Properties

Label 2667.2.a.o.1.7
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,5,-16,19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} - 13 x^{14} + 98 x^{13} + 9 x^{12} - 712 x^{11} + 565 x^{10} + 2282 x^{9} - 3082 x^{8} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(0.0296587\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0296587 q^{2} -1.00000 q^{3} -1.99912 q^{4} +3.07938 q^{5} -0.0296587 q^{6} -1.00000 q^{7} -0.118609 q^{8} +1.00000 q^{9} +0.0913304 q^{10} -4.20887 q^{11} +1.99912 q^{12} -6.43617 q^{13} -0.0296587 q^{14} -3.07938 q^{15} +3.99472 q^{16} -0.978108 q^{17} +0.0296587 q^{18} +0.452098 q^{19} -6.15605 q^{20} +1.00000 q^{21} -0.124830 q^{22} +1.87821 q^{23} +0.118609 q^{24} +4.48258 q^{25} -0.190888 q^{26} -1.00000 q^{27} +1.99912 q^{28} +6.69207 q^{29} -0.0913304 q^{30} -1.28170 q^{31} +0.355696 q^{32} +4.20887 q^{33} -0.0290094 q^{34} -3.07938 q^{35} -1.99912 q^{36} +6.10620 q^{37} +0.0134086 q^{38} +6.43617 q^{39} -0.365241 q^{40} -3.48251 q^{41} +0.0296587 q^{42} +4.11590 q^{43} +8.41404 q^{44} +3.07938 q^{45} +0.0557052 q^{46} -0.343427 q^{47} -3.99472 q^{48} +1.00000 q^{49} +0.132948 q^{50} +0.978108 q^{51} +12.8667 q^{52} +2.22047 q^{53} -0.0296587 q^{54} -12.9607 q^{55} +0.118609 q^{56} -0.452098 q^{57} +0.198478 q^{58} +1.48973 q^{59} +6.15605 q^{60} +7.08310 q^{61} -0.0380136 q^{62} -1.00000 q^{63} -7.97890 q^{64} -19.8194 q^{65} +0.124830 q^{66} +0.989393 q^{67} +1.95535 q^{68} -1.87821 q^{69} -0.0913304 q^{70} -8.17613 q^{71} -0.118609 q^{72} +9.17564 q^{73} +0.181102 q^{74} -4.48258 q^{75} -0.903798 q^{76} +4.20887 q^{77} +0.190888 q^{78} +9.02266 q^{79} +12.3013 q^{80} +1.00000 q^{81} -0.103287 q^{82} -5.68319 q^{83} -1.99912 q^{84} -3.01197 q^{85} +0.122072 q^{86} -6.69207 q^{87} +0.499209 q^{88} +2.01684 q^{89} +0.0913304 q^{90} +6.43617 q^{91} -3.75476 q^{92} +1.28170 q^{93} -0.0101856 q^{94} +1.39218 q^{95} -0.355696 q^{96} +10.8384 q^{97} +0.0296587 q^{98} -4.20887 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{2} - 16 q^{3} + 19 q^{4} - q^{5} - 5 q^{6} - 16 q^{7} + 6 q^{8} + 16 q^{9} - 12 q^{10} + 11 q^{11} - 19 q^{12} + 18 q^{13} - 5 q^{14} + q^{15} + 25 q^{16} - 5 q^{17} + 5 q^{18} - 11 q^{19}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0296587 0.0209719 0.0104859 0.999945i \(-0.496662\pi\)
0.0104859 + 0.999945i \(0.496662\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.99912 −0.999560
\(5\) 3.07938 1.37714 0.688570 0.725170i \(-0.258239\pi\)
0.688570 + 0.725170i \(0.258239\pi\)
\(6\) −0.0296587 −0.0121081
\(7\) −1.00000 −0.377964
\(8\) −0.118609 −0.0419345
\(9\) 1.00000 0.333333
\(10\) 0.0913304 0.0288812
\(11\) −4.20887 −1.26902 −0.634511 0.772913i \(-0.718799\pi\)
−0.634511 + 0.772913i \(0.718799\pi\)
\(12\) 1.99912 0.577096
\(13\) −6.43617 −1.78507 −0.892536 0.450977i \(-0.851076\pi\)
−0.892536 + 0.450977i \(0.851076\pi\)
\(14\) −0.0296587 −0.00792662
\(15\) −3.07938 −0.795093
\(16\) 3.99472 0.998681
\(17\) −0.978108 −0.237226 −0.118613 0.992941i \(-0.537845\pi\)
−0.118613 + 0.992941i \(0.537845\pi\)
\(18\) 0.0296587 0.00699062
\(19\) 0.452098 0.103718 0.0518592 0.998654i \(-0.483485\pi\)
0.0518592 + 0.998654i \(0.483485\pi\)
\(20\) −6.15605 −1.37654
\(21\) 1.00000 0.218218
\(22\) −0.124830 −0.0266138
\(23\) 1.87821 0.391633 0.195817 0.980641i \(-0.437264\pi\)
0.195817 + 0.980641i \(0.437264\pi\)
\(24\) 0.118609 0.0242109
\(25\) 4.48258 0.896517
\(26\) −0.190888 −0.0374363
\(27\) −1.00000 −0.192450
\(28\) 1.99912 0.377798
\(29\) 6.69207 1.24269 0.621343 0.783539i \(-0.286587\pi\)
0.621343 + 0.783539i \(0.286587\pi\)
\(30\) −0.0913304 −0.0166746
\(31\) −1.28170 −0.230200 −0.115100 0.993354i \(-0.536719\pi\)
−0.115100 + 0.993354i \(0.536719\pi\)
\(32\) 0.355696 0.0628787
\(33\) 4.20887 0.732671
\(34\) −0.0290094 −0.00497507
\(35\) −3.07938 −0.520510
\(36\) −1.99912 −0.333187
\(37\) 6.10620 1.00385 0.501927 0.864910i \(-0.332625\pi\)
0.501927 + 0.864910i \(0.332625\pi\)
\(38\) 0.0134086 0.00217517
\(39\) 6.43617 1.03061
\(40\) −0.365241 −0.0577497
\(41\) −3.48251 −0.543877 −0.271939 0.962315i \(-0.587665\pi\)
−0.271939 + 0.962315i \(0.587665\pi\)
\(42\) 0.0296587 0.00457643
\(43\) 4.11590 0.627669 0.313835 0.949478i \(-0.398386\pi\)
0.313835 + 0.949478i \(0.398386\pi\)
\(44\) 8.41404 1.26846
\(45\) 3.07938 0.459047
\(46\) 0.0557052 0.00821328
\(47\) −0.343427 −0.0500940 −0.0250470 0.999686i \(-0.507974\pi\)
−0.0250470 + 0.999686i \(0.507974\pi\)
\(48\) −3.99472 −0.576589
\(49\) 1.00000 0.142857
\(50\) 0.132948 0.0188016
\(51\) 0.978108 0.136962
\(52\) 12.8667 1.78429
\(53\) 2.22047 0.305005 0.152503 0.988303i \(-0.451267\pi\)
0.152503 + 0.988303i \(0.451267\pi\)
\(54\) −0.0296587 −0.00403604
\(55\) −12.9607 −1.74762
\(56\) 0.118609 0.0158497
\(57\) −0.452098 −0.0598818
\(58\) 0.198478 0.0260614
\(59\) 1.48973 0.193946 0.0969729 0.995287i \(-0.469084\pi\)
0.0969729 + 0.995287i \(0.469084\pi\)
\(60\) 6.15605 0.794743
\(61\) 7.08310 0.906898 0.453449 0.891282i \(-0.350193\pi\)
0.453449 + 0.891282i \(0.350193\pi\)
\(62\) −0.0380136 −0.00482773
\(63\) −1.00000 −0.125988
\(64\) −7.97890 −0.997362
\(65\) −19.8194 −2.45829
\(66\) 0.124830 0.0153655
\(67\) 0.989393 0.120874 0.0604368 0.998172i \(-0.480751\pi\)
