Properties

Label 2667.2.a.o.1.5
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,5,-16,19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} - 13 x^{14} + 98 x^{13} + 9 x^{12} - 712 x^{11} + 565 x^{10} + 2282 x^{9} - 3082 x^{8} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.823041\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.823041 q^{2} -1.00000 q^{3} -1.32260 q^{4} -3.74037 q^{5} +0.823041 q^{6} -1.00000 q^{7} +2.73464 q^{8} +1.00000 q^{9} +3.07848 q^{10} +5.51001 q^{11} +1.32260 q^{12} +3.05214 q^{13} +0.823041 q^{14} +3.74037 q^{15} +0.394484 q^{16} -2.99620 q^{17} -0.823041 q^{18} -8.18146 q^{19} +4.94702 q^{20} +1.00000 q^{21} -4.53496 q^{22} -8.49401 q^{23} -2.73464 q^{24} +8.99033 q^{25} -2.51203 q^{26} -1.00000 q^{27} +1.32260 q^{28} +2.18992 q^{29} -3.07848 q^{30} -10.0713 q^{31} -5.79396 q^{32} -5.51001 q^{33} +2.46600 q^{34} +3.74037 q^{35} -1.32260 q^{36} +8.15061 q^{37} +6.73368 q^{38} -3.05214 q^{39} -10.2286 q^{40} +5.46666 q^{41} -0.823041 q^{42} -4.04983 q^{43} -7.28755 q^{44} -3.74037 q^{45} +6.99092 q^{46} +3.81563 q^{47} -0.394484 q^{48} +1.00000 q^{49} -7.39942 q^{50} +2.99620 q^{51} -4.03676 q^{52} -5.00929 q^{53} +0.823041 q^{54} -20.6094 q^{55} -2.73464 q^{56} +8.18146 q^{57} -1.80240 q^{58} -13.3668 q^{59} -4.94702 q^{60} -8.19365 q^{61} +8.28911 q^{62} -1.00000 q^{63} +3.97970 q^{64} -11.4161 q^{65} +4.53496 q^{66} -5.69594 q^{67} +3.96278 q^{68} +8.49401 q^{69} -3.07848 q^{70} +7.02554 q^{71} +2.73464 q^{72} -2.25827 q^{73} -6.70829 q^{74} -8.99033 q^{75} +10.8208 q^{76} -5.51001 q^{77} +2.51203 q^{78} -1.56489 q^{79} -1.47551 q^{80} +1.00000 q^{81} -4.49929 q^{82} +5.39693 q^{83} -1.32260 q^{84} +11.2069 q^{85} +3.33318 q^{86} -2.18992 q^{87} +15.0679 q^{88} +2.98116 q^{89} +3.07848 q^{90} -3.05214 q^{91} +11.2342 q^{92} +10.0713 q^{93} -3.14042 q^{94} +30.6017 q^{95} +5.79396 q^{96} -7.99742 q^{97} -0.823041 q^{98} +5.51001 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{2} - 16 q^{3} + 19 q^{4} - q^{5} - 5 q^{6} - 16 q^{7} + 6 q^{8} + 16 q^{9} - 12 q^{10} + 11 q^{11} - 19 q^{12} + 18 q^{13} - 5 q^{14} + q^{15} + 25 q^{16} - 5 q^{17} + 5 q^{18} - 11 q^{19}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.823041 −0.581978 −0.290989 0.956726i \(-0.593984\pi\)
−0.290989 + 0.956726i \(0.593984\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.32260 −0.661301
\(5\) −3.74037 −1.67274 −0.836371 0.548164i \(-0.815327\pi\)
−0.836371 + 0.548164i \(0.815327\pi\)
\(6\) 0.823041 0.336005
\(7\) −1.00000 −0.377964
\(8\) 2.73464 0.966841
\(9\) 1.00000 0.333333
\(10\) 3.07848 0.973500
\(11\) 5.51001 1.66133 0.830665 0.556773i \(-0.187961\pi\)
0.830665 + 0.556773i \(0.187961\pi\)
\(12\) 1.32260 0.381803
\(13\) 3.05214 0.846510 0.423255 0.906011i \(-0.360887\pi\)
0.423255 + 0.906011i \(0.360887\pi\)
\(14\) 0.823041 0.219967
\(15\) 3.74037 0.965758
\(16\) 0.394484 0.0986209
\(17\) −2.99620 −0.726685 −0.363342 0.931656i \(-0.618364\pi\)
−0.363342 + 0.931656i \(0.618364\pi\)
\(18\) −0.823041 −0.193993
\(19\) −8.18146 −1.87696 −0.938478 0.345338i \(-0.887764\pi\)
−0.938478 + 0.345338i \(0.887764\pi\)
\(20\) 4.94702 1.10619
\(21\) 1.00000 0.218218
\(22\) −4.53496 −0.966858
\(23\) −8.49401 −1.77112 −0.885562 0.464521i \(-0.846226\pi\)
−0.885562 + 0.464521i \(0.846226\pi\)
\(24\) −2.73464 −0.558206
\(25\) 8.99033 1.79807
\(26\) −2.51203 −0.492650
\(27\) −1.00000 −0.192450
\(28\) 1.32260 0.249948
\(29\) 2.18992 0.406658 0.203329 0.979110i \(-0.434824\pi\)
0.203329 + 0.979110i \(0.434824\pi\)
\(30\) −3.07848 −0.562050
\(31\) −10.0713 −1.80886 −0.904431 0.426621i \(-0.859704\pi\)
−0.904431 + 0.426621i \(0.859704\pi\)
\(32\) −5.79396 −1.02424
\(33\) −5.51001 −0.959169
\(34\) 2.46600 0.422915
\(35\) 3.74037 0.632237
\(36\) −1.32260 −0.220434
\(37\) 8.15061 1.33995 0.669976 0.742383i \(-0.266304\pi\)
0.669976 + 0.742383i \(0.266304\pi\)
\(38\) 6.73368 1.09235
\(39\) −3.05214 −0.488733
\(40\) −10.2286 −1.61728
\(41\) 5.46666 0.853749 0.426874 0.904311i \(-0.359615\pi\)
0.426874 + 0.904311i \(0.359615\pi\)
\(42\) −0.823041 −0.126998
\(43\) −4.04983 −0.617594 −0.308797 0.951128i \(-0.599926\pi\)
−0.308797 + 0.951128i \(0.599926\pi\)
\(44\) −7.28755 −1.09864
\(45\) −3.74037 −0.557581
\(46\) 6.99092 1.03076
\(47\) 3.81563 0.556567 0.278283 0.960499i \(-0.410235\pi\)
0.278283 + 0.960499i \(0.410235\pi\)
\(48\) −0.394484 −0.0569388
\(49\) 1.00000 0.142857
\(50\) −7.39942 −1.04644
\(51\) 2.99620 0.419552
\(52\) −4.03676 −0.559798
\(53\) −5.00929 −0.688079 −0.344039 0.938955i \(-0.611795\pi\)
−0.344039 + 0.938955i \(0.611795\pi\)
\(54\) 0.823041 0.112002
\(55\) −20.6094 −2.77898
\(56\) −2.73464 −0.365432
\(57\) 8.18146 1.08366
\(58\) −1.80240 −0.236666
\(59\) −13.3668 −1.74021 −0.870103 0.492871i \(-0.835948\pi\)
−0.870103 + 0.492871i \(0.835948\pi\)
\(60\) −4.94702 −0.638657
\(61\) −8.19365 −1.04909 −0.524545 0.851383i \(-0.675764\pi\)
−0.524545 + 0.851383i \(0.675764\pi\)
\(62\) 8.28911 1.05272
\(63\) −1.00000 −0.125988
\(64\) 3.97970 0.497462
\(65\) −11.4161 −1.41599
\(66\) 4.53496 0.558216
\(67\) −5.69594 −0.695869 −0.347935 0.937519i \(-0.613117\pi\)
