 0.642496
\(713\) −3.79843 −0.142252
\(714\) 1.75052 0.0655114
\(715\) −0.135824 −0.00507952
\(716\) 8.31878 0.310887
\(717\) −5.01726 −0.187373
\(718\) −1.50007 −0.0559821
\(719\) −28.8143 −1.07459 −0.537296 0.843394i \(-0.680554\pi\)
−0.537296 + 0.843394i \(0.680554\pi\)
\(720\) 7.92509 0.295351
\(721\) 3.32884 0.123972
\(722\) 0.659715 0.0245520
\(723\) 4.66693 0.173565
\(724\) 19.7341 0.733413
\(725\) −6.46308 −0.240033
\(726\) 4.12914 0.153247
\(727\) 37.2045 1.37984 0.689920 0.723886i \(-0.257646\pi\)
0.689920 + 0.723886i \(0.257646\pi\)
\(728\) −1.79200 −0.0664161
\(729\) 1.00000 0.0370370
\(730\) −11.0983 −0.410768
\(731\) −1.59175 −0.0588731
\(732\) −17.5196 −0.647543
\(733\) 17.7329 0.654980 0.327490 0.944855i \(-0.393797\pi\)
0.327490 + 0.944855i \(0.393797\pi\)
\(734\) −5.95785 −0.219908
\(735\) −2.49678 −0.0920951
\(736\) −21.7165 −0.800480
\(737\) −0.000357042 0 −1.31518e−5 0
\(738\) −1.86645 −0.0687052
\(739\) −15.1053 −0.555658 −0.277829 0.960631i \(-0.589615\pi\)
−0.277829 + 0.960631i \(0.589615\pi\)
\(740\) −36.7015 −1.34918
\(741\) 5.63507 0.207010
\(742\) −1.65886 −0.0608988
\(743\) −47.6088 −1.74660 −0.873299 0.487184i \(-0.838024\pi\)
−0.873299 + 0.487184i \(0.838024\pi\)
\(744\) 1.03633 0.0379937
\(745\) −36.6298 −1.34201
\(746\) −0.673325 −0.0246522
\(747\) −7.62022 −0.278809
\(748\) −0.381234 −0.0139393
\(749\) −11.7272 −0.428503
\(750\) 3.53033 0.128909
\(751\) 7.36875 0.268890 0.134445 0.990921i \(-0.457075\pi\)
0.134445 + 0.990921i \(0.457075\pi\)
\(752\) 36.3143 1.32425
\(753\) 14.9362 0.544306
\(754\) −2.43231 −0.0885793
\(755\) 18.2603 0.664562
\(756\) 1.85904 0.0676127
\(757\) −2.31274 −0.0840581 −0.0420291 0.999116i \(-0.513382\pi\)
−0.0420291 + 0.999116i \(0.513382\pi\)
\(758\) 11.5232 0.418543
\(759\) −0.233566 −0.00847792
\(760\) 16.4811 0.597834
\(761\) −34.4910 −1.25030 −0.625149 0.780506i \(-0.714962\pi\)
−0.625149 + 0.780506i \(0.714962\pi\)
\(762\) −0.375443 −0.0136009
\(763\) −12.3647 −0.447631
\(764\) −19.8865 −0.719468
\(765\) −11.6413 −0.420893
\(766\) −5.24024 −0.189337
\(767\) 12.1033 0.437026
\(768\) −5.87674 −0.212059
\(769\) −42.3387 −1.52677 −0.763387 0.645941i \(-0.776465\pi\)
−0.763387 + 0.645941i \(0.776465\pi\)
\(770\) −0.0412291 −0.00148580
\(771\) −2.50206 −0.0901093
\(772\) −6.36339 −0.229023
\(773\) −35.6992 −1.28401 −0.642006 0.766700i \(-0.721898\pi\)
−0.642006 + 0.766700i \(0.721898\pi\)
\(774\) 0.128173 0.00460709
\(775\) 0.882582 0.0317033
\(776\) 12.9998 0.466666
\(777\) −7.90706 −0.283664
\(778\) 11.7951 0.422876
\(779\) 22.6495 0.811501
\(780\) 5.74096 0.205560
\(781\) 0.216138 0.00773404
\(782\) 9.29599 0.332424
\(783\) 5.23792 0.187188
\(784\) 3.17413 0.113362
\(785\) 14.1244 0.504123
\(786\) −0.614086 −0.0219037
