Properties

Label 2667.2.a.o.1.14
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,5,-16,19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} - 13 x^{14} + 98 x^{13} + 9 x^{12} - 712 x^{11} + 565 x^{10} + 2282 x^{9} - 3082 x^{8} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(2.41798\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.41798 q^{2} -1.00000 q^{3} +3.84663 q^{4} +2.86533 q^{5} -2.41798 q^{6} -1.00000 q^{7} +4.46511 q^{8} +1.00000 q^{9} +6.92831 q^{10} -5.94265 q^{11} -3.84663 q^{12} +5.81109 q^{13} -2.41798 q^{14} -2.86533 q^{15} +3.10329 q^{16} -2.46675 q^{17} +2.41798 q^{18} +4.96080 q^{19} +11.0219 q^{20} +1.00000 q^{21} -14.3692 q^{22} +5.91940 q^{23} -4.46511 q^{24} +3.21012 q^{25} +14.0511 q^{26} -1.00000 q^{27} -3.84663 q^{28} +9.12150 q^{29} -6.92831 q^{30} +1.52132 q^{31} -1.42653 q^{32} +5.94265 q^{33} -5.96456 q^{34} -2.86533 q^{35} +3.84663 q^{36} +10.9350 q^{37} +11.9951 q^{38} -5.81109 q^{39} +12.7940 q^{40} +7.45599 q^{41} +2.41798 q^{42} -6.37361 q^{43} -22.8592 q^{44} +2.86533 q^{45} +14.3130 q^{46} -3.77187 q^{47} -3.10329 q^{48} +1.00000 q^{49} +7.76200 q^{50} +2.46675 q^{51} +22.3531 q^{52} +13.0229 q^{53} -2.41798 q^{54} -17.0277 q^{55} -4.46511 q^{56} -4.96080 q^{57} +22.0556 q^{58} -12.1352 q^{59} -11.0219 q^{60} -13.1708 q^{61} +3.67852 q^{62} -1.00000 q^{63} -9.65590 q^{64} +16.6507 q^{65} +14.3692 q^{66} -2.34916 q^{67} -9.48868 q^{68} -5.91940 q^{69} -6.92831 q^{70} +10.9342 q^{71} +4.46511 q^{72} -9.61640 q^{73} +26.4406 q^{74} -3.21012 q^{75} +19.0824 q^{76} +5.94265 q^{77} -14.0511 q^{78} -12.9373 q^{79} +8.89194 q^{80} +1.00000 q^{81} +18.0284 q^{82} -2.71284 q^{83} +3.84663 q^{84} -7.06806 q^{85} -15.4113 q^{86} -9.12150 q^{87} -26.5346 q^{88} -1.78782 q^{89} +6.92831 q^{90} -5.81109 q^{91} +22.7697 q^{92} -1.52132 q^{93} -9.12031 q^{94} +14.2143 q^{95} +1.42653 q^{96} -5.89963 q^{97} +2.41798 q^{98} -5.94265 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{2} - 16 q^{3} + 19 q^{4} - q^{5} - 5 q^{6} - 16 q^{7} + 6 q^{8} + 16 q^{9} - 12 q^{10} + 11 q^{11} - 19 q^{12} + 18 q^{13} - 5 q^{14} + q^{15} + 25 q^{16} - 5 q^{17} + 5 q^{18} - 11 q^{19}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.41798 1.70977 0.854885 0.518817i \(-0.173628\pi\)
0.854885 + 0.518817i \(0.173628\pi\)
\(3\) −1.00000 −0.577350
\(4\) 3.84663 1.92331
\(5\) 2.86533 1.28141 0.640707 0.767785i \(-0.278641\pi\)
0.640707 + 0.767785i \(0.278641\pi\)
\(6\) −2.41798 −0.987136
\(7\) −1.00000 −0.377964
\(8\) 4.46511 1.57865