−0.347935 + 0.937519i \(0.613117\pi\)
\(68\) 3.96278 0.480558
\(69\) 8.49401 1.02256
\(70\) −3.07848 −0.367948
\(71\) 7.02554 0.833779 0.416889 0.908957i \(-0.363120\pi\)
0.416889 + 0.908957i \(0.363120\pi\)
\(72\) 2.73464 0.322280
\(73\) −2.25827 −0.264311 −0.132155 0.991229i \(-0.542190\pi\)
−0.132155 + 0.991229i \(0.542190\pi\)
\(74\) −6.70829 −0.779823
\(75\) −8.99033 −1.03811
\(76\) 10.8208 1.24123
\(77\) −5.51001 −0.627924
\(78\) 2.51203 0.284432
\(79\) −1.56489 −0.176064 −0.0880318 0.996118i \(-0.528058\pi\)
−0.0880318 + 0.996118i \(0.528058\pi\)
\(80\) −1.47551 −0.164967
\(81\) 1.00000 0.111111
\(82\) −4.49929 −0.496863
\(83\) 5.39693 0.592390 0.296195 0.955127i \(-0.404282\pi\)
0.296195 + 0.955127i \(0.404282\pi\)
\(84\) −1.32260 −0.144308
\(85\) 11.2069 1.21556
\(86\) 3.33318 0.359426
\(87\) −2.18992 −0.234784
\(88\) 15.0679 1.60624
\(89\) 2.98116 0.316002 0.158001 0.987439i \(-0.449495\pi\)
0.158001 + 0.987439i \(0.449495\pi\)
\(90\) 3.07848 0.324500
\(91\) −3.05214 −0.319951
\(92\) 11.2342 1.17125
\(93\) 10.0713 1.04435
\(94\) −3.14042 −0.323910
\(95\) 30.6017 3.13966
\(96\) 5.79396 0.591343
\(97\) −7.99742 −0.812015 −0.406007 0.913870i \(-0.633079\pi\)
−0.406007 + 0.913870i \(0.633079\pi\)
\(98\) −0.823041 −0.0831397
\(99\) 5.51001 0.553777
\(100\) −11.8906 −1.18906
\(101\) 14.8974 1.48235 0.741173 0.671314i \(-0.234270\pi\)
0.741173 + 0.671314i \(0.234270\pi\)
\(102\) −2.46600 −0.244170
\(103\) 5.23013 0.515340 0.257670 0.966233i \(-0.417045\pi\)
0.257670 + 0.966233i \(0.417045\pi\)
\(104\) 8.34649 0.818441
\(105\) −3.74037 −0.365022
\(106\) 4.12285 0.400447
\(107\) −2.88042 −0.278460 −0.139230 0.990260i \(-0.544463\pi\)
−0.139230 + 0.990260i \(0.544463\pi\)
\(108\) 1.32260 0.127268
\(109\) −10.4821 −1.00400 −0.502000 0.864867i \(-0.667402\pi\)
−0.502000 + 0.864867i \(0.667402\pi\)
\(110\) 16.9624 1.61730
\(111\) −8.15061 −0.773622
\(112\) −0.394484 −0.0372752
\(113\) 7.63990 0.718701 0.359351 0.933203i \(-0.382998\pi\)
0.359351 + 0.933203i \(0.382998\pi\)
\(114\) −6.73368 −0.630667
\(115\) 31.7707 2.96263
\(116\) −2.89640 −0.268924
\(117\) 3.05214 0.282170
\(118\) 11.0014 1.01276
\(119\) 2.99620 0.274661
\(120\) 10.2286 0.933735
\(121\) 19.3602 1.76002
\(122\) 6.74371 0.610547
\(123\) −5.46666 −0.492912
\(124\) 13.3203 1.19620
\(125\) −14.9253 −1.33496
\(126\) 0.823041 0.0733224
\(127\) 1.00000 0.0887357
\(128\) 8.31245 0.734724
\(129\) 4.04983 0.356568
\(130\) 9.39592 0.824077
\(131\) −9.80510 −0.856675 −0.428338 0.903619i \(-0.640901\pi\)
−0.428338 + 0.903619i \(0.640901\pi\)
\(132\) 7.28755 0.634300
\(133\) 8.18146 0.709423
\(134\) 4.68799 0.404981
\(135\) 3.74037 0.321919
\(136\) −8.19352 −0.702589
\(137\) 17.6377 1.50689 0.753445 0.657511i \(-0.228391\pi\)
0.753445 + 0.657511i \(0.228391\pi\)
\(138\) −6.99092 −0.595107
\(139\) −15.2050 −1.28967 −0.644835 0.764322i \(-0.723074\pi\)
−0.644835 + 0.764322i \(0.723074\pi\)
\(140\) −4.94702 −0.418099
\(141\) −3.81563 −0.321334
\(142\) −5.78231 −0.485241
\(143\) 16.8173 1.40633
\(144\) 0.394484 0.0328736
\(145\) −8.19111 −0.680234
\(146\) 1.85865 0.153823
\(147\) −1.00000 −0.0824786
\(148\) −10.7800 −0.886112
\(149\) −4.13281 −0.338573 −0.169286 0.985567i \(-0.554146\pi\)
−0.169286 + 0.985567i \(0.554146\pi\)
\(150\) 7.39942 0.604160
\(151\) −7.72102 −0.628328 −0.314164 0.949369i \(-0.601724\pi\)
−0.314164 + 0.949369i \(0.601724\pi\)
\(152\) −22.3734 −1.81472
\(153\) −2.99620 −0.242228
\(154\) 4.53496 0.365438
\(155\) 37.6704 3.02576
\(156\) 4.03676 0.323200
\(157\) 8.14560 0.650090 0.325045 0.945699i \(-0.394621\pi\)
0.325045 + 0.945699i \(0.394621\pi\)
\(158\) 1.28797 0.102465
\(159\) 5.00929 0.397263
\(160\) 21.6715 1.71328
\(161\) 8.49401 0.669422
\(162\) −0.823041 −0.0646642
\(163\) −6.83265 −0.535175 −0.267587 0.963534i \(-0.586226\pi\)
−0.267587 + 0.963534i \(0.586226\pi\)
\(164\) −7.23022 −0.564585
\(165\) 20.6094 1.60444
\(166\) −4.44190 −0.344758
\(167\) 18.1213 1.40227 0.701136 0.713028i \(-0.252677\pi\)
0.701136 + 0.713028i \(0.252677\pi\)
\(168\) 2.73464 0.210982
\(169\) −3.68447 −0.283421
\(170\) −9.22372 −0.707427
\(171\) −8.18146 −0.625652
\(172\) 5.35632 0.408416
\(173\) 23.7119 1.80279 0.901393 0.433002i \(-0.142546\pi\)
0.901393 + 0.433002i \(0.142546\pi\)
\(174\) 1.80240 0.136639
\(175\) −8.99033 −0.679605
\(176\) 2.17361 0.163842
\(177\) 13.3668 1.00471
\(178\) −2.45362 −0.183906
\(179\) 9.28257 0.693812 0.346906 0.937900i \(-0.387232\pi\)
0.346906 + 0.937900i \(0.387232\pi\)
\(180\) 4.94702 0.368729
\(181\) −11.9070 −0.885037 −0.442518 0.896759i \(-0.645915\pi\)
−0.442518 + 0.896759i \(0.645915\pi\)
\(182\) 2.51203 0.186204
\(183\) 8.19365 0.605692
\(184\) −23.2281 −1.71240
\(185\) −30.4863 −2.24139
\(186\) −8.28911 −0.607787
\(187\) −16.5091 −1.20726
\(188\) −5.04656 −0.368058
\(189\) 1.00000 0.0727393
\(190\) −25.1864 −1.82722
\(191\) 14.5880 1.05555 0.527774 0.849385i \(-0.323027\pi\)
0.527774 + 0.849385i \(0.323027\pi\)
\(192\) −3.97970 −0.287210
\(193\) 8.15977 0.587353 0.293676 0.955905i \(-0.405121\pi\)
0.293676 + 0.955905i \(0.405121\pi\)