\(787\) −43.8015 −1.56135 −0.780677 0.624935i \(-0.785125\pi\)
−0.780677 + 0.624935i \(0.785125\pi\)
\(788\) −23.4623 −0.835808
\(789\) 3.74847 0.133449
\(790\) −1.35567 −0.0482324
\(791\) −11.5463 −0.410539
\(792\) 0.0637241 0.00226434
\(793\) −11.6560 −0.413917
\(794\) 1.55683 0.0552497
\(795\) 11.0318 0.391258
\(796\) −39.4329 −1.39766
\(797\) −31.2751 −1.10782 −0.553910 0.832577i \(-0.686865\pi\)
−0.553910 + 0.832577i \(0.686865\pi\)
\(798\) 1.71052 0.0605517
\(799\) −53.3428 −1.88713
\(800\) 5.04592 0.178400
\(801\) −11.8328 −0.418091
\(802\) 8.65240 0.305527
\(803\) 0.520733 0.0183763
\(804\) 0.0150913 0.000532231 0
\(805\) −13.2590 −0.467317
\(806\) 0.332150 0.0116995
\(807\) −8.16292 −0.287348
\(808\) −17.2383 −0.606441
\(809\) 15.2691 0.536834 0.268417 0.963303i \(-0.413499\pi\)
0.268417 + 0.963303i \(0.413499\pi\)
\(810\) 0.937397 0.0329368
\(811\) 12.6537 0.444332 0.222166 0.975009i \(-0.428687\pi\)
0.222166 + 0.975009i \(0.428687\pi\)
\(812\) 9.73752 0.341720
\(813\) 8.16035 0.286196
\(814\) −0.130569 −0.00457643
\(815\) 40.7684 1.42806
\(816\) 14.7995 0.518085
\(817\) −1.55538 −0.0544160
\(818\) 3.99110 0.139546
\(819\) 1.23685 0.0432189
\(820\) 23.0751 0.805816
\(821\) 34.4322 1.20169 0.600846 0.799365i \(-0.294831\pi\)
0.600846 + 0.799365i \(0.294831\pi\)
\(822\) −1.57812 −0.0550434
\(823\) −37.0847 −1.29269 −0.646346 0.763044i \(-0.723704\pi\)
−0.646346 + 0.763044i \(0.723704\pi\)
\(824\) −4.82299 −0.168017
\(825\) 0.0542702 0.00188944
\(826\) 3.67395 0.127833
\(827\) 40.9578 1.42424 0.712120 0.702057i \(-0.247735\pi\)
0.712120 + 0.702057i \(0.247735\pi\)
\(828\) 9.87232 0.343087
\(829\) 38.7169 1.34469 0.672346 0.740237i \(-0.265287\pi\)
0.672346 + 0.740237i \(0.265287\pi\)
\(830\) −7.14317 −0.247943
\(831\) 19.5232 0.677254
\(832\) −5.95283 −0.206377
\(833\) −4.66254 −0.161547
\(834\) 0.688775 0.0238503
\(835\) −32.2857 −1.11729
\(836\) −0.372524 −0.0128840
\(837\) −0.715277 −0.0247236
\(838\) 0.165131 0.00570436
\(839\) 41.1323 1.42005 0.710023 0.704179i \(-0.248685\pi\)
0.710023 + 0.704179i \(0.248685\pi\)
\(840\) 3.61746 0.124814
\(841\) −1.56420 −0.0539380
\(842\) 11.3944 0.392676
\(843\) 13.5957 0.468261
\(844\) −2.62906 −0.0904959
\(845\) −28.6386 −0.985197
\(846\) 4.29534 0.147677
\(847\) −10.9981 −0.377898
\(848\) −14.0246 −0.481607
\(849\) −24.0199 −0.824360
\(850\) −2.15996 −0.0740862
\(851\) −41.9899 −1.43940
\(852\) −9.13567 −0.312983
\(853\) −17.8259 −0.610348 −0.305174 0.952297i \(-0.598715\pi\)
−0.305174 + 0.952297i \(0.598715\pi\)
\(854\) −3.53817 −0.121074
\(855\) −11.3753 −0.389028
\(856\) 16.9910 0.580739
\(857\) −52.7623 −1.80233 −0.901164 0.433479i \(-0.857286\pi\)
−0.901164 + 0.433479i \(0.857286\pi\)
\(858\) 0.0204240 0.000697262 0