\(9\) 1.00000 0.333333
\(10\) 6.92831 2.19092
\(11\) −5.94265 −1.79178 −0.895889 0.444278i \(-0.853460\pi\)
−0.895889 + 0.444278i \(0.853460\pi\)
\(12\) −3.84663 −1.11043
\(13\) 5.81109 1.61171 0.805854 0.592115i \(-0.201707\pi\)
0.805854 + 0.592115i \(0.201707\pi\)
\(14\) −2.41798 −0.646232
\(15\) −2.86533 −0.739825
\(16\) 3.10329 0.775822
\(17\) −2.46675 −0.598276 −0.299138 0.954210i \(-0.596699\pi\)
−0.299138 + 0.954210i \(0.596699\pi\)
\(18\) 2.41798 0.569923
\(19\) 4.96080 1.13809 0.569043 0.822308i \(-0.307314\pi\)
0.569043 + 0.822308i \(0.307314\pi\)
\(20\) 11.0219 2.46456
\(21\) 1.00000 0.218218
\(22\) −14.3692 −3.06353
\(23\) 5.91940 1.23428 0.617140 0.786853i \(-0.288291\pi\)
0.617140 + 0.786853i \(0.288291\pi\)
\(24\) −4.46511 −0.911436
\(25\) 3.21012 0.642024
\(26\) 14.0511 2.75565
\(27\) −1.00000 −0.192450
\(28\) −3.84663 −0.726944
\(29\) 9.12150 1.69382 0.846910 0.531737i \(-0.178460\pi\)
0.846910 + 0.531737i \(0.178460\pi\)
\(30\) −6.92831 −1.26493
\(31\) 1.52132 0.273237 0.136619 0.990624i \(-0.456377\pi\)
0.136619 + 0.990624i \(0.456377\pi\)
\(32\) −1.42653 −0.252177
\(33\) 5.94265 1.03448
\(34\) −5.96456 −1.02291
\(35\) −2.86533 −0.484329
\(36\) 3.84663 0.641105
\(37\) 10.9350 1.79770 0.898850 0.438256i \(-0.144404\pi\)
0.898850 + 0.438256i \(0.144404\pi\)
\(38\) 11.9951 1.94587
\(39\) −5.81109 −0.930520
\(40\) 12.7940 2.02291
\(41\) 7.45599 1.16443 0.582215 0.813035i \(-0.302186\pi\)
0.582215 + 0.813035i \(0.302186\pi\)
\(42\) 2.41798 0.373102
\(43\) −6.37361 −0.971967 −0.485983 0.873968i \(-0.661538\pi\)
−0.485983 + 0.873968i \(0.661538\pi\)
\(44\) −22.8592 −3.44615
\(45\) 2.86533 0.427138
\(46\) 14.3130 2.11034
\(47\) −3.77187 −0.550184 −0.275092 0.961418i \(-0.588708\pi\)
−0.275092 + 0.961418i \(0.588708\pi\)
\(48\) −3.10329 −0.447921
\(49\) 1.00000 0.142857
\(50\) 7.76200 1.09771
\(51\) 2.46675 0.345415
\(52\) 22.3531 3.09982
\(53\) 13.0229 1.78883 0.894414 0.447240i \(-0.147593\pi\)
0.894414 + 0.447240i \(0.147593\pi\)
\(54\) −2.41798 −0.329045
\(55\) −17.0277 −2.29601
\(56\) −4.46511 −0.596675
\(57\) −4.96080 −0.657074
\(58\) 22.0556 2.89604
\(59\) −12.1352 −1.57986 −0.789931 0.613195i \(-0.789884\pi\)
−0.789931 + 0.613195i \(0.789884\pi\)
\(60\) −11.0219 −1.42292
\(61\) −13.1708 −1.68635 −0.843175 0.537639i \(-0.819316\pi\)
−0.843175 + 0.537639i \(0.819316\pi\)
\(62\) 3.67852 0.467173
\(63\) −1.00000 −0.125988
\(64\) −9.65590 −1.20699
\(65\) 16.6507 2.06527
\(66\) 14.3692 1.76873
\(67\) −2.34916 −0.286995 −0.143498 0.989651i \(-0.545835\pi\)