\(194\) 6.58221 0.472575
\(195\) 11.4161 0.817524
\(196\) −1.32260 −0.0944716
\(197\) 0.326739 0.0232792 0.0116396 0.999932i \(-0.496295\pi\)
0.0116396 + 0.999932i \(0.496295\pi\)
\(198\) −4.53496 −0.322286
\(199\) 13.5317 0.959238 0.479619 0.877477i \(-0.340775\pi\)
0.479619 + 0.877477i \(0.340775\pi\)
\(200\) 24.5853 1.73844
\(201\) 5.69594 0.401760
\(202\) −12.2612 −0.862694
\(203\) −2.18992 −0.153702
\(204\) −3.96278 −0.277450
\(205\) −20.4473 −1.42810
\(206\) −4.30461 −0.299917
\(207\) −8.49401 −0.590375
\(208\) 1.20402 0.0834836
\(209\) −45.0799 −3.11824
\(210\) 3.07848 0.212435
\(211\) 12.5212 0.861995 0.430998 0.902353i \(-0.358162\pi\)
0.430998 + 0.902353i \(0.358162\pi\)
\(212\) 6.62530 0.455028
\(213\) −7.02554 −0.481382
\(214\) 2.37070 0.162058
\(215\) 15.1479 1.03308
\(216\) −2.73464 −0.186069
\(217\) 10.0713 0.683685
\(218\) 8.62718 0.584306
\(219\) 2.25827 0.152600
\(220\) 27.2581 1.83774
\(221\) −9.14480 −0.615146
\(222\) 6.70829 0.450231
\(223\) −10.2034 −0.683271 −0.341636 0.939832i \(-0.610981\pi\)
−0.341636 + 0.939832i \(0.610981\pi\)
\(224\) 5.79396 0.387125
\(225\) 8.99033 0.599356
\(226\) −6.28795 −0.418269
\(227\) 15.0175 0.996745 0.498373 0.866963i \(-0.333931\pi\)
0.498373 + 0.866963i \(0.333931\pi\)
\(228\) −10.8208 −0.716627
\(229\) 12.2701 0.810834 0.405417 0.914132i \(-0.367126\pi\)
0.405417 + 0.914132i \(0.367126\pi\)
\(230\) −26.1486 −1.72419
\(231\) 5.51001 0.362532
\(232\) 5.98865 0.393174
\(233\) −22.0349 −1.44355 −0.721776 0.692127i \(-0.756674\pi\)
−0.721776 + 0.692127i \(0.756674\pi\)
\(234\) −2.51203 −0.164217
\(235\) −14.2719 −0.930993
\(236\) 17.6789 1.15080
\(237\) 1.56489 0.101650
\(238\) −2.46600 −0.159847
\(239\) −11.3726 −0.735632 −0.367816 0.929899i \(-0.619894\pi\)
−0.367816 + 0.929899i \(0.619894\pi\)
\(240\) 1.47551 0.0952439
\(241\) 1.83314 0.118083 0.0590415 0.998256i \(-0.481196\pi\)
0.0590415 + 0.998256i \(0.481196\pi\)
\(242\) −15.9342 −1.02429
\(243\) −1.00000 −0.0641500
\(244\) 10.8369 0.693764
\(245\) −3.74037 −0.238963
\(246\) 4.49929 0.286864
\(247\) −24.9709 −1.58886
\(248\) −27.5414 −1.74888
\(249\) −5.39693 −0.342017
\(250\) 12.2841 0.776918
\(251\) −2.74118 −0.173022 −0.0865110 0.996251i \(-0.527572\pi\)
−0.0865110 + 0.996251i \(0.527572\pi\)
\(252\) 1.32260 0.0833161
\(253\) −46.8021 −2.94242
\(254\) −0.823041 −0.0516422
\(255\) −11.2069 −0.701802
\(256\) −14.8009 −0.925056
\(257\) −30.4318 −1.89828 −0.949142 0.314847i \(-0.898047\pi\)
−0.949142 + 0.314847i \(0.898047\pi\)
\(258\) −3.33318 −0.207515
\(259\) −8.15061 −0.506454
\(260\) 15.0990 0.936398
\(261\) 2.18992 0.135553
\(262\) 8.07000 0.498566
\(263\) −15.1790 −0.935975 −0.467987 0.883735i \(-0.655021\pi\)
−0.467987 + 0.883735i \(0.655021\pi\)
\(264\) −15.0679 −0.927364
\(265\) 18.7366 1.15098
\(266\) −6.73368 −0.412869
\(267\) −2.98116 −0.182444
\(268\) 7.53346 0.460179
\(269\) 22.2608 1.35726 0.678631 0.734479i \(-0.262573\pi\)
0.678631 + 0.734479i \(0.262573\pi\)
\(270\) −3.07848 −0.187350
\(271\) 22.6860 1.37808 0.689038 0.724725i \(-0.258033\pi\)
0.689038 + 0.724725i \(0.258033\pi\)
\(272\) −1.18195 −0.0716663
\(273\) 3.05214 0.184724
\(274\) −14.5166 −0.876977
\(275\) 49.5368 2.98718
\(276\) −11.2342 −0.676220
\(277\) 25.6782 1.54286 0.771428 0.636317i \(-0.219543\pi\)
0.771428 + 0.636317i \(0.219543\pi\)
\(278\) 12.5143 0.750560
\(279\) −10.0713 −0.602954
\(280\) 10.2286 0.611273
\(281\) 8.18323 0.488170 0.244085 0.969754i \(-0.421512\pi\)
0.244085 + 0.969754i \(0.421512\pi\)
\(282\) 3.14042 0.187009
\(283\) −13.1927 −0.784226 −0.392113 0.919917i \(-0.628256\pi\)
−0.392113 + 0.919917i \(0.628256\pi\)
\(284\) −9.29200 −0.551379
\(285\) −30.6017 −1.81269
\(286\) −13.8413 −0.818455
\(287\) −5.46666 −0.322687
\(288\) −5.79396 −0.341412
\(289\) −8.02280 −0.471929
\(290\) 6.74162 0.395882
\(291\) 7.99742 0.468817
\(292\) 2.98680 0.174789
\(293\) −2.08917 −0.122051 −0.0610254 0.998136i \(-0.519437\pi\)
−0.0610254 + 0.998136i \(0.519437\pi\)
\(294\) 0.823041 0.0480008
\(295\) 49.9966 2.91091
\(296\) 22.2890 1.29552
\(297\) −5.51001 −0.319723
\(298\) 3.40147 0.197042
\(299\) −25.9249 −1.49927
\(300\) 11.8906 0.686506
\(301\) 4.04983 0.233429
\(302\) 6.35472 0.365673
\(303\) −14.8974 −0.855833
\(304\) −3.22745 −0.185107
\(305\) 30.6472 1.75486
\(306\) 2.46600 0.140972
\(307\) 27.3452 1.56068 0.780338 0.625359i \(-0.215047\pi\)
0.780338 + 0.625359i \(0.215047\pi\)
\(308\) 7.28755 0.415247
\(309\) −5.23013 −0.297532
\(310\) −31.0043 −1.76093
\(311\) 18.2259 1.03349 0.516747 0.856138i \(-0.327143\pi\)
0.516747 + 0.856138i \(0.327143\pi\)
\(312\) −8.34649 −0.472527
\(313\) −26.2831 −1.48561 −0.742803 0.669510i \(-0.766504\pi\)
−0.742803 + 0.669510i \(0.766504\pi\)
\(314\) −6.70417 −0.378338
\(315\) 3.74037 0.210746
\(316\) 2.06972 0.116431
\(317\) 20.4264 1.14726 0.573631 0.819114i \(-0.305534\pi\)
0.573631 + 0.819114i \(0.305534\pi\)
\(318\) −4.12285 −0.231198
\(319\) 12.0665 0.675593
\(320\) −14.8855 −0.832126
\(321\) 2.88042 0.160769
\(322\) −6.99092 −0.389589
\(323\) 24.5133 1.36396
\(324\) −1.32260 −0.0734779
\(325\) 27.4397 1.52208