\(859\) −52.2180 −1.78166 −0.890828 0.454341i \(-0.849875\pi\)
−0.890828 + 0.454341i \(0.849875\pi\)
\(860\) −1.58461 −0.0540348
\(861\) 4.97134 0.169423
\(862\) 3.24260 0.110443
\(863\) −16.7285 −0.569446 −0.284723 0.958610i \(-0.591902\pi\)
−0.284723 + 0.958610i \(0.591902\pi\)
\(864\) −4.08940 −0.139124
\(865\) 22.8963 0.778499
\(866\) 3.50664 0.119161
\(867\) −4.73924 −0.160953
\(868\) −1.32973 −0.0451340
\(869\) 0.0636077 0.00215774
\(870\) 4.91001 0.166465
\(871\) 0.0100405 0.000340208 0
\(872\) 17.9146 0.606664
\(873\) −8.97251 −0.303673
\(874\) 9.08359 0.307257
\(875\) −9.40311 −0.317883
\(876\) −22.0102 −0.743655
\(877\) −3.86764 −0.130601 −0.0653005 0.997866i \(-0.520801\pi\)
−0.0653005 + 0.997866i \(0.520801\pi\)
\(878\) 1.80037 0.0607596
\(879\) 27.5825 0.930333
\(880\) −0.348566 −0.0117501
\(881\) 22.2193 0.748586 0.374293 0.927311i \(-0.377885\pi\)
0.374293 + 0.927311i \(0.377885\pi\)
\(882\) 0.375443 0.0126418
\(883\) −3.75514 −0.126370 −0.0631852 0.998002i \(-0.520126\pi\)
−0.0631852 + 0.998002i \(0.520126\pi\)
\(884\) 10.7208 0.360579
\(885\) −24.4326 −0.821293
\(886\) −3.59662 −0.120831
\(887\) 54.5326 1.83102 0.915512 0.402291i \(-0.131786\pi\)
0.915512 + 0.402291i \(0.131786\pi\)
\(888\) 11.4561 0.384443
\(889\) 1.00000 0.0335389
\(890\) −11.0920 −0.371806
\(891\) −0.0439826 −0.00147347
\(892\) 21.6959 0.726432
\(893\) −52.1240 −1.74426
\(894\) 5.50806 0.184217
\(895\) −11.1725 −0.373455
\(896\) −9.98578 −0.333601
\(897\) 6.56818 0.219305
\(898\) −8.34152 −0.278360
\(899\) −3.74657 −0.124955
\(900\) −2.29388 −0.0764625
\(901\) 20.6010 0.686320
\(902\) 0.0820915 0.00273335
\(903\) −0.341392 −0.0113608
\(904\) 16.7288 0.556393
\(905\) −26.5038 −0.881017
\(906\) −2.74582 −0.0912239
\(907\) 42.1002 1.39791 0.698957 0.715163i \(-0.253648\pi\)
0.698957 + 0.715163i \(0.253648\pi\)
\(908\) 12.9841 0.430891
\(909\) 11.8979 0.394629
\(910\) 1.15942 0.0384343
\(911\) 25.1777 0.834173 0.417086 0.908867i \(-0.363051\pi\)
0.417086 + 0.908867i \(0.363051\pi\)
\(912\) 14.4613 0.478862
\(913\) 0.335157 0.0110921
\(914\) 12.3261 0.407713
\(915\) 23.5296 0.777865
\(916\) −6.99624 −0.231162
\(917\) 1.63563 0.0540133
\(918\) 1.75052 0.0577756
\(919\) 3.16307 0.104340 0.0521699 0.998638i \(-0.483386\pi\)
0.0521699 + 0.998638i \(0.483386\pi\)
\(920\) 19.2103 0.633343
\(921\) 24.8153 0.817693
\(922\) −2.87561 −0.0947033
\(923\) −6.07808 −0.200063
\(924\) −0.0817655 −0.00268989
\(925\) 9.75654 0.320793
\(926\) 14.3834 0.472668
\(927\) 3.32884 0.109333
\(928\) −21.4200 −0.703145
\(929\) 14.3412 0.470519 0.235260 0.971933i \(-0.424406\pi\)
0.235260 + 0.971933i \(0.424406\pi\)
\(930\) −0.670499 −0.0219865
\(931\) −4.55600 −0.149317
\(932\) 11.4712 0.375752