0.0604368 + 0.998172i \(0.480751\pi\)
\(68\) 1.95535 0.237122
\(69\) −1.87821 −0.226110
\(70\) −0.0913304 −0.0109161
\(71\) −8.17613 −0.970328 −0.485164 0.874423i \(-0.661240\pi\)
−0.485164 + 0.874423i \(0.661240\pi\)
\(72\) −0.118609 −0.0139782
\(73\) 9.17564 1.07393 0.536964 0.843605i \(-0.319571\pi\)
0.536964 + 0.843605i \(0.319571\pi\)
\(74\) 0.181102 0.0210527
\(75\) −4.48258 −0.517604
\(76\) −0.903798 −0.103673
\(77\) 4.20887 0.479646
\(78\) 0.190888 0.0216138
\(79\) 9.02266 1.01513 0.507564 0.861614i \(-0.330546\pi\)
0.507564 + 0.861614i \(0.330546\pi\)
\(80\) 12.3013 1.37532
\(81\) 1.00000 0.111111
\(82\) −0.103287 −0.0114061
\(83\) −5.68319 −0.623811 −0.311906 0.950113i \(-0.600967\pi\)
−0.311906 + 0.950113i \(0.600967\pi\)
\(84\) −1.99912 −0.218122
\(85\) −3.01197 −0.326694
\(86\) 0.122072 0.0131634
\(87\) −6.69207 −0.717465
\(88\) 0.499209 0.0532158
\(89\) 2.01684 0.213785 0.106892 0.994271i \(-0.465910\pi\)
0.106892 + 0.994271i \(0.465910\pi\)
\(90\) 0.0913304 0.00962707
\(91\) 6.43617 0.674694
\(92\) −3.75476 −0.391461
\(93\) 1.28170 0.132906
\(94\) −0.0101856 −0.00105056
\(95\) 1.39218 0.142835
\(96\) −0.355696 −0.0363030
\(97\) 10.8384 1.10047 0.550235 0.835010i \(-0.314538\pi\)
0.550235 + 0.835010i \(0.314538\pi\)
\(98\) 0.0296587 0.00299598
\(99\) −4.20887 −0.423008
\(100\) −8.96122 −0.896122
\(101\) 9.76783 0.971936 0.485968 0.873977i \(-0.338467\pi\)
0.485968 + 0.873977i \(0.338467\pi\)
\(102\) 0.0290094 0.00287236
\(103\) 6.28650 0.619428 0.309714 0.950830i \(-0.399767\pi\)
0.309714 + 0.950830i \(0.399767\pi\)
\(104\) 0.763385 0.0748561
\(105\) 3.07938 0.300517
\(106\) 0.0658563 0.00639653
\(107\) −14.2861 −1.38109 −0.690545 0.723289i \(-0.742629\pi\)
−0.690545 + 0.723289i \(0.742629\pi\)
\(108\) 1.99912 0.192365
\(109\) −6.40981 −0.613948 −0.306974 0.951718i \(-0.599317\pi\)
−0.306974 + 0.951718i \(0.599317\pi\)
\(110\) −0.384398 −0.0366509
\(111\) −6.10620 −0.579575
\(112\) −3.99472 −0.377466
\(113\) 8.85904 0.833388 0.416694 0.909047i \(-0.363189\pi\)
0.416694 + 0.909047i \(0.363189\pi\)
\(114\) −0.0134086 −0.00125583
\(115\) 5.78372 0.539334
\(116\) −13.3783 −1.24214
\(117\) −6.43617 −0.595024
\(118\) 0.0441833 0.00406740
\(119\) 0.978108 0.0896630
\(120\) 0.365241 0.0333418
\(121\) 6.71461 0.610419
\(122\) 0.210075 0.0190193
\(123\) 3.48251 0.314008
\(124\) 2.56228 0.230099
\(125\) −1.59332 −0.142511
\(126\) −0.0296587 −0.00264221
\(127\) 1.00000 0.0887357
\(128\) −0.948035 −0.0837952
\(129\) −4.11590 −0.362385
\(130\) −0.587817 −0.0515550
\(131\) 4.30603 0.376220 0.188110 0.982148i \(-0.439764\pi\)
0.188110 + 0.982148i \(0.439764\pi\)
\(132\) −8.41404 −0.732349
\(133\) −0.452098 −0.0392019
\(134\) 0.0293441 0.00253494
\(135\) −3.07938 −0.265031
\(136\) 0.116012 0.00994795
\(137\) 3.16745 0.270614 0.135307 0.990804i \(-0.456798\pi\)
0.135307 + 0.990804i \(0.456798\pi\)
\(138\) −0.0557052 −0.00474194
\(139\) 7.21212 0.611724 0.305862 0.952076i \(-0.401055\pi\)
0.305862 + 0.952076i \(0.401055\pi\)
\(140\) 6.15605 0.520281
\(141\) 0.343427 0.0289218
\(142\) −0.242493 −0.0203496
\(143\) 27.0890 2.26530
\(144\) 3.99472 0.332894
\(145\) 20.6074 1.71135
\(146\) 0.272138 0.0225223
\(147\) −1.00000 −0.0824786
\(148\) −12.2070 −1.00341
\(149\) 8.99048 0.736529 0.368264 0.929721i \(-0.379952\pi\)
0.368264 + 0.929721i \(0.379952\pi\)
\(150\) −0.132948 −0.0108551
\(151\) −2.86869 −0.233451 −0.116725 0.993164i \(-0.537240\pi\)
−0.116725 + 0.993164i \(0.537240\pi\)
\(152\) −0.0536227 −0.00434938
\(153\) −0.978108 −0.0790753
\(154\) 0.124830 0.0100591
\(155\) −3.94685 −0.317018
\(156\) −12.8667 −1.03016
\(157\) −0.748120 −0.0597065 −0.0298532 0.999554i \(-0.509504\pi\)
−0.0298532 + 0.999554i \(0.509504\pi\)
\(158\) 0.267600 0.0212891
\(159\) −2.22047 −0.176095
\(160\) 1.09532 0.0865928
\(161\) −1.87821 −0.148023
\(162\) 0.0296587 0.00233021
\(163\) 13.1598 1.03075 0.515376 0.856964i \(-0.327652\pi\)
0.515376 + 0.856964i \(0.327652\pi\)
\(164\) 6.96196 0.543638
\(165\) 12.9607 1.00899
\(166\) −0.168556 −0.0130825
\(167\) 20.0284 1.54984 0.774921 0.632058i \(-0.217789\pi\)
0.774921 + 0.632058i \(0.217789\pi\)
\(168\) −0.118609 −0.00915086
\(169\) 28.4242 2.18648
\(170\) −0.0893309 −0.00685137
\(171\) 0.452098 0.0345728
\(172\) −8.22818 −0.627393
\(173\) 14.6850 1.11648 0.558240 0.829680i \(-0.311477\pi\)
0.558240 + 0.829680i \(0.311477\pi\)
\(174\) −0.198478 −0.0150466
\(175\) −4.48258 −0.338851
\(176\) −16.8133 −1.26735
\(177\) −1.48973 −0.111975
\(178\) 0.0598168 0.00448346
\(179\) 1.42580 0.106569 0.0532846 0.998579i \(-0.483031\pi\)
0.0532846 + 0.998579i \(0.483031\pi\)
\(180\) −6.15605 −0.458845
\(181\) −16.0798 −1.19520 −0.597600 0.801794i \(-0.703879\pi\)
−0.597600 + 0.801794i \(0.703879\pi\)
\(182\) 0.190888 0.0141496
\(183\) −7.08310 −0.523598
\(184\) −0.222772 −0.0164229
\(185\) 18.8033 1.38245
\(186\) 0.0380136 0.00278729
\(187\) 4.11673 0.301045
\(188\) 0.686553 0.0500720
\(189\) 1.00000 0.0727393
\(190\) 0.0412903 0.00299551
\(191\) 8.95356 0.647857 0.323929 0.946082i \(-0.394996\pi\)
0.323929 + 0.946082i \(0.394996\pi\)
\(192\) 7.97890 0.575827
\(193\) 4.34936 0.313074 0.156537 0.987672i \(-0.449967\pi\)
0.156537 + 0.987672i \(0.449967\pi\)
\(194\) 0.321452 0.0230789