−0.143498 + 0.989651i \(0.545835\pi\)
\(68\) −9.48868 −1.15067
\(69\) −5.91940 −0.712612
\(70\) −6.92831 −0.828092
\(71\) 10.9342 1.29765 0.648826 0.760937i \(-0.275260\pi\)
0.648826 + 0.760937i \(0.275260\pi\)
\(72\) 4.46511 0.526218
\(73\) −9.61640 −1.12551 −0.562757 0.826622i \(-0.690259\pi\)
−0.562757 + 0.826622i \(0.690259\pi\)
\(74\) 26.4406 3.07366
\(75\) −3.21012 −0.370673
\(76\) 19.0824 2.18890
\(77\) 5.94265 0.677228
\(78\) −14.0511 −1.59097
\(79\) −12.9373 −1.45556 −0.727778 0.685813i \(-0.759447\pi\)
−0.727778 + 0.685813i \(0.759447\pi\)
\(80\) 8.89194 0.994149
\(81\) 1.00000 0.111111
\(82\) 18.0284 1.99091
\(83\) −2.71284 −0.297772 −0.148886 0.988854i \(-0.547569\pi\)
−0.148886 + 0.988854i \(0.547569\pi\)
\(84\) 3.84663 0.419701
\(85\) −7.06806 −0.766639
\(86\) −15.4113 −1.66184
\(87\) −9.12150 −0.977927
\(88\) −26.5346 −2.82860
\(89\) −1.78782 −0.189509 −0.0947543 0.995501i \(-0.530207\pi\)
−0.0947543 + 0.995501i \(0.530207\pi\)
\(90\) 6.92831 0.730308
\(91\) −5.81109 −0.609168
\(92\) 22.7697 2.37391
\(93\) −1.52132 −0.157754
\(94\) −9.12031 −0.940688
\(95\) 14.2143 1.45836
\(96\) 1.42653 0.145595
\(97\) −5.89963 −0.599017 −0.299508 0.954094i \(-0.596823\pi\)
−0.299508 + 0.954094i \(0.596823\pi\)
\(98\) 2.41798 0.244253
\(99\) −5.94265 −0.597259
\(100\) 12.3481 1.23481
\(101\) −0.292411 −0.0290960 −0.0145480 0.999894i \(-0.504631\pi\)
−0.0145480 + 0.999894i \(0.504631\pi\)
\(102\) 5.96456 0.590579
\(103\) −0.384246 −0.0378608 −0.0189304 0.999821i \(-0.506026\pi\)
−0.0189304 + 0.999821i \(0.506026\pi\)
\(104\) 25.9472 2.54433
\(105\) 2.86533 0.279628
\(106\) 31.4890 3.05848
\(107\) −6.48261 −0.626697 −0.313349 0.949638i \(-0.601451\pi\)
−0.313349 + 0.949638i \(0.601451\pi\)
\(108\) −3.84663 −0.370142
\(109\) −7.32894 −0.701985 −0.350993 0.936378i \(-0.614156\pi\)
−0.350993 + 0.936378i \(0.614156\pi\)
\(110\) −41.1726 −3.92565
\(111\) −10.9350 −1.03790
\(112\) −3.10329 −0.293233
\(113\) −8.75155 −0.823277 −0.411638 0.911347i \(-0.635043\pi\)
−0.411638 + 0.911347i \(0.635043\pi\)
\(114\) −11.9951 −1.12345
\(115\) 16.9610 1.58162
\(116\) 35.0870 3.25775
\(117\) 5.81109 0.537236
\(118\) −29.3426 −2.70120
\(119\) 2.46675 0.226127
\(120\) −12.7940 −1.16793
\(121\) 24.3151 2.21047
\(122\) −31.8468 −2.88327
\(123\) −7.45599 −0.672284
\(124\) 5.85195 0.525521
\(125\) −5.12860 −0.458716
\(126\) −2.41798 −0.215411
\(127\) 1.00000 0.0887357
\(128\) −20.4947 −1.81149
\(129\) 6.37361 0.561165
\(130\) 40.2611 3.53113