\(326\) 5.62356 0.311460
\(327\) 10.4821 0.579660
\(328\) 14.9493 0.825439
\(329\) −3.81563 −0.210363
\(330\) −16.9624 −0.933751
\(331\) −10.6077 −0.583055 −0.291527 0.956563i \(-0.594163\pi\)
−0.291527 + 0.956563i \(0.594163\pi\)
\(332\) −7.13800 −0.391749
\(333\) 8.15061 0.446651
\(334\) −14.9146 −0.816091
\(335\) 21.3049 1.16401
\(336\) 0.394484 0.0215208
\(337\) −6.43774 −0.350686 −0.175343 0.984507i \(-0.556103\pi\)
−0.175343 + 0.984507i \(0.556103\pi\)
\(338\) 3.03247 0.164945
\(339\) −7.63990 −0.414942
\(340\) −14.8222 −0.803849
\(341\) −55.4930 −3.00511
\(342\) 6.73368 0.364116
\(343\) −1.00000 −0.0539949
\(344\) −11.0748 −0.597115
\(345\) −31.7707 −1.71048
\(346\) −19.5159 −1.04918
\(347\) 13.9202 0.747278 0.373639 0.927574i \(-0.378110\pi\)
0.373639 + 0.927574i \(0.378110\pi\)
\(348\) 2.89640 0.155263
\(349\) −4.72177 −0.252750 −0.126375 0.991983i \(-0.540334\pi\)
−0.126375 + 0.991983i \(0.540334\pi\)
\(350\) 7.39942 0.395515
\(351\) −3.05214 −0.162911
\(352\) −31.9247 −1.70159
\(353\) 1.15223 0.0613271 0.0306635 0.999530i \(-0.490238\pi\)
0.0306635 + 0.999530i \(0.490238\pi\)
\(354\) −11.0014 −0.584718
\(355\) −26.2781 −1.39470
\(356\) −3.94289 −0.208973
\(357\) −2.99620 −0.158576
\(358\) −7.63994 −0.403783
\(359\) 12.1816 0.642921 0.321460 0.946923i \(-0.395826\pi\)
0.321460 + 0.946923i \(0.395826\pi\)
\(360\) −10.2286 −0.539092
\(361\) 47.9363 2.52297
\(362\) 9.79992 0.515072
\(363\) −19.3602 −1.01615
\(364\) 4.03676 0.211584
\(365\) 8.44676 0.442124
\(366\) −6.74371 −0.352500
\(367\) 20.3114 1.06025 0.530124 0.847920i \(-0.322145\pi\)
0.530124 + 0.847920i \(0.322145\pi\)
\(368\) −3.35075 −0.174670
\(369\) 5.46666 0.284583
\(370\) 25.0915 1.30444
\(371\) 5.00929 0.260069
\(372\) −13.3203 −0.690628
\(373\) 37.7582 1.95504 0.977522 0.210833i \(-0.0676176\pi\)
0.977522 + 0.210833i \(0.0676176\pi\)
\(374\) 13.5877 0.702601
\(375\) 14.9253 0.770739
\(376\) 10.4344 0.538112
\(377\) 6.68394 0.344240
\(378\) −0.823041 −0.0423327
\(379\) −21.5022 −1.10449 −0.552246 0.833681i \(-0.686229\pi\)
−0.552246 + 0.833681i \(0.686229\pi\)
\(380\) −40.4738 −2.07626
\(381\) −1.00000 −0.0512316
\(382\) −12.0065 −0.614306
\(383\) 25.0241 1.27867 0.639335 0.768928i \(-0.279210\pi\)
0.639335 + 0.768928i \(0.279210\pi\)
\(384\) −8.31245 −0.424193
\(385\) 20.6094 1.05035
\(386\) −6.71583 −0.341827
\(387\) −4.04983 −0.205865
\(388\) 10.5774 0.536987
\(389\) −11.2191 −0.568833 −0.284416 0.958701i \(-0.591800\pi\)
−0.284416 + 0.958701i \(0.591800\pi\)
\(390\) −9.39592 −0.475781
\(391\) 25.4497 1.28705
\(392\) 2.73464 0.138120
\(393\) 9.80510 0.494602
\(394\) −0.268919 −0.0135480
\(395\) 5.85325 0.294509
\(396\) −7.28755 −0.366213
\(397\) −20.5557 −1.03166 −0.515831 0.856690i \(-0.672517\pi\)
−0.515831 + 0.856690i \(0.672517\pi\)
\(398\) −11.1372 −0.558256
\(399\) −8.18146 −0.409585
\(400\) 3.54654 0.177327
\(401\) −10.9879 −0.548711 −0.274355 0.961628i \(-0.588464\pi\)
−0.274355 + 0.961628i \(0.588464\pi\)
\(402\) −4.68799 −0.233816
\(403\) −30.7390 −1.53122
\(404\) −19.7033 −0.980278
\(405\) −3.74037 −0.185860
\(406\) 1.80240 0.0894514
\(407\) 44.9099 2.22610
\(408\) 8.19352 0.405640
\(409\) −11.9000 −0.588417 −0.294208 0.955741i \(-0.595056\pi\)
−0.294208 + 0.955741i \(0.595056\pi\)
\(410\) 16.8290 0.831124
\(411\) −17.6377 −0.870003
\(412\) −6.91738 −0.340795
\(413\) 13.3668 0.657736
\(414\) 6.99092 0.343585
\(415\) −20.1865 −0.990917
\(416\) −17.6839 −0.867026
\(417\) 15.2050 0.744591
\(418\) 37.1026 1.81475
\(419\) −36.0723 −1.76225 −0.881123 0.472887i \(-0.843212\pi\)
−0.881123 + 0.472887i \(0.843212\pi\)
\(420\) 4.94702 0.241390
\(421\) 2.95291 0.143916 0.0719580 0.997408i \(-0.477075\pi\)
0.0719580 + 0.997408i \(0.477075\pi\)
\(422\) −10.3055 −0.501663
\(423\) 3.81563 0.185522
\(424\) −13.6986 −0.665263
\(425\) −26.9368 −1.30663
\(426\) 5.78231 0.280154
\(427\) 8.19365 0.396519
\(428\) 3.80965 0.184146
\(429\) −16.8173 −0.811946
\(430\) −12.4673 −0.601227
\(431\) −35.1328 −1.69229 −0.846143 0.532956i \(-0.821081\pi\)
−0.846143 + 0.532956i \(0.821081\pi\)
\(432\) −0.394484 −0.0189796
\(433\) 38.5473 1.85246 0.926232 0.376955i \(-0.123029\pi\)
0.926232 + 0.376955i \(0.123029\pi\)
\(434\) −8.28911 −0.397890
\(435\) 8.19111 0.392733
\(436\) 13.8636 0.663947
\(437\) 69.4934 3.32432
\(438\) −1.85865 −0.0888098
\(439\) −18.5170 −0.883766 −0.441883 0.897073i \(-0.645689\pi\)
−0.441883 + 0.897073i \(0.645689\pi\)
\(440\) −56.3594 −2.68683
\(441\) 1.00000 0.0476190
\(442\) 7.52655 0.358002
\(443\) 11.0423 0.524637 0.262318 0.964981i \(-0.415513\pi\)
0.262318 + 0.964981i \(0.415513\pi\)
\(444\) 10.7800 0.511597
\(445\) −11.1506 −0.528590
\(446\) 8.39783 0.397649
\(447\) 4.13281 0.195475
\(448\) −3.97970 −0.188023
\(449\) −17.0853 −0.806304 −0.403152 0.915133i \(-0.632085\pi\)
−0.403152 + 0.915133i \(0.632085\pi\)
\(450\) −7.39942 −0.348812
\(451\) 30.1213 1.41836
\(452\) −10.1046 −0.475278
\(453\) 7.72102 0.362765
\(454\) −12.3600 −0.580084
\(455\) 11.4161 0.535195
\(456\) 22.3734 1.04773
\(457\) −34.4820 −1.61300 −0.806500 0.591234i \(-0.798641\pi\)