\(195\) 19.8194 1.41930
\(196\) −1.99912 −0.142794
\(197\) 12.1307 0.864278 0.432139 0.901807i \(-0.357759\pi\)
0.432139 + 0.901807i \(0.357759\pi\)
\(198\) −0.124830 −0.00887126
\(199\) −15.3936 −1.09122 −0.545612 0.838038i \(-0.683703\pi\)
−0.545612 + 0.838038i \(0.683703\pi\)
\(200\) −0.531673 −0.0375950
\(201\) −0.989393 −0.0697864
\(202\) 0.289701 0.0203833
\(203\) −6.69207 −0.469691
\(204\) −1.95535 −0.136902
\(205\) −10.7240 −0.748995
\(206\) 0.186449 0.0129905
\(207\) 1.87821 0.130544
\(208\) −25.7107 −1.78272
\(209\) −1.90282 −0.131621
\(210\) 0.0913304 0.00630239
\(211\) 19.6993 1.35616 0.678078 0.734990i \(-0.262813\pi\)
0.678078 + 0.734990i \(0.262813\pi\)
\(212\) −4.43899 −0.304871
\(213\) 8.17613 0.560219
\(214\) −0.423707 −0.0289640
\(215\) 12.6744 0.864389
\(216\) 0.118609 0.00807030
\(217\) 1.28170 0.0870076
\(218\) −0.190107 −0.0128756
\(219\) −9.17564 −0.620033
\(220\) 25.9100 1.74685
\(221\) 6.29526 0.423465
\(222\) −0.181102 −0.0121548
\(223\) −10.1764 −0.681462 −0.340731 0.940161i \(-0.610675\pi\)
−0.340731 + 0.940161i \(0.610675\pi\)
\(224\) −0.355696 −0.0237659
\(225\) 4.48258 0.298839
\(226\) 0.262747 0.0174777
\(227\) −3.99422 −0.265105 −0.132553 0.991176i \(-0.542317\pi\)
−0.132553 + 0.991176i \(0.542317\pi\)
\(228\) 0.903798 0.0598555
\(229\) −10.8957 −0.720010 −0.360005 0.932950i \(-0.617225\pi\)
−0.360005 + 0.932950i \(0.617225\pi\)
\(230\) 0.171537 0.0113108
\(231\) −4.20887 −0.276924
\(232\) −0.793737 −0.0521114
\(233\) 25.3409 1.66014 0.830070 0.557660i \(-0.188301\pi\)
0.830070 + 0.557660i \(0.188301\pi\)
\(234\) −0.190888 −0.0124788
\(235\) −1.05754 −0.0689865
\(236\) −2.97814 −0.193860
\(237\) −9.02266 −0.586085
\(238\) 0.0290094 0.00188040
\(239\) 2.55633 0.165355 0.0826776 0.996576i \(-0.473653\pi\)
0.0826776 + 0.996576i \(0.473653\pi\)
\(240\) −12.3013 −0.794044
\(241\) 14.5627 0.938065 0.469032 0.883181i \(-0.344603\pi\)
0.469032 + 0.883181i \(0.344603\pi\)
\(242\) 0.199147 0.0128016
\(243\) −1.00000 −0.0641500
\(244\) −14.1600 −0.906499
\(245\) 3.07938 0.196734
\(246\) 0.103287 0.00658532
\(247\) −2.90978 −0.185145
\(248\) 0.152021 0.00965334
\(249\) 5.68319 0.360158
\(250\) −0.0472559 −0.00298873
\(251\) −6.85143 −0.432458 −0.216229 0.976343i \(-0.569376\pi\)
−0.216229 + 0.976343i \(0.569376\pi\)
\(252\) 1.99912 0.125933
\(253\) −7.90514 −0.496992
\(254\) 0.0296587 0.00186095
\(255\) 3.01197 0.188617
\(256\) 15.9297 0.995605
\(257\) 6.82464 0.425709 0.212855 0.977084i \(-0.431724\pi\)
0.212855 + 0.977084i \(0.431724\pi\)
\(258\) −0.122072 −0.00759989
\(259\) −6.10620 −0.379421
\(260\) 39.6214 2.45721
\(261\) 6.69207 0.414229
\(262\) 0.127711 0.00789003
\(263\) 9.84480 0.607056 0.303528 0.952822i \(-0.401835\pi\)
0.303528 + 0.952822i \(0.401835\pi\)
\(264\) −0.499209 −0.0307242
\(265\) 6.83768 0.420035
\(266\) −0.0134086 −0.000822136 0
\(267\) −2.01684 −0.123429
\(268\) −1.97792 −0.120820
\(269\) 4.81113 0.293340 0.146670 0.989186i \(-0.453145\pi\)
0.146670 + 0.989186i \(0.453145\pi\)
\(270\) −0.0913304 −0.00555819
\(271\) −25.2057 −1.53114 −0.765568 0.643356i \(-0.777542\pi\)
−0.765568 + 0.643356i \(0.777542\pi\)
\(272\) −3.90727 −0.236913
\(273\) −6.43617 −0.389535
\(274\) 0.0939424 0.00567527
\(275\) −18.8666 −1.13770
\(276\) 3.75476 0.226010
\(277\) 20.4070 1.22614 0.613070 0.790028i \(-0.289934\pi\)
0.613070 + 0.790028i \(0.289934\pi\)
\(278\) 0.213902 0.0128290
\(279\) −1.28170 −0.0767335
\(280\) 0.365241 0.0218273
\(281\) −16.1617 −0.964126 −0.482063 0.876136i \(-0.660112\pi\)
−0.482063 + 0.876136i \(0.660112\pi\)
\(282\) 0.0101856 0.000606544 0
\(283\) 3.55148 0.211114 0.105557 0.994413i \(-0.466338\pi\)
0.105557 + 0.994413i \(0.466338\pi\)
\(284\) 16.3451 0.969901
\(285\) −1.39218 −0.0824657
\(286\) 0.803424 0.0475075
\(287\) 3.48251 0.205566
\(288\) 0.355696 0.0209596
\(289\) −16.0433 −0.943724
\(290\) 0.611189 0.0358903
\(291\) −10.8384 −0.635357
\(292\) −18.3432 −1.07346
\(293\) 21.0187 1.22793 0.613963 0.789335i \(-0.289574\pi\)
0.613963 + 0.789335i \(0.289574\pi\)
\(294\) −0.0296587 −0.00172973
\(295\) 4.58743 0.267091
\(296\) −0.724249 −0.0420961
\(297\) 4.20887 0.244224
\(298\) 0.266646 0.0154464
\(299\) −12.0885 −0.699094
\(300\) 8.96122 0.517376
\(301\) −4.11590 −0.237237
\(302\) −0.0850816 −0.00489590
\(303\) −9.76783 −0.561147
\(304\) 1.80601 0.103582
\(305\) 21.8116 1.24893
\(306\) −0.0290094 −0.00165836
\(307\) 16.9198 0.965666 0.482833 0.875712i \(-0.339608\pi\)
0.482833 + 0.875712i \(0.339608\pi\)
\(308\) −8.41404 −0.479435
\(309\) −6.28650 −0.357627
\(310\) −0.117058 −0.00664846
\(311\) 13.5782 0.769948 0.384974 0.922927i \(-0.374210\pi\)
0.384974 + 0.922927i \(0.374210\pi\)
\(312\) −0.763385 −0.0432182
\(313\) −31.4249 −1.77624 −0.888120 0.459612i \(-0.847989\pi\)
−0.888120 + 0.459612i \(0.847989\pi\)
\(314\) −0.0221883 −0.00125216
\(315\) −3.07938 −0.173503
\(316\) −18.0374 −1.01468
\(317\) −17.5662 −0.986614 −0.493307 0.869855i \(-0.664212\pi\)
−0.493307 + 0.869855i \(0.664212\pi\)
\(318\) −0.0658563 −0.00369304
\(319\) −28.1661 −1.57700
\(320\) −24.5701 −1.37351
\(321\) 14.2861 0.797373
\(322\) −0.0557052 −0.00310433
\(323\) −0.442200 −0.0246047
\(324\) −1.99912 −0.111062
\(325\) −28.8507 −1.60035