\(933\) 0.788961 0.0258294
\(934\) −13.5014 −0.441780
\(935\) 0.512015 0.0167447
\(936\) −1.79200 −0.0585735
\(937\) 42.7371 1.39616 0.698080 0.716020i \(-0.254038\pi\)
0.698080 + 0.716020i \(0.254038\pi\)
\(938\) 0.00304777 9.95133e−5 0
\(939\) −16.4791 −0.537775
\(940\) −53.1035 −1.73205
\(941\) −4.82197 −0.157192 −0.0785958 0.996907i \(-0.525044\pi\)
−0.0785958 + 0.996907i \(0.525044\pi\)
\(942\) −2.12391 −0.0692006
\(943\) 26.4000 0.859701
\(944\) 31.0609 1.01095
\(945\) −2.49678 −0.0812202
\(946\) −0.00563739 −0.000183287 0
\(947\) 14.0659 0.457080 0.228540 0.973535i \(-0.426605\pi\)
0.228540 + 0.973535i \(0.426605\pi\)
\(948\) −2.68855 −0.0873201
\(949\) −14.6437 −0.475354
\(950\) −2.11061 −0.0684773
\(951\) −15.2893 −0.495791
\(952\) 6.75531 0.218941
\(953\) 37.8805 1.22707 0.613534 0.789668i \(-0.289747\pi\)
0.613534 + 0.789668i \(0.289747\pi\)
\(954\) −1.65886 −0.0537077
\(955\) 26.7085 0.864266
\(956\) −9.32731 −0.301667
\(957\) −0.230377 −0.00744703
\(958\) 3.51893 0.113691
\(959\) 4.20337 0.135734
\(960\) 12.0168 0.387840
\(961\) −30.4884 −0.983496
\(962\) 3.67176 0.118382
\(963\) −11.7272 −0.377904
\(964\) 8.67602 0.279436
\(965\) 8.54631 0.275116
\(966\) 1.99376 0.0641483
\(967\) −4.19261 −0.134825 −0.0674126 0.997725i \(-0.521474\pi\)
−0.0674126 + 0.997725i \(0.521474\pi\)
\(968\) 15.9345 0.512156
\(969\) −21.2425 −0.682408
\(970\) −8.41081 −0.270055
\(971\) 48.6618 1.56163 0.780815 0.624762i \(-0.214804\pi\)
0.780815 + 0.624762i \(0.214804\pi\)
\(972\) 1.85904 0.0596288
\(973\) −1.83457 −0.0588135
\(974\) 15.7020 0.503126
\(975\) −1.52615 −0.0488758
\(976\) −29.9129 −0.957489
\(977\) −9.44891 −0.302297 −0.151149 0.988511i \(-0.548297\pi\)
−0.151149 + 0.988511i \(0.548297\pi\)
\(978\) −6.13039 −0.196028
\(979\) 0.520437 0.0166332
\(980\) −4.64162 −0.148271
\(981\) −12.3647 −0.394774
\(982\) 5.72200 0.182596
\(983\) −41.1626 −1.31288 −0.656441 0.754377i \(-0.727939\pi\)
−0.656441 + 0.754377i \(0.727939\pi\)
\(984\) −7.20273 −0.229615
\(985\) 31.5109 1.00402
\(986\) 9.16906 0.292002
\(987\) −11.4407 −0.364163
\(988\) 10.4758 0.333281
\(989\) −1.81294 −0.0576481
\(990\) −0.0412291 −0.00131035
\(991\) −24.3889 −0.774740 −0.387370 0.921924i \(-0.626616\pi\)
−0.387370 + 0.921924i \(0.626616\pi\)
\(992\) 2.92506 0.0928707
\(993\) 8.79412 0.279073
\(994\) −1.84499 −0.0585197
\(995\) 52.9602 1.67895
\(996\) −14.1663 −0.448877
\(997\) 2.58240 0.0817855 0.0408927 0.999164i \(-0.486980\pi\)
0.0408927 + 0.999164i \(0.486980\pi\)
\(998\) 6.99127 0.221305
\(999\) −7.90706 −0.250168
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.p.1.11 18
3.2 odd 2 8001.2.a.u.1.8 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.p.1.11 18 1.1 even 1 trivial
8001.2.a.u.1.8 18 3.2 odd 2