−0.806500 + 0.591234i \(0.798641\pi\)
\(458\) −10.0988 −0.471888
\(459\) 2.99620 0.139851
\(460\) −42.0200 −1.95919
\(461\) 9.52206 0.443487 0.221743 0.975105i \(-0.428825\pi\)
0.221743 + 0.975105i \(0.428825\pi\)
\(462\) −4.53496 −0.210986
\(463\) −20.5419 −0.954662 −0.477331 0.878723i \(-0.658396\pi\)
−0.477331 + 0.878723i \(0.658396\pi\)
\(464\) 0.863888 0.0401050
\(465\) −37.6704 −1.74692
\(466\) 18.1356 0.840116
\(467\) 33.3542 1.54345 0.771725 0.635956i \(-0.219394\pi\)
0.771725 + 0.635956i \(0.219394\pi\)
\(468\) −4.03676 −0.186599
\(469\) 5.69594 0.263014
\(470\) 11.7463 0.541818
\(471\) −8.14560 −0.375330
\(472\) −36.5533 −1.68250
\(473\) −22.3146 −1.02603
\(474\) −1.28797 −0.0591583
\(475\) −73.5541 −3.37489
\(476\) −3.96278 −0.181634
\(477\) −5.00929 −0.229360
\(478\) 9.36012 0.428122
\(479\) 42.2188 1.92903 0.964514 0.264031i \(-0.0850522\pi\)
0.964514 + 0.264031i \(0.0850522\pi\)
\(480\) −21.6715 −0.989165
\(481\) 24.8768 1.13428
\(482\) −1.50875 −0.0687217
\(483\) −8.49401 −0.386491
\(484\) −25.6058 −1.16390
\(485\) 29.9133 1.35829
\(486\) 0.823041 0.0373339
\(487\) 10.6109 0.480826 0.240413 0.970671i \(-0.422717\pi\)
0.240413 + 0.970671i \(0.422717\pi\)
\(488\) −22.4067 −1.01430
\(489\) 6.83265 0.308983
\(490\) 3.07848 0.139071
\(491\) 27.3680 1.23510 0.617550 0.786532i \(-0.288125\pi\)
0.617550 + 0.786532i \(0.288125\pi\)
\(492\) 7.23022 0.325963
\(493\) −6.56144 −0.295512
\(494\) 20.5521 0.924683
\(495\) −20.6094 −0.926325
\(496\) −3.97297 −0.178391
\(497\) −7.02554 −0.315139
\(498\) 4.44190 0.199046
\(499\) 13.3392 0.597146 0.298573 0.954387i \(-0.403489\pi\)
0.298573 + 0.954387i \(0.403489\pi\)
\(500\) 19.7402 0.882811
\(501\) −18.1213 −0.809602
\(502\) 2.25611 0.100695
\(503\) 13.0642 0.582504 0.291252 0.956646i \(-0.405928\pi\)
0.291252 + 0.956646i \(0.405928\pi\)
\(504\) −2.73464 −0.121811
\(505\) −55.7217 −2.47958
\(506\) 38.5200 1.71242
\(507\) 3.68447 0.163633
\(508\) −1.32260 −0.0586810
\(509\) 0.882990 0.0391378 0.0195689 0.999809i \(-0.493771\pi\)
0.0195689 + 0.999809i \(0.493771\pi\)
\(510\) 9.22372 0.408433
\(511\) 2.25827 0.0999001
\(512\) −4.44316 −0.196362
\(513\) 8.18146 0.361220
\(514\) 25.0467 1.10476
\(515\) −19.5626 −0.862031
\(516\) −5.35632 −0.235799
\(517\) 21.0242 0.924641
\(518\) 6.70829 0.294745
\(519\) −23.7119 −1.04084
\(520\) −31.2189 −1.36904
\(521\) 35.5113 1.55578 0.777889 0.628402i \(-0.216291\pi\)
0.777889 + 0.628402i \(0.216291\pi\)
\(522\) −1.80240 −0.0788887
\(523\) 26.0419 1.13873 0.569367 0.822084i \(-0.307188\pi\)
0.569367 + 0.822084i \(0.307188\pi\)
\(524\) 12.9682 0.566521
\(525\) 8.99033 0.392370
\(526\) 12.4929 0.544717
\(527\) 30.1756 1.31447
\(528\) −2.17361 −0.0945941
\(529\) 49.1482 2.13688
\(530\) −15.4210 −0.669845
\(531\) −13.3668 −0.580068
\(532\) −10.8208 −0.469142
\(533\) 16.6850 0.722707
\(534\) 2.45362 0.106178
\(535\) 10.7738 0.465792
\(536\) −15.5763 −0.672795
\(537\) −9.28257 −0.400572
\(538\) −18.3215 −0.789897
\(539\) 5.51001 0.237333
\(540\) −4.94702 −0.212886
\(541\) 28.0997 1.20810 0.604049 0.796947i \(-0.293553\pi\)
0.604049 + 0.796947i \(0.293553\pi\)
\(542\) −18.6715 −0.802010
\(543\) 11.9070 0.510976
\(544\) 17.3598 0.744297
\(545\) 39.2068 1.67943
\(546\) −2.51203 −0.107505
\(547\) 12.7653 0.545803 0.272902 0.962042i \(-0.412017\pi\)
0.272902 + 0.962042i \(0.412017\pi\)
\(548\) −23.3277 −0.996508
\(549\) −8.19365 −0.349696
\(550\) −40.7708 −1.73847
\(551\) −17.9168 −0.763280
\(552\) 23.2281 0.988652
\(553\) 1.56489 0.0665458
\(554\) −21.1342 −0.897908
\(555\) 30.4863 1.29407
\(556\) 20.1102 0.852860
\(557\) −30.7436 −1.30265 −0.651324 0.758800i \(-0.725786\pi\)
−0.651324 + 0.758800i \(0.725786\pi\)
\(558\) 8.28911 0.350906
\(559\) −12.3606 −0.522799
\(560\) 1.47551 0.0623518
\(561\) 16.5091 0.697014
\(562\) −6.73514 −0.284105
\(563\) −6.17851 −0.260393 −0.130197 0.991488i \(-0.541561\pi\)
−0.130197 + 0.991488i \(0.541561\pi\)
\(564\) 5.04656 0.212499
\(565\) −28.5760 −1.20220
\(566\) 10.8582 0.456403
\(567\) −1.00000 −0.0419961
\(568\) 19.2123 0.806132
\(569\) 11.0785 0.464436 0.232218 0.972664i \(-0.425402\pi\)
0.232218 + 0.972664i \(0.425402\pi\)
\(570\) 25.1864 1.05494
\(571\) 1.50955 0.0631727 0.0315863 0.999501i \(-0.489944\pi\)
0.0315863 + 0.999501i \(0.489944\pi\)
\(572\) −22.2426 −0.930009
\(573\) −14.5880 −0.609421
\(574\) 4.49929 0.187797
\(575\) −76.3640 −3.18460
\(576\) 3.97970 0.165821
\(577\) 20.1961 0.840776 0.420388 0.907344i \(-0.361894\pi\)
0.420388 + 0.907344i \(0.361894\pi\)
\(578\) 6.60309 0.274653
\(579\) −8.15977 −0.339108
\(580\) 10.8336 0.449840
\(581\) −5.39693 −0.223903
\(582\) −6.58221 −0.272841
\(583\) −27.6012 −1.14313
\(584\) −6.17556 −0.255547
\(585\) −11.4161 −0.471998
\(586\) 1.71948 0.0710309
\(587\) −33.4825 −1.38197 −0.690985 0.722869i \(-0.742823\pi\)
−0.690985 + 0.722869i \(0.742823\pi\)
\(588\) 1.32260 0.0545432
\(589\) 82.3981 3.39515
\(590\) −41.1493 −1.69409
\(591\) −0.326739 −0.0134402
\(592\) 3.21528 0.132147
\(593\) 26.7210 1.09730 0.548649 0.836053i \(-0.315142\pi\)
0.548649 + 0.836053i \(0.315142\pi\)
\(594\) 4.53496 0.186072