\(326\) 0.390301 0.0216168
\(327\) 6.40981 0.354463
\(328\) 0.413056 0.0228072
\(329\) 0.343427 0.0189338
\(330\) 0.384398 0.0211604
\(331\) 26.2992 1.44553 0.722766 0.691093i \(-0.242870\pi\)
0.722766 + 0.691093i \(0.242870\pi\)
\(332\) 11.3614 0.623537
\(333\) 6.10620 0.334618
\(334\) 0.594015 0.0325031
\(335\) 3.04672 0.166460
\(336\) 3.99472 0.217930
\(337\) −1.31181 −0.0714590 −0.0357295 0.999361i \(-0.511375\pi\)
−0.0357295 + 0.999361i \(0.511375\pi\)
\(338\) 0.843026 0.0458546
\(339\) −8.85904 −0.481157
\(340\) 6.02128 0.326550
\(341\) 5.39452 0.292130
\(342\) 0.0134086 0.000725056 0
\(343\) −1.00000 −0.0539949
\(344\) −0.488182 −0.0263210
\(345\) −5.78372 −0.311385
\(346\) 0.435538 0.0234146
\(347\) −12.5440 −0.673397 −0.336699 0.941612i \(-0.609310\pi\)
−0.336699 + 0.941612i \(0.609310\pi\)
\(348\) 13.3783 0.717150
\(349\) −10.9299 −0.585067 −0.292533 0.956255i \(-0.594498\pi\)
−0.292533 + 0.956255i \(0.594498\pi\)
\(350\) −0.132948 −0.00710634
\(351\) 6.43617 0.343537
\(352\) −1.49708 −0.0797945
\(353\) 24.2674 1.29162 0.645810 0.763498i \(-0.276520\pi\)
0.645810 + 0.763498i \(0.276520\pi\)
\(354\) −0.0441833 −0.00234832
\(355\) −25.1774 −1.33628
\(356\) −4.03191 −0.213691
\(357\) −0.978108 −0.0517669
\(358\) 0.0422873 0.00223496
\(359\) 8.77538 0.463147 0.231573 0.972817i \(-0.425613\pi\)
0.231573 + 0.972817i \(0.425613\pi\)
\(360\) −0.365241 −0.0192499
\(361\) −18.7956 −0.989243
\(362\) −0.476905 −0.0250656
\(363\) −6.71461 −0.352426
\(364\) −12.8667 −0.674397
\(365\) 28.2553 1.47895
\(366\) −0.210075 −0.0109808
\(367\) −28.2522 −1.47475 −0.737376 0.675483i \(-0.763935\pi\)
−0.737376 + 0.675483i \(0.763935\pi\)
\(368\) 7.50292 0.391117
\(369\) −3.48251 −0.181292
\(370\) 0.557682 0.0289925
\(371\) −2.22047 −0.115281
\(372\) −2.56228 −0.132848
\(373\) 16.7923 0.869475 0.434737 0.900557i \(-0.356841\pi\)
0.434737 + 0.900557i \(0.356841\pi\)
\(374\) 0.122097 0.00631348
\(375\) 1.59332 0.0822789
\(376\) 0.0407335 0.00210067
\(377\) −43.0713 −2.21828
\(378\) 0.0296587 0.00152548
\(379\) −25.8015 −1.32533 −0.662666 0.748915i \(-0.730575\pi\)
−0.662666 + 0.748915i \(0.730575\pi\)
\(380\) −2.78314 −0.142772
\(381\) −1.00000 −0.0512316
\(382\) 0.265551 0.0135868
\(383\) −14.3700 −0.734272 −0.367136 0.930167i \(-0.619662\pi\)
−0.367136 + 0.930167i \(0.619662\pi\)
\(384\) 0.948035 0.0483792
\(385\) 12.9607 0.660539
\(386\) 0.128996 0.00656575
\(387\) 4.11590 0.209223
\(388\) −21.6672 −1.09999
\(389\) −22.5454 −1.14309 −0.571547 0.820569i \(-0.693657\pi\)
−0.571547 + 0.820569i \(0.693657\pi\)
\(390\) 0.587817 0.0297653
\(391\) −1.83709 −0.0929056
\(392\) −0.118609 −0.00599064
\(393\) −4.30603 −0.217211
\(394\) 0.359781 0.0181255
\(395\) 27.7842 1.39797
\(396\) 8.41404 0.422822
\(397\) 0.445695 0.0223688 0.0111844 0.999937i \(-0.496440\pi\)
0.0111844 + 0.999937i \(0.496440\pi\)
\(398\) −0.456554 −0.0228850
\(399\) 0.452098 0.0226332
\(400\) 17.9067 0.895334
\(401\) 6.19494 0.309361 0.154680 0.987965i \(-0.450565\pi\)
0.154680 + 0.987965i \(0.450565\pi\)
\(402\) −0.0293441 −0.00146355
\(403\) 8.24924 0.410924
\(404\) −19.5271 −0.971508
\(405\) 3.07938 0.153016
\(406\) −0.198478 −0.00985030
\(407\) −25.7002 −1.27391
\(408\) −0.116012 −0.00574345
\(409\) −26.3504 −1.30294 −0.651472 0.758673i \(-0.725848\pi\)
−0.651472 + 0.758673i \(0.725848\pi\)
\(410\) −0.318059 −0.0157078
\(411\) −3.16745 −0.156239
\(412\) −12.5675 −0.619155
\(413\) −1.48973 −0.0733046
\(414\) 0.0557052 0.00273776
\(415\) −17.5007 −0.859076
\(416\) −2.28932 −0.112243
\(417\) −7.21212 −0.353179
\(418\) −0.0564352 −0.00276034
\(419\) 6.10307 0.298154 0.149077 0.988826i \(-0.452370\pi\)
0.149077 + 0.988826i \(0.452370\pi\)
\(420\) −6.15605 −0.300385
\(421\) 10.1315 0.493777 0.246888 0.969044i \(-0.420592\pi\)
0.246888 + 0.969044i \(0.420592\pi\)
\(422\) 0.584256 0.0284411
\(423\) −0.343427 −0.0166980
\(424\) −0.263367 −0.0127902
\(425\) −4.38445 −0.212677
\(426\) 0.242493 0.0117488
\(427\) −7.08310 −0.342775
\(428\) 28.5597 1.38048
\(429\) −27.0890 −1.30787
\(430\) 0.375907 0.0181278
\(431\) −39.8669 −1.92032 −0.960160 0.279451i \(-0.909847\pi\)
−0.960160 + 0.279451i \(0.909847\pi\)
\(432\) −3.99472 −0.192196
\(433\) 13.2786 0.638128 0.319064 0.947733i \(-0.396632\pi\)
0.319064 + 0.947733i \(0.396632\pi\)
\(434\) 0.0380136 0.00182471
\(435\) −20.6074 −0.988050
\(436\) 12.8140 0.613678
\(437\) 0.849134 0.0406196
\(438\) −0.272138 −0.0130032
\(439\) −12.8890 −0.615158 −0.307579 0.951523i \(-0.599519\pi\)
−0.307579 + 0.951523i \(0.599519\pi\)
\(440\) 1.53725 0.0732857
\(441\) 1.00000 0.0476190
\(442\) 0.186709 0.00888085
\(443\) −25.3649 −1.20512 −0.602561 0.798073i \(-0.705853\pi\)
−0.602561 + 0.798073i \(0.705853\pi\)
\(444\) 12.2070 0.579320
\(445\) 6.21062 0.294411
\(446\) −0.301819 −0.0142915
\(447\) −8.99048 −0.425235
\(448\) 7.97890 0.376967
\(449\) 23.2619 1.09780 0.548899 0.835889i \(-0.315047\pi\)
0.548899 + 0.835889i \(0.315047\pi\)
\(450\) 0.132948 0.00626721
\(451\) 14.6575 0.690192
\(452\) −17.7103 −0.833022
\(453\) 2.86869 0.134783
\(454\) −0.118463 −0.00555975
\(455\) 19.8194 0.929148
\(456\) 0.0536227 0.00251111
\(457\) −38.4218 −1.79730 −0.898649 0.438669i \(-0.855450\pi\)
−0.898649 + 0.438669i \(0.855450\pi\)