\(595\) −11.2069 −0.459437
\(596\) 5.46606 0.223899
\(597\) −13.5317 −0.553817
\(598\) 21.3372 0.872545
\(599\) −27.7249 −1.13281 −0.566405 0.824127i \(-0.691666\pi\)
−0.566405 + 0.824127i \(0.691666\pi\)
\(600\) −24.5853 −1.00369
\(601\) −39.7183 −1.62014 −0.810072 0.586331i \(-0.800572\pi\)
−0.810072 + 0.586331i \(0.800572\pi\)
\(602\) −3.33318 −0.135850
\(603\) −5.69594 −0.231956
\(604\) 10.2118 0.415514
\(605\) −72.4141 −2.94405
\(606\) 12.2612 0.498076
\(607\) 32.9569 1.33768 0.668839 0.743407i \(-0.266791\pi\)
0.668839 + 0.743407i \(0.266791\pi\)
\(608\) 47.4030 1.92245
\(609\) 2.18992 0.0887401
\(610\) −25.2240 −1.02129
\(611\) 11.6458 0.471140
\(612\) 3.96278 0.160186
\(613\) −13.5673 −0.547980 −0.273990 0.961733i \(-0.588343\pi\)
−0.273990 + 0.961733i \(0.588343\pi\)
\(614\) −22.5063 −0.908279
\(615\) 20.4473 0.824515
\(616\) −15.0679 −0.607102
\(617\) 38.0240 1.53079 0.765394 0.643563i \(-0.222544\pi\)
0.765394 + 0.643563i \(0.222544\pi\)
\(618\) 4.30461 0.173157
\(619\) −4.14786 −0.166717 −0.0833584 0.996520i \(-0.526565\pi\)
−0.0833584 + 0.996520i \(0.526565\pi\)
\(620\) −49.8230 −2.00094
\(621\) 8.49401 0.340853
\(622\) −15.0006 −0.601470
\(623\) −2.98116 −0.119438
\(624\) −1.20402 −0.0481993
\(625\) 10.8744 0.434977
\(626\) 21.6321 0.864591
\(627\) 45.0799 1.80032
\(628\) −10.7734 −0.429905
\(629\) −24.4208 −0.973723
\(630\) −3.07848 −0.122649
\(631\) 36.7451 1.46280 0.731400 0.681949i \(-0.238867\pi\)
0.731400 + 0.681949i \(0.238867\pi\)
\(632\) −4.27940 −0.170226
\(633\) −12.5212 −0.497673
\(634\) −16.8118 −0.667682
\(635\) −3.74037 −0.148432
\(636\) −6.62530 −0.262710
\(637\) 3.05214 0.120930
\(638\) −9.93122 −0.393181
\(639\) 7.02554 0.277926
\(640\) −31.0916 −1.22900
\(641\) −44.5747 −1.76060 −0.880298 0.474422i \(-0.842657\pi\)
−0.880298 + 0.474422i \(0.842657\pi\)
\(642\) −2.37070 −0.0935642
\(643\) 29.4222 1.16030 0.580150 0.814510i \(-0.302994\pi\)
0.580150 + 0.814510i \(0.302994\pi\)
\(644\) −11.2342 −0.442690
\(645\) −15.1479 −0.596446
\(646\) −20.1755 −0.793792
\(647\) −45.0622 −1.77158 −0.885789 0.464089i \(-0.846382\pi\)
−0.885789 + 0.464089i \(0.846382\pi\)
\(648\) 2.73464 0.107427
\(649\) −73.6510 −2.89105
\(650\) −22.5840 −0.885818
\(651\) −10.0713 −0.394726
\(652\) 9.03689 0.353912
\(653\) 42.4383 1.66074 0.830369 0.557214i \(-0.188130\pi\)
0.830369 + 0.557214i \(0.188130\pi\)
\(654\) −8.62718 −0.337350
\(655\) 36.6746 1.43300
\(656\) 2.15651 0.0841974
\(657\) −2.25827 −0.0881036
\(658\) 3.14042 0.122426
\(659\) 29.3268 1.14241 0.571206 0.820807i \(-0.306476\pi\)
0.571206 + 0.820807i \(0.306476\pi\)
\(660\) −27.2581 −1.06102
\(661\) 12.1959 0.474364 0.237182 0.971465i \(-0.423776\pi\)
0.237182 + 0.971465i \(0.423776\pi\)
\(662\) 8.73062 0.339325
\(663\) 9.14480 0.355155
\(664\) 14.7587 0.572747
\(665\) −30.6017 −1.18668
\(666\) −6.70829 −0.259941
\(667\) −18.6012 −0.720242
\(668\) −23.9673 −0.927324
\(669\) 10.2034 0.394487
\(670\) −17.5348 −0.677429
\(671\) −45.1471 −1.74288
\(672\) −5.79396 −0.223507
\(673\) −7.89440 −0.304307 −0.152153 0.988357i \(-0.548621\pi\)
−0.152153 + 0.988357i \(0.548621\pi\)
\(674\) 5.29853 0.204092
\(675\) −8.99033 −0.346038
\(676\) 4.87309 0.187427
\(677\) 37.0732 1.42484 0.712419 0.701755i \(-0.247600\pi\)
0.712419 + 0.701755i \(0.247600\pi\)
\(678\) 6.28795 0.241487
\(679\) 7.99742 0.306913
\(680\) 30.6468 1.17525
\(681\) −15.0175 −0.575471
\(682\) 45.6730 1.74891
\(683\) 28.3006 1.08289 0.541446 0.840735i \(-0.317877\pi\)
0.541446 + 0.840735i \(0.317877\pi\)
\(684\) 10.8208 0.413745
\(685\) −65.9714 −2.52064
\(686\) 0.823041 0.0314239
\(687\) −12.2701 −0.468135
\(688\) −1.59759 −0.0609077
\(689\) −15.2890 −0.582466
\(690\) 26.1486 0.995460
\(691\) 4.33936 0.165077 0.0825386 0.996588i \(-0.473697\pi\)
0.0825386 + 0.996588i \(0.473697\pi\)
\(692\) −31.3615 −1.19218
\(693\) −5.51001 −0.209308
\(694\) −11.4569 −0.434899
\(695\) 56.8722 2.15729
\(696\) −5.98865 −0.226999
\(697\) −16.3792 −0.620406
\(698\) 3.88621 0.147095
\(699\) 22.0349 0.833435
\(700\) 11.8906 0.449424
\(701\) −13.9841 −0.528171 −0.264085 0.964499i \(-0.585070\pi\)
−0.264085 + 0.964499i \(0.585070\pi\)
\(702\) 2.51203 0.0948106
\(703\) −66.6839 −2.51503
\(704\) 21.9282 0.826449
\(705\) 14.2719 0.537509
\(706\) −0.948334 −0.0356910
\(707\) −14.8974 −0.560274
\(708\) −17.6789 −0.664415
\(709\) 11.7157 0.439993 0.219997 0.975501i \(-0.429395\pi\)
0.219997 + 0.975501i \(0.429395\pi\)
\(710\) 21.6280 0.811683
\(711\) −1.56489 −0.0586879
\(712\) 8.15240 0.305524
\(713\) 85.5458 3.20372
\(714\) 2.46600 0.0922876
\(715\) −62.9028 −2.35243
\(716\) −12.2772 −0.458819
\(717\) 11.3726 0.424717
\(718\) −10.0260 −0.374166
\(719\) −7.06966 −0.263654 −0.131827 0.991273i \(-0.542084\pi\)
−0.131827 + 0.991273i \(0.542084\pi\)
\(720\) −1.47551 −0.0549891
\(721\) −5.23013 −0.194780
\(722\) −39.4536 −1.46831
\(723\) −1.83314 −0.0681753
\(724\) 15.7482 0.585276
\(725\) 19.6881 0.731199
\(726\) 15.9342 0.591375
\(727\) −48.7194 −1.80690 −0.903451 0.428692i \(-0.858975\pi\)
−0.903451 + 0.428692i \(0.858975\pi\)
\(728\) −8.34649 −0.309342
\(729\) 1.00000 0.0370370
\(730\) −6.95204 −0.257306
\(731\) 12.1341 0.448796
\(732\) −10.8369 −0.400545
\(733\) 18.8184 0.695073 0.347536 0.937666i \(-0.387018\pi\)
0.347536 + 0.937666i \(0.387018\pi\)
\(734\) −16.7171 −0.617041
\(735\) 3.74037 0.137965
\(736\) 49.2139 1.81405
\(737\) −31.3847 −1.15607
\(738\) −4.49929 −0.165621
\(739\) −15.0604 −0.554004 −0.277002 0.960869i \(-0.589341\pi\)
−0.277002 + 0.960869i \(0.589341\pi\)
\(740\) 40.3212 1.48224
\(741\) 24.9709 0.917330
\(742\) −4.12285 −0.151355
\(743\) 4.11581 0.150994 0.0754972 0.997146i \(-0.475946\pi\)
0.0754972 + 0.997146i \(0.475946\pi\)
\(744\) 27.5414 1.00972
\(745\) 15.4582 0.566345
\(746\) −31.0765 −1.13779
\(747\) 5.39693 0.197463
\(748\) 21.8349 0.798365
\(749\) 2.88042 0.105248
\(750\) −12.2841 −0.448554
\(751\) −9.97080 −0.363840 −0.181920 0.983313i \(-0.558231\pi\)
−0.181920 + 0.983313i \(0.558231\pi\)
\(752\) 1.50520 0.0548891
\(753\) 2.74118 0.0998943
\(754\) −5.50116 −0.200340
\(755\) 28.8794 1.05103
\(756\) −1.32260 −0.0481026
\(757\) 20.7508 0.754201 0.377101 0.926172i \(-0.376921\pi\)
0.377101 + 0.926172i \(0.376921\pi\)
\(758\) 17.6972 0.642791
\(759\) 46.8021 1.69881
\(760\) 83.6845 3.03556
\(761\) 22.9097 0.830475 0.415237 0.909713i \(-0.363699\pi\)
0.415237 + 0.909713i \(0.363699\pi\)
\(762\) 0.823041 0.0298156
\(763\) 10.4821 0.379477
\(764\) −19.2941 −0.698036
\(765\) 11.2069 0.405185
\(766\) −20.5958 −0.744158
\(767\) −40.7972 −1.47310
\(768\) 14.8009 0.534081
\(769\) 19.7800 0.713286 0.356643 0.934241i \(-0.383921\pi\)
0.356643 + 0.934241i \(0.383921\pi\)
\(770\) −16.9624 −0.611283
\(771\) 30.4318 1.09598
\(772\) −10.7921 −0.388417
\(773\) 41.1828 1.48124 0.740621 0.671923i \(-0.234532\pi\)
0.740621 + 0.671923i \(0.234532\pi\)
\(774\) 3.33318 0.119809
\(775\) −90.5445 −3.25245
\(776\) −21.8701 −0.785090
\(777\) 8.15061 0.292402
\(778\) 9.23381 0.331048
\(779\) −44.7253 −1.60245
\(780\) −15.0990 −0.540630
\(781\) 38.7108 1.38518
\(782\) −20.9462 −0.749034
\(783\) −2.18992 −0.0782614
\(784\) 0.394484 0.0140887
\(785\) −30.4675 −1.08743
\(786\) −8.07000 −0.287847
\(787\) −14.4977 −0.516788 −0.258394 0.966040i \(-0.583193\pi\)
−0.258394 + 0.966040i \(0.583193\pi\)
\(788\) −0.432145 −0.0153945
\(789\) 15.1790 0.540385
\(790\) −4.81747 −0.171398
\(791\) −7.63990 −0.271644
\(792\) 15.0679 0.535414
\(793\) −25.0081 −0.888065
\(794\) 16.9182 0.600405
\(795\) −18.7366 −0.664518
\(796\) −17.8971 −0.634346
\(797\) 19.3076 0.683911 0.341955 0.939716i \(-0.388911\pi\)
0.341955 + 0.939716i \(0.388911\pi\)
\(798\) 6.73368 0.238370
\(799\) −11.4324 −0.404449
\(800\) −52.0896 −1.84165
\(801\) 2.98116 0.105334
\(802\) 9.04352 0.319338
\(803\) −12.4431 −0.439107
\(804\) −7.53346 −0.265685
\(805\) −31.7707 −1.11977
\(806\) 25.2995 0.891136
\(807\) −22.2608 −0.783616
\(808\) 40.7390 1.43319
\(809\) 50.2043 1.76509 0.882544 0.470229i \(-0.155829\pi\)
0.882544 + 0.470229i \(0.155829\pi\)
\(810\) 3.07848 0.108167
\(811\) 6.45146 0.226542 0.113271 0.993564i \(-0.463867\pi\)
0.113271 + 0.993564i \(0.463867\pi\)
\(812\) 2.89640 0.101644
\(813\) −22.6860 −0.795633
\(814\) −36.9627 −1.29554
\(815\) 25.5566 0.895209
\(816\) 1.18195 0.0413766
\(817\) 33.1336 1.15920
\(818\) 9.79419 0.342446
\(819\) −3.05214 −0.106650
\(820\) 27.0437 0.944405
\(821\) −3.21962 −0.112365 −0.0561827 0.998421i \(-0.517893\pi\)
−0.0561827 + 0.998421i \(0.517893\pi\)
\(822\) 14.5166 0.506323
\(823\) −44.1000 −1.53723 −0.768615 0.639712i \(-0.779054\pi\)
−0.768615 + 0.639712i \(0.779054\pi\)
\(824\) 14.3025 0.498252
\(825\) −49.5368 −1.72465
\(826\) −11.0014 −0.382788
\(827\) −12.9386 −0.449920 −0.224960 0.974368i \(-0.572225\pi\)
−0.224960 + 0.974368i \(0.572225\pi\)
\(828\) 11.2342 0.390416
\(829\) 32.0863 1.11440 0.557201 0.830378i \(-0.311875\pi\)
0.557201 + 0.830378i \(0.311875\pi\)
\(830\) 16.6143 0.576692
\(831\) −25.6782 −0.890768
\(832\) 12.1466 0.421107
\(833\) −2.99620 −0.103812
\(834\) −12.5143 −0.433336
\(835\) −67.7804 −2.34564
\(836\) 59.6228 2.06210
\(837\) 10.0713 0.348115
\(838\) 29.6890 1.02559
\(839\) −33.1797 −1.14549 −0.572745 0.819734i \(-0.694121\pi\)
−0.572745 + 0.819734i \(0.694121\pi\)
\(840\) −10.2286 −0.352919
\(841\) −24.2042 −0.834629
\(842\) −2.43037 −0.0837560
\(843\) −8.18323 −0.281845
\(844\) −16.5606 −0.570039
\(845\) 13.7813 0.474090
\(846\) −3.14042 −0.107970
\(847\) −19.3602 −0.665224
\(848\) −1.97608 −0.0678590
\(849\) 13.1927 0.452773
\(850\) 22.1701 0.760429
\(851\) −69.2314 −2.37322
\(852\) 9.29200 0.318339
\(853\) −29.0122 −0.993360 −0.496680 0.867934i \(-0.665448\pi\)
−0.496680 + 0.867934i \(0.665448\pi\)
\(854\) −6.74371 −0.230765
\(855\) 30.6017 1.04655
\(856\) −7.87690 −0.269227
\(857\) −1.38316 −0.0472477 −0.0236239 0.999721i \(-0.507520\pi\)
−0.0236239 + 0.999721i \(0.507520\pi\)
\(858\) 13.8413 0.472535
\(859\) 4.82470 0.164617 0.0823084 0.996607i \(-0.473771\pi\)
0.0823084 + 0.996607i \(0.473771\pi\)
\(860\) −20.0346 −0.683174
\(861\) 5.46666 0.186303
\(862\) 28.9157 0.984873
\(863\) 11.2021 0.381325 0.190662 0.981656i \(-0.438936\pi\)
0.190662 + 0.981656i \(0.438936\pi\)
\(864\) 5.79396 0.197114