\(458\) −0.323153 −0.0150999
\(459\) 0.978108 0.0456542
\(460\) −11.5623 −0.539097
\(461\) 14.8206 0.690262 0.345131 0.938555i \(-0.387834\pi\)
0.345131 + 0.938555i \(0.387834\pi\)
\(462\) −0.124830 −0.00580760
\(463\) 35.2074 1.63623 0.818114 0.575056i \(-0.195020\pi\)
0.818114 + 0.575056i \(0.195020\pi\)
\(464\) 26.7330 1.24105
\(465\) 3.94685 0.183031
\(466\) 0.751579 0.0348162
\(467\) 23.2168 1.07435 0.537173 0.843472i \(-0.319492\pi\)
0.537173 + 0.843472i \(0.319492\pi\)
\(468\) 12.8667 0.594762
\(469\) −0.989393 −0.0456859
\(470\) −0.0313654 −0.00144678
\(471\) 0.748120 0.0344715
\(472\) −0.176694 −0.00813302
\(473\) −17.3233 −0.796527
\(474\) −0.267600 −0.0122913
\(475\) 2.02657 0.0929852
\(476\) −1.95535 −0.0896235
\(477\) 2.22047 0.101668
\(478\) 0.0758174 0.00346781
\(479\) −28.7854 −1.31524 −0.657620 0.753350i \(-0.728437\pi\)
−0.657620 + 0.753350i \(0.728437\pi\)
\(480\) −1.09532 −0.0499944
\(481\) −39.3006 −1.79195
\(482\) 0.431910 0.0196730
\(483\) 1.87821 0.0854614
\(484\) −13.4233 −0.610151
\(485\) 33.3755 1.51550
\(486\) −0.0296587 −0.00134535
\(487\) 40.6311 1.84117 0.920584 0.390544i \(-0.127713\pi\)
0.920584 + 0.390544i \(0.127713\pi\)
\(488\) −0.840117 −0.0380303
\(489\) −13.1598 −0.595105
\(490\) 0.0913304 0.00412589
\(491\) 6.94851 0.313582 0.156791 0.987632i \(-0.449885\pi\)
0.156791 + 0.987632i \(0.449885\pi\)
\(492\) −6.96196 −0.313869
\(493\) −6.54556 −0.294797
\(494\) −0.0863002 −0.00388283
\(495\) −12.9607 −0.582541
\(496\) −5.12004 −0.229897
\(497\) 8.17613 0.366750
\(498\) 0.168556 0.00755317
\(499\) 5.09072 0.227892 0.113946 0.993487i \(-0.463651\pi\)
0.113946 + 0.993487i \(0.463651\pi\)
\(500\) 3.18525 0.142449
\(501\) −20.0284 −0.894802
\(502\) −0.203204 −0.00906946
\(503\) −34.4535 −1.53621 −0.768104 0.640325i \(-0.778799\pi\)
−0.768104 + 0.640325i \(0.778799\pi\)
\(504\) 0.118609 0.00528325
\(505\) 30.0789 1.33849
\(506\) −0.234456 −0.0104228
\(507\) −28.4242 −1.26236
\(508\) −1.99912 −0.0886966
\(509\) 33.6813 1.49290 0.746450 0.665442i \(-0.231757\pi\)
0.746450 + 0.665442i \(0.231757\pi\)
\(510\) 0.0893309 0.00395564
\(511\) −9.17564 −0.405907
\(512\) 2.36852 0.104675
\(513\) −0.452098 −0.0199606
\(514\) 0.202410 0.00892792
\(515\) 19.3585 0.853039
\(516\) 8.22818 0.362226
\(517\) 1.44544 0.0635705
\(518\) −0.181102 −0.00795717
\(519\) −14.6850 −0.644600
\(520\) 2.35075 0.103087
\(521\) 36.6294 1.60476 0.802382 0.596811i \(-0.203566\pi\)
0.802382 + 0.596811i \(0.203566\pi\)
\(522\) 0.198478 0.00868715
\(523\) −28.7191 −1.25580 −0.627900 0.778294i \(-0.716085\pi\)
−0.627900 + 0.778294i \(0.716085\pi\)
\(524\) −8.60828 −0.376055
\(525\) 4.48258 0.195636
\(526\) 0.291984 0.0127311
\(527\) 1.25364 0.0546095
\(528\) 16.8133 0.731704
\(529\) −19.4723 −0.846623
\(530\) 0.202797 0.00880892
\(531\) 1.48973 0.0646486
\(532\) 0.903798 0.0391846
\(533\) 22.4140 0.970859
\(534\) −0.0598168 −0.00258853
\(535\) −43.9924 −1.90196
\(536\) −0.117351 −0.00506877
\(537\) −1.42580 −0.0615278
\(538\) 0.142692 0.00615188
\(539\) −4.20887 −0.181289
\(540\) 6.15605 0.264914
\(541\) 4.29971 0.184859 0.0924294 0.995719i \(-0.470537\pi\)
0.0924294 + 0.995719i \(0.470537\pi\)
\(542\) −0.747567 −0.0321107
\(543\) 16.0798 0.690050
\(544\) −0.347909 −0.0149165
\(545\) −19.7382 −0.845493
\(546\) −0.190888 −0.00816926
\(547\) −19.4300 −0.830767 −0.415383 0.909646i \(-0.636353\pi\)
−0.415383 + 0.909646i \(0.636353\pi\)
\(548\) −6.33212 −0.270495
\(549\) 7.08310 0.302299
\(550\) −0.559559 −0.0238597
\(551\) 3.02547 0.128889
\(552\) 0.222772 0.00948179
\(553\) −9.02266 −0.383682
\(554\) 0.605246 0.0257144
\(555\) −18.8033 −0.798157
\(556\) −14.4179 −0.611455
\(557\) −39.6587 −1.68039 −0.840197 0.542281i \(-0.817561\pi\)
−0.840197 + 0.542281i \(0.817561\pi\)
\(558\) −0.0380136 −0.00160924
\(559\) −26.4906 −1.12043
\(560\) −12.3013 −0.519824
\(561\) −4.11673 −0.173809
\(562\) −0.479335 −0.0202195
\(563\) 1.06429 0.0448545 0.0224272 0.999748i \(-0.492861\pi\)
0.0224272 + 0.999748i \(0.492861\pi\)
\(564\) −0.686553 −0.0289091
\(565\) 27.2804 1.14769
\(566\) 0.105332 0.00442745
\(567\) −1.00000 −0.0419961
\(568\) 0.969760 0.0406902
\(569\) 4.34569 0.182181 0.0910903 0.995843i \(-0.470965\pi\)
0.0910903 + 0.995843i \(0.470965\pi\)
\(570\) −0.0412903 −0.00172946
\(571\) 0.617402 0.0258374 0.0129187 0.999917i \(-0.495888\pi\)
0.0129187 + 0.999917i \(0.495888\pi\)
\(572\) −54.1542 −2.26430
\(573\) −8.95356 −0.374041
\(574\) 0.103287 0.00431111
\(575\) 8.41922 0.351106
\(576\) −7.97890 −0.332454
\(577\) −45.6275 −1.89950 −0.949748 0.313015i \(-0.898661\pi\)
−0.949748 + 0.313015i \(0.898661\pi\)
\(578\) −0.475823 −0.0197916
\(579\) −4.34936 −0.180753
\(580\) −41.1967 −1.71060
\(581\) 5.68319 0.235778
\(582\) −0.321452 −0.0133246
\(583\) −9.34569 −0.387059
\(584\) −1.08831 −0.0450346
\(585\) −19.8194 −0.819432
\(586\) 0.623388 0.0257519
\(587\) −38.7194 −1.59812 −0.799061 0.601250i \(-0.794669\pi\)
−0.799061 + 0.601250i \(0.794669\pi\)
\(588\) 1.99912 0.0824423
\(589\) −0.579455 −0.0238760
\(590\) 0.136057 0.00560139
\(591\) −12.1307 −0.498991
\(592\) 24.3926 1.00253
\(593\) 30.6824 1.25998 0.629988 0.776605i \(-0.283060\pi\)
0.629988 + 0.776605i \(0.283060\pi\)
\(594\) 0.124830 0.00512182