\(865\) −88.6913 −3.01560
\(866\) −31.7260 −1.07809
\(867\) 8.02280 0.272468
\(868\) −13.3203 −0.452122
\(869\) −8.62254 −0.292500
\(870\) −6.74162 −0.228562
\(871\) −17.3848 −0.589060
\(872\) −28.6647 −0.970709
\(873\) −7.99742 −0.270672
\(874\) −57.1960 −1.93468
\(875\) 14.9253 0.504567
\(876\) −2.98680 −0.100915
\(877\) 31.6371 1.06831 0.534155 0.845386i \(-0.320630\pi\)
0.534155 + 0.845386i \(0.320630\pi\)
\(878\) 15.2402 0.514333
\(879\) 2.08917 0.0704660
\(880\) −8.13009 −0.274065
\(881\) 12.8041 0.431381 0.215690 0.976462i \(-0.430800\pi\)
0.215690 + 0.976462i \(0.430800\pi\)
\(882\) −0.823041 −0.0277132
\(883\) 3.88096 0.130605 0.0653023 0.997866i \(-0.479199\pi\)
0.0653023 + 0.997866i \(0.479199\pi\)
\(884\) 12.0949 0.406797
\(885\) −49.9966 −1.68062
\(886\) −9.08829 −0.305327
\(887\) 11.5566 0.388032 0.194016 0.980998i \(-0.437849\pi\)
0.194016 + 0.980998i \(0.437849\pi\)
\(888\) −22.2890 −0.747969
\(889\) −1.00000 −0.0335389
\(890\) 9.17743 0.307628
\(891\) 5.51001 0.184592
\(892\) 13.4951 0.451848
\(893\) −31.2174 −1.04465
\(894\) −3.40147 −0.113762
\(895\) −34.7202 −1.16057
\(896\) −8.31245 −0.277700
\(897\) 25.9249 0.865606
\(898\) 14.0619 0.469251
\(899\) −22.0554 −0.735588
\(900\) −11.8906 −0.396355
\(901\) 15.0088 0.500017
\(902\) −24.7911 −0.825453
\(903\) −4.04983 −0.134770
\(904\) 20.8924 0.694870
\(905\) 44.5364 1.48044
\(906\) −6.35472 −0.211121
\(907\) −23.4079 −0.777248 −0.388624 0.921397i \(-0.627049\pi\)
−0.388624 + 0.921397i \(0.627049\pi\)
\(908\) −19.8622 −0.659149
\(909\) 14.8974 0.494116
\(910\) −9.39592 −0.311472
\(911\) 12.1098 0.401216 0.200608 0.979672i \(-0.435708\pi\)
0.200608 + 0.979672i \(0.435708\pi\)
\(912\) 3.22745 0.106872
\(913\) 29.7371 0.984156
\(914\) 28.3801 0.938731
\(915\) −30.6472 −1.01317
\(916\) −16.2285 −0.536206
\(917\) 9.80510 0.323793
\(918\) −2.46600 −0.0813900
\(919\) −15.2424 −0.502799 −0.251400 0.967883i \(-0.580891\pi\)
−0.251400 + 0.967883i \(0.580891\pi\)
\(920\) 86.8814 2.86440
\(921\) −27.3452 −0.901056
\(922\) −7.83705 −0.258100
\(923\) 21.4429 0.705802
\(924\) −7.28755 −0.239743
\(925\) 73.2767 2.40932
\(926\) 16.9068 0.555593
\(927\) 5.23013 0.171780
\(928\) −12.6883 −0.416514
\(929\) −13.6188 −0.446818 −0.223409 0.974725i \(-0.571719\pi\)
−0.223409 + 0.974725i \(0.571719\pi\)
\(930\) 31.0043 1.01667
\(931\) −8.18146 −0.268137
\(932\) 29.1434 0.954623
\(933\) −18.2259 −0.596688
\(934\) −27.4519 −0.898254
\(935\) 61.7500 2.01944
\(936\) 8.34649 0.272814
\(937\) −7.92871 −0.259020 −0.129510 0.991578i \(-0.541340\pi\)
−0.129510 + 0.991578i \(0.541340\pi\)
\(938\) −4.68799 −0.153068
\(939\) 26.2831 0.857715
\(940\) 18.8760 0.615667
\(941\) −58.4662 −1.90594 −0.952972 0.303059i \(-0.901992\pi\)
−0.952972 + 0.303059i \(0.901992\pi\)
\(942\) 6.70417 0.218434
\(943\) −46.4339 −1.51209
\(944\) −5.27297 −0.171621
\(945\) −3.74037 −0.121674
\(946\) 18.3659 0.597125
\(947\) 18.5748 0.603601 0.301801 0.953371i \(-0.402412\pi\)
0.301801 + 0.953371i \(0.402412\pi\)
\(948\) −2.06972 −0.0672215
\(949\) −6.89255 −0.223742
\(950\) 60.5381 1.96411
\(951\) −20.4264 −0.662372
\(952\) 8.19352 0.265554
\(953\) −36.6177 −1.18616 −0.593082 0.805142i \(-0.702089\pi\)
−0.593082 + 0.805142i \(0.702089\pi\)
\(954\) 4.12285 0.133482
\(955\) −54.5643 −1.76566
\(956\) 15.0414 0.486474
\(957\) −12.0665 −0.390054
\(958\) −34.7479 −1.12265
\(959\) −17.6377 −0.569551
\(960\) 14.8855 0.480428
\(961\) 70.4313 2.27198
\(962\) −20.4746 −0.660128
\(963\) −2.88042 −0.0928201
\(964\) −2.42452 −0.0780885
\(965\) −30.5205 −0.982490
\(966\) 6.99092 0.224929
\(967\) −15.6972 −0.504788 −0.252394 0.967625i \(-0.581218\pi\)
−0.252394 + 0.967625i \(0.581218\pi\)
\(968\) 52.9431 1.70166
\(969\) −24.5133 −0.787480
\(970\) −24.6199 −0.790496
\(971\) −15.0134 −0.481802 −0.240901 0.970550i \(-0.577443\pi\)
−0.240901 + 0.970550i \(0.577443\pi\)
\(972\) 1.32260 0.0424225
\(973\) 15.2050 0.487449
\(974\) −8.73322 −0.279830
\(975\) −27.4397 −0.878774
\(976\) −3.23226 −0.103462
\(977\) −47.3491 −1.51483 −0.757417 0.652932i \(-0.773539\pi\)
−0.757417 + 0.652932i \(0.773539\pi\)
\(978\) −5.62356 −0.179822
\(979\) 16.4262 0.524984
\(980\) 4.94702 0.158027
\(981\) −10.4821 −0.334667
\(982\) −22.5250 −0.718801
\(983\) −18.8317 −0.600636 −0.300318 0.953839i \(-0.597093\pi\)
−0.300318 + 0.953839i \(0.597093\pi\)
\(984\) −14.9493 −0.476568
\(985\) −1.22212 −0.0389400
\(986\) 5.40034 0.171982
\(987\) 3.81563 0.121453
\(988\) 33.0266 1.05072
\(989\) 34.3993 1.09384
\(990\) 16.9624 0.539101
\(991\) 44.4405 1.41170 0.705849 0.708363i \(-0.250566\pi\)
0.705849 + 0.708363i \(0.250566\pi\)
\(992\) 58.3527 1.85270
\(993\) 10.6077 0.336627
\(994\) 5.78231 0.183404
\(995\) −50.6136 −1.60456
\(996\) 7.13800 0.226176
\(997\) 58.1693 1.84224 0.921120 0.389280i \(-0.127276\pi\)
0.921120 + 0.389280i \(0.127276\pi\)
\(998\) −10.9787 −0.347526
\(999\) −8.15061 −0.257874
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.o.1.5 16
3.2 odd 2 8001.2.a.r.1.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.o.1.5 16 1.1 even 1 trivial
8001.2.a.r.1.12 16 3.2 odd 2