\(595\) 3.01197 0.123479
\(596\) −17.9731 −0.736205
\(597\) 15.3936 0.630018
\(598\) −0.358528 −0.0146613
\(599\) 36.2093 1.47947 0.739736 0.672897i \(-0.234950\pi\)
0.739736 + 0.672897i \(0.234950\pi\)
\(600\) 0.531673 0.0217055
\(601\) 40.5462 1.65391 0.826956 0.562266i \(-0.190070\pi\)
0.826956 + 0.562266i \(0.190070\pi\)
\(602\) −0.122072 −0.00497529
\(603\) 0.989393 0.0402912
\(604\) 5.73486 0.233348
\(605\) 20.6768 0.840633
\(606\) −0.289701 −0.0117683
\(607\) 33.8247 1.37290 0.686451 0.727176i \(-0.259168\pi\)
0.686451 + 0.727176i \(0.259168\pi\)
\(608\) 0.160809 0.00652167
\(609\) 6.69207 0.271176
\(610\) 0.646902 0.0261923
\(611\) 2.21036 0.0894214
\(612\) 1.95535 0.0790405
\(613\) 5.81836 0.235001 0.117501 0.993073i \(-0.462512\pi\)
0.117501 + 0.993073i \(0.462512\pi\)
\(614\) 0.501820 0.0202518
\(615\) 10.7240 0.432433
\(616\) −0.499209 −0.0201137
\(617\) 43.1946 1.73895 0.869474 0.493979i \(-0.164458\pi\)
0.869474 + 0.493979i \(0.164458\pi\)
\(618\) −0.186449 −0.00750010
\(619\) −0.582136 −0.0233980 −0.0116990 0.999932i \(-0.503724\pi\)
−0.0116990 + 0.999932i \(0.503724\pi\)
\(620\) 7.89022 0.316879
\(621\) −1.87821 −0.0753699
\(622\) 0.402711 0.0161472
\(623\) −2.01684 −0.0808030
\(624\) 25.7107 1.02925
\(625\) −27.3194 −1.09277
\(626\) −0.932021 −0.0372511
\(627\) 1.90282 0.0759914
\(628\) 1.49558 0.0596802
\(629\) −5.97253 −0.238140
\(630\) −0.0913304 −0.00363869
\(631\) −30.1214 −1.19911 −0.599557 0.800332i \(-0.704657\pi\)
−0.599557 + 0.800332i \(0.704657\pi\)
\(632\) −1.07017 −0.0425689
\(633\) −19.6993 −0.782977
\(634\) −0.520989 −0.0206911
\(635\) 3.07938 0.122201
\(636\) 4.43899 0.176017
\(637\) −6.43617 −0.255010
\(638\) −0.835369 −0.0330726
\(639\) −8.17613 −0.323443
\(640\) −2.91936 −0.115398
\(641\) 31.1460 1.23019 0.615096 0.788452i \(-0.289117\pi\)
0.615096 + 0.788452i \(0.289117\pi\)
\(642\) 0.423707 0.0167224
\(643\) 2.91383 0.114910 0.0574551 0.998348i \(-0.481701\pi\)
0.0574551 + 0.998348i \(0.481701\pi\)
\(644\) 3.75476 0.147958
\(645\) −12.6744 −0.499055
\(646\) −0.0131151 −0.000516006 0
\(647\) −18.7263 −0.736206 −0.368103 0.929785i \(-0.619993\pi\)
−0.368103 + 0.929785i \(0.619993\pi\)
\(648\) −0.118609 −0.00465939
\(649\) −6.27007 −0.246122
\(650\) −0.855672 −0.0335622
\(651\) −1.28170 −0.0502338
\(652\) −26.3079 −1.03030
\(653\) 13.6677 0.534857 0.267429 0.963578i \(-0.413826\pi\)
0.267429 + 0.963578i \(0.413826\pi\)
\(654\) 0.190107 0.00743375
\(655\) 13.2599 0.518108
\(656\) −13.9117 −0.543160
\(657\) 9.17564 0.357976
\(658\) 0.0101856 0.000397076 0
\(659\) −6.46273 −0.251752 −0.125876 0.992046i \(-0.540174\pi\)
−0.125876 + 0.992046i \(0.540174\pi\)
\(660\) −25.9100 −1.00855
\(661\) −27.1580 −1.05632 −0.528162 0.849144i \(-0.677118\pi\)
−0.528162 + 0.849144i \(0.677118\pi\)
\(662\) 0.779998 0.0303155
\(663\) −6.29526 −0.244488
\(664\) 0.674076 0.0261592
\(665\) −1.39218 −0.0539865
\(666\) 0.181102 0.00701756
\(667\) 12.5691 0.486677
\(668\) −40.0391 −1.54916
\(669\) 10.1764 0.393442
\(670\) 0.0903617 0.00349098
\(671\) −29.8119 −1.15087
\(672\) 0.355696 0.0137213
\(673\) −1.23799 −0.0477211 −0.0238606 0.999715i \(-0.507596\pi\)
−0.0238606 + 0.999715i \(0.507596\pi\)
\(674\) −0.0389066 −0.00149863
\(675\) −4.48258 −0.172535
\(676\) −56.8235 −2.18552
\(677\) −3.72439 −0.143140 −0.0715700 0.997436i \(-0.522801\pi\)
−0.0715700 + 0.997436i \(0.522801\pi\)
\(678\) −0.262747 −0.0100908
\(679\) −10.8384 −0.415939
\(680\) 0.357245 0.0136997
\(681\) 3.99422 0.153059
\(682\) 0.159994 0.00612650
\(683\) 1.26391 0.0483621 0.0241811 0.999708i \(-0.492302\pi\)
0.0241811 + 0.999708i \(0.492302\pi\)
\(684\) −0.903798 −0.0345576
\(685\) 9.75379 0.372673
\(686\) −0.0296587 −0.00113237
\(687\) 10.8957 0.415698
\(688\) 16.4419 0.626841
\(689\) −14.2913 −0.544456
\(690\) −0.171537 −0.00653032
\(691\) −9.08197 −0.345495 −0.172747 0.984966i \(-0.555264\pi\)
−0.172747 + 0.984966i \(0.555264\pi\)
\(692\) −29.3571 −1.11599
\(693\) 4.20887 0.159882
\(694\) −0.372038 −0.0141224
\(695\) 22.2089 0.842430
\(696\) 0.793737 0.0300865
\(697\) 3.40627 0.129022
\(698\) −0.324168 −0.0122699
\(699\) −25.3409 −0.958482
\(700\) 8.96122 0.338702
\(701\) 11.3303 0.427941 0.213971 0.976840i \(-0.431360\pi\)
0.213971 + 0.976840i \(0.431360\pi\)
\(702\) 0.190888 0.00720461
\(703\) 2.76060 0.104118
\(704\) 33.5822 1.26568
\(705\) 1.05754 0.0398294
\(706\) 0.719738 0.0270877
\(707\) −9.76783 −0.367357
\(708\) 2.97814 0.111925
\(709\) 19.1018 0.717383 0.358691 0.933456i \(-0.383223\pi\)
0.358691 + 0.933456i \(0.383223\pi\)
\(710\) −0.746729 −0.0280242
\(711\) 9.02266 0.338376
\(712\) −0.239215 −0.00896495
\(713\) −2.40730 −0.0901542
\(714\) −0.0290094 −0.00108565
\(715\) 83.4174 3.11963
\(716\) −2.85035 −0.106522
\(717\) −2.55633 −0.0954679
\(718\) 0.260266 0.00971305
\(719\) 16.5348 0.616645 0.308322 0.951282i \(-0.400232\pi\)
0.308322 + 0.951282i \(0.400232\pi\)
\(720\) 12.3013 0.458441
\(721\) −6.28650 −0.234122
\(722\) −0.557453 −0.0207463
\(723\) −14.5627 −0.541592
\(724\) 32.1454 1.19468
\(725\) 29.9978 1.11409
\(726\) −0.199147 −0.00739102
\(727\) −13.6415 −0.505934 −0.252967 0.967475i \(-0.581406\pi\)
−0.252967 + 0.967475i \(0.581406\pi\)
\(728\) −0.763385 −0.0282929
\(729\) 1.00000 0.0370370
\(730\) 0.838015 0.0310163
\(731\) −4.02579 −0.148899
\(732\) 14.1600 0.523368
\(733\) 42.7851 1.58030 0.790152 0.612911i \(-0.210002\pi\)
0.790152 + 0.612911i \(0.210002\pi\)
\(734\) −0.837922 −0.0309283
\(735\) −3.07938 −0.113585
\(736\) 0.668070 0.0246254
\(737\) −4.16423 −0.153391
\(738\) −0.103287 −0.00380204
\(739\) 24.3103 0.894270 0.447135 0.894467i \(-0.352444\pi\)
0.447135 + 0.894467i \(0.352444\pi\)
\(740\) −37.5901 −1.38184
\(741\) 2.90978 0.106893
\(742\) −0.0658563 −0.00241766
\(743\) −31.4154 −1.15252 −0.576260 0.817266i \(-0.695489\pi\)
−0.576260 + 0.817266i \(0.695489\pi\)
\(744\) −0.152021 −0.00557336
\(745\) 27.6851 1.01430
\(746\) 0.498039 0.0182345
\(747\) −5.68319 −0.207937
\(748\) −8.22984 −0.300913
\(749\) 14.2861 0.522003
\(750\) 0.0472559 0.00172554
\(751\) 5.27111 0.192345 0.0961727 0.995365i \(-0.469340\pi\)
0.0961727 + 0.995365i \(0.469340\pi\)
\(752\) −1.37190 −0.0500279
\(753\) 6.85143 0.249680
\(754\) −1.27744 −0.0465215
\(755\) −8.83379 −0.321495
\(756\) −1.99912 −0.0727073
\(757\) 44.1949 1.60629 0.803145 0.595784i \(-0.203158\pi\)
0.803145 + 0.595784i \(0.203158\pi\)
\(758\) −0.765238 −0.0277947
\(759\) 7.90514 0.286938
\(760\) −0.165125 −0.00598970
\(761\) 43.9305 1.59248 0.796240 0.604981i \(-0.206819\pi\)
0.796240 + 0.604981i \(0.206819\pi\)
\(762\) −0.0296587 −0.00107442
\(763\) 6.40981 0.232051
\(764\) −17.8993 −0.647572
\(765\) −3.01197 −0.108898
\(766\) −0.426195 −0.0153990
\(767\) −9.58812 −0.346207
\(768\) −15.9297 −0.574813
\(769\) 7.00950 0.252769 0.126385 0.991981i \(-0.459663\pi\)
0.126385 + 0.991981i \(0.459663\pi\)
\(770\) 0.384398 0.0138527
\(771\) −6.82464 −0.245783
\(772\) −8.69490 −0.312936
\(773\) 25.2979 0.909902 0.454951 0.890516i \(-0.349657\pi\)
0.454951 + 0.890516i \(0.349657\pi\)
\(774\) 0.122072 0.00438780
\(775\) −5.74533 −0.206378
\(776\) −1.28553 −0.0461477
\(777\) 6.10620 0.219059
\(778\) −0.668666 −0.0239728
\(779\) −1.57444 −0.0564100
\(780\) −39.6214 −1.41867
\(781\) 34.4123 1.23137
\(782\) −0.0544856 −0.00194840
\(783\) −6.69207 −0.239155
\(784\) 3.99472 0.142669
\(785\) −2.30375 −0.0822242
\(786\) −0.127711 −0.00455531
\(787\) 32.8781 1.17198 0.585989 0.810319i \(-0.300706\pi\)
0.585989 + 0.810319i \(0.300706\pi\)
\(788\) −24.2508 −0.863898
\(789\) −9.84480 −0.350484
\(790\) 0.824043 0.0293181
\(791\) −8.85904 −0.314991
\(792\) 0.499209 0.0177386
\(793\) −45.5880 −1.61888
\(794\) 0.0132187 0.000469115 0
\(795\) −6.83768 −0.242507
\(796\) 30.7737 1.09074
\(797\) −9.58152 −0.339395 −0.169697 0.985496i \(-0.554279\pi\)
−0.169697 + 0.985496i \(0.554279\pi\)
\(798\) 0.0134086 0.000474660 0
\(799\) 0.335909 0.0118836
\(800\) 1.59443 0.0563718
\(801\) 2.01684 0.0712615
\(802\) 0.183734 0.00648787
\(803\) −38.6191 −1.36284
\(804\) 1.97792 0.0697557
\(805\) −5.78372 −0.203849
\(806\) 0.244662 0.00861784
\(807\) −4.81113 −0.169360
\(808\) −1.15855 −0.0407576
\(809\) −7.62861 −0.268208 −0.134104 0.990967i \(-0.542816\pi\)
−0.134104 + 0.990967i \(0.542816\pi\)
\(810\) 0.0913304 0.00320902
\(811\) 53.0396 1.86247 0.931236 0.364416i \(-0.118731\pi\)
0.931236 + 0.364416i \(0.118731\pi\)
\(812\) 13.3783 0.469485
\(813\) 25.2057 0.884001
\(814\) −0.762235 −0.0267163
\(815\) 40.5239 1.41949
\(816\) 3.90727 0.136782
\(817\) 1.86079 0.0651008
\(818\) −0.781518 −0.0273251
\(819\) 6.43617 0.224898
\(820\) 21.4385 0.748666
\(821\) 29.2651 1.02136 0.510679 0.859772i \(-0.329394\pi\)
0.510679 + 0.859772i \(0.329394\pi\)
\(822\) −0.0939424 −0.00327662
\(823\) 5.28174 0.184110 0.0920550 0.995754i \(-0.470656\pi\)
0.0920550 + 0.995754i \(0.470656\pi\)
\(824\) −0.745634 −0.0259754
\(825\) 18.8666 0.656851
\(826\) −0.0441833 −0.00153733
\(827\) 23.0353 0.801014 0.400507 0.916294i \(-0.368834\pi\)
0.400507 + 0.916294i \(0.368834\pi\)
\(828\) −3.75476 −0.130487
\(829\) −22.6811 −0.787748 −0.393874 0.919164i \(-0.628865\pi\)
−0.393874 + 0.919164i \(0.628865\pi\)
\(830\) −0.519048 −0.0180164
\(831\) −20.4070 −0.707913
\(832\) 51.3535 1.78036
\(833\) −0.978108 −0.0338894
\(834\) −0.213902 −0.00740682
\(835\) 61.6750 2.13435
\(836\) 3.80397 0.131563
\(837\) 1.28170 0.0443021
\(838\) 0.181009 0.00625285
\(839\) −39.4521 −1.36204 −0.681018 0.732267i \(-0.738462\pi\)
−0.681018 + 0.732267i \(0.738462\pi\)
\(840\) −0.365241 −0.0126020
\(841\) 15.7838 0.544269
\(842\) 0.300486 0.0103554
\(843\) 16.1617 0.556639
\(844\) −39.3813 −1.35556
\(845\) 87.5290 3.01109
\(846\) −0.0101856 −0.000350188 0
\(847\) −6.71461 −0.230717
\(848\) 8.87017 0.304603
\(849\) −3.55148 −0.121887
\(850\) −0.130037 −0.00446023
\(851\) 11.4687 0.393143
\(852\) −16.3451 −0.559973
\(853\) 53.5165 1.83237 0.916186 0.400754i \(-0.131252\pi\)
0.916186 + 0.400754i \(0.131252\pi\)
\(854\) −0.210075 −0.00718864
\(855\) 1.39218 0.0476116
\(856\) 1.69446 0.0579153
\(857\) 15.6792 0.535593 0.267796 0.963476i \(-0.413705\pi\)
0.267796 + 0.963476i \(0.413705\pi\)
\(858\) −0.803424 −0.0274285
\(859\) −31.0758 −1.06029 −0.530146 0.847907i \(-0.677863\pi\)
−0.530146 + 0.847907i \(0.677863\pi\)
\(860\) −25.3377 −0.864009
\(861\) −3.48251 −0.118684
\(862\) −1.18240 −0.0402727
\(863\) −27.3878 −0.932291 −0.466145 0.884708i \(-0.654358\pi\)
−0.466145 + 0.884708i \(0.654358\pi\)
\(864\) −0.355696 −0.0121010
\(865\) 45.2207 1.53755
\(866\) 0.393825 0.0133827
\(867\) 16.0433 0.544859
\(868\) −2.56228 −0.0869693
\(869\) −37.9752 −1.28822
\(870\) −0.611189 −0.0207213
\(871\) −6.36790 −0.215768
\(872\) 0.760259 0.0257456
\(873\) 10.8384 0.366824
\(874\) 0.0251842 0.000851868 0
\(875\) 1.59332 0.0538642
\(876\) 18.3432 0.619760
\(877\) −17.1942 −0.580608 −0.290304 0.956935i \(-0.593756\pi\)
−0.290304 + 0.956935i \(0.593756\pi\)
\(878\) −0.382270 −0.0129010
\(879\) −21.0187 −0.708944
\(880\) −51.7745 −1.74532
\(881\) −56.6431 −1.90835 −0.954177 0.299241i \(-0.903266\pi\)
−0.954177 + 0.299241i \(0.903266\pi\)
\(882\) 0.0296587 0.000998660 0
\(883\) 9.71797 0.327036 0.163518 0.986540i \(-0.447716\pi\)
0.163518 + 0.986540i \(0.447716\pi\)
\(884\) −12.5850 −0.423279
\(885\) −4.58743 −0.154205
\(886\) −0.752289 −0.0252737
\(887\) −37.9696 −1.27489 −0.637447 0.770494i \(-0.720010\pi\)
−0.637447 + 0.770494i \(0.720010\pi\)
\(888\) 0.724249 0.0243042
\(889\) −1.00000 −0.0335389
\(890\) 0.184199 0.00617436
\(891\) −4.20887 −0.141003
\(892\) 20.3438 0.681162
\(893\) −0.155263 −0.00519567
\(894\) −0.266646 −0.00891797
\(895\) 4.39058 0.146761
\(896\) 0.948035 0.0316716
\(897\) 12.0885 0.403622
\(898\) 0.689918 0.0230229
\(899\) −8.57724 −0.286067
\(900\) −8.96122 −0.298707
\(901\) −2.17186 −0.0723552
\(902\) 0.434721 0.0144746
\(903\) 4.11590 0.136969
\(904\) −1.05076 −0.0349477
\(905\) −49.5158 −1.64596
\(906\) 0.0850816 0.00282665
\(907\) −40.9254 −1.35891 −0.679453 0.733719i \(-0.737783\pi\)
−0.679453 + 0.733719i \(0.737783\pi\)
\(908\) 7.98492 0.264989
\(909\) 9.76783 0.323979
\(910\) 0.587817 0.0194860
\(911\) 24.4739 0.810858 0.405429 0.914127i \(-0.367122\pi\)
0.405429 + 0.914127i \(0.367122\pi\)
\(912\) −1.80601 −0.0598028
\(913\) 23.9198 0.791631
\(914\) −1.13954 −0.0376927
\(915\) −21.8116 −0.721068
\(916\) 21.7819 0.719693
\(917\) −4.30603 −0.142198
\(918\) 0.0290094 0.000957452 0
\(919\) −18.2904 −0.603346 −0.301673 0.953411i \(-0.597545\pi\)
−0.301673 + 0.953411i \(0.597545\pi\)
\(920\) −0.685999 −0.0226167
\(921\) −16.9198 −0.557527
\(922\) 0.439558 0.0144761
\(923\) 52.6229 1.73210
\(924\) 8.41404 0.276802
\(925\) 27.3716 0.899972
\(926\) 1.04421 0.0343147
\(927\) 6.28650 0.206476
\(928\) 2.38034 0.0781385
\(929\) 3.21214 0.105387 0.0526935 0.998611i \(-0.483219\pi\)
0.0526935 + 0.998611i \(0.483219\pi\)
\(930\) 0.117058 0.00383849
\(931\) 0.452098 0.0148169
\(932\) −50.6596 −1.65941
\(933\) −13.5782 −0.444530
\(934\) 0.688580 0.0225310
\(935\) 12.6770 0.414582
\(936\) 0.763385 0.0249520
\(937\) 0.847525 0.0276874 0.0138437 0.999904i \(-0.495593\pi\)
0.0138437 + 0.999904i \(0.495593\pi\)
\(938\) −0.0293441 −0.000958119 0
\(939\) 31.4249 1.02551
\(940\) 2.11416 0.0689562
\(941\) 20.7245 0.675601 0.337800 0.941218i \(-0.390317\pi\)
0.337800 + 0.941218i \(0.390317\pi\)
\(942\) 0.0221883 0.000722932 0
\(943\) −6.54088 −0.213000
\(944\) 5.95104 0.193690
\(945\) 3.07938 0.100172
\(946\) −0.513787 −0.0167046
\(947\) 53.5475 1.74006 0.870031 0.492998i \(-0.164099\pi\)
0.870031 + 0.492998i \(0.164099\pi\)
\(948\) 18.0374 0.585827
\(949\) −59.0560 −1.91704
\(950\) 0.0601053 0.00195007
\(951\) 17.5662 0.569622
\(952\) −0.116012 −0.00375997
\(953\) −6.51677 −0.211099 −0.105549 0.994414i \(-0.533660\pi\)
−0.105549 + 0.994414i \(0.533660\pi\)
\(954\) 0.0658563 0.00213218
\(955\) 27.5714 0.892191
\(956\) −5.11041 −0.165283
\(957\) 28.1661 0.910480
\(958\) −0.853738 −0.0275830
\(959\) −3.16745 −0.102282
\(960\) 24.5701 0.792995
\(961\) −29.3572 −0.947008
\(962\) −1.16560 −0.0375805
\(963\) −14.2861 −0.460364
\(964\) −29.1125 −0.937652
\(965\) 13.3933 0.431147
\(966\) 0.0557052 0.00179228
\(967\) 55.2012 1.77515 0.887575 0.460662i \(-0.152388\pi\)
0.887575 + 0.460662i \(0.152388\pi\)
\(968\) −0.796411 −0.0255976
\(969\) 0.442200 0.0142055
\(970\) 0.989873 0.0317829
\(971\) −37.1275 −1.19148 −0.595740 0.803178i \(-0.703141\pi\)
−0.595740 + 0.803178i \(0.703141\pi\)
\(972\) 1.99912 0.0641218
\(973\) −7.21212 −0.231210
\(974\) 1.20506 0.0386127
\(975\) 28.8507 0.923960
\(976\) 28.2950 0.905702
\(977\) −61.2366 −1.95913 −0.979566 0.201124i \(-0.935540\pi\)
−0.979566 + 0.201124i \(0.935540\pi\)
\(978\) −0.390301 −0.0124805
\(979\) −8.48862 −0.271298
\(980\) −6.15605 −0.196648
\(981\) −6.40981 −0.204649
\(982\) 0.206084 0.00657640
\(983\) −48.0106 −1.53130 −0.765651 0.643257i \(-0.777583\pi\)
−0.765651 + 0.643257i \(0.777583\pi\)
\(984\) −0.413056 −0.0131677
\(985\) 37.3551 1.19023
\(986\) −0.194133 −0.00618245
\(987\) −0.343427 −0.0109314
\(988\) 5.81699 0.185063
\(989\) 7.73052 0.245816
\(990\) −0.384398 −0.0122170
\(991\) 44.1047 1.40103 0.700517 0.713636i \(-0.252953\pi\)
0.700517 + 0.713636i \(0.252953\pi\)
\(992\) −0.455896 −0.0144747
\(993\) −26.2992 −0.834579
\(994\) 0.242493 0.00769142
\(995\) −47.4027 −1.50277
\(996\) −11.3614 −0.359999
\(997\) −46.7633 −1.48101 −0.740504 0.672052i \(-0.765413\pi\)
−0.740504 + 0.672052i \(0.765413\pi\)
\(998\) 0.150984 0.00477932
\(999\) −6.10620 −0.193192
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.o.1.7 16
3.2 odd 2 8001.2.a.r.1.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.o.1.7 16 1.1 even 1 trivial
8001.2.a.r.1.10 16 3.2 odd 2