\(131\) 6.98949 0.610675 0.305337 0.952244i \(-0.401231\pi\)
0.305337 + 0.952244i \(0.401231\pi\)
\(132\) 22.8592 1.98964
\(133\) −4.96080 −0.430156
\(134\) −5.68022 −0.490696
\(135\) −2.86533 −0.246608
\(136\) −11.0143 −0.944470
\(137\) −13.3983 −1.14470 −0.572349 0.820010i \(-0.693968\pi\)
−0.572349 + 0.820010i \(0.693968\pi\)
\(138\) −14.3130 −1.21840
\(139\) −4.56630 −0.387308 −0.193654 0.981070i \(-0.562034\pi\)
−0.193654 + 0.981070i \(0.562034\pi\)
\(140\) −11.0219 −0.931517
\(141\) 3.77187 0.317649
\(142\) 26.4387 2.21869
\(143\) −34.5333 −2.88782
\(144\) 3.10329 0.258607
\(145\) 26.1361 2.17049
\(146\) −23.2523 −1.92437
\(147\) −1.00000 −0.0824786
\(148\) 42.0628 3.45754
\(149\) −4.52922 −0.371048 −0.185524 0.982640i \(-0.559398\pi\)
−0.185524 + 0.982640i \(0.559398\pi\)
\(150\) −7.76200 −0.633765
\(151\) 8.08303 0.657788 0.328894 0.944367i \(-0.393324\pi\)
0.328894 + 0.944367i \(0.393324\pi\)
\(152\) 22.1505 1.79664
\(153\) −2.46675 −0.199425
\(154\) 14.3692 1.15790
\(155\) 4.35908 0.350130
\(156\) −22.3531 −1.78968
\(157\) −22.0319 −1.75834 −0.879168 0.476512i \(-0.841901\pi\)
−0.879168 + 0.476512i \(0.841901\pi\)
\(158\) −31.2821 −2.48867
\(159\) −13.0229 −1.03278
\(160\) −4.08748 −0.323144
\(161\) −5.91940 −0.466514
\(162\) 2.41798 0.189974
\(163\) 8.72198 0.683158 0.341579 0.939853i \(-0.389038\pi\)
0.341579 + 0.939853i \(0.389038\pi\)
\(164\) 28.6804 2.23957
\(165\) 17.0277 1.32560
\(166\) −6.55958 −0.509122
\(167\) 2.92573 0.226400 0.113200 0.993572i \(-0.463890\pi\)
0.113200 + 0.993572i \(0.463890\pi\)
\(168\) 4.46511 0.344491
\(169\) 20.7688 1.59760
\(170\) −17.0904 −1.31078
\(171\) 4.96080 0.379362
\(172\) −24.5169 −1.86940
\(173\) 18.6048 1.41450 0.707248 0.706966i \(-0.249936\pi\)
0.707248 + 0.706966i \(0.249936\pi\)
\(174\) −22.0556 −1.67203
\(175\) −3.21012 −0.242662
\(176\) −18.4418 −1.39010
\(177\) 12.1352 0.912134
\(178\) −4.32292 −0.324016
\(179\) 4.73174 0.353667 0.176833 0.984241i \(-0.443415\pi\)
0.176833 + 0.984241i \(0.443415\pi\)
\(180\) 11.0219 0.821521
\(181\) −10.1816 −0.756790 −0.378395 0.925644i \(-0.623524\pi\)
−0.378395 + 0.925644i \(0.623524\pi\)
\(182\) −14.0511 −1.04154
\(183\) 13.1708 0.973615
\(184\) 26.4308 1.94850
\(185\) 31.3324 2.30360
\(186\) −3.67852 −0.269722
\(187\) 14.6591 1.07198
\(188\) −14.5090 −1.05818
\(189\) 1.00000 0.0727393
\(190\) 34.3700 2.49346
\(191\) 19.9897 1.44641 0.723203 0.690635i \(-0.242669\pi\)
0.723203 + 0.690635i \(0.242669\pi\)
\(192\) 9.65590 0.696854
\(193\) −17.4744 −1.25783 −0.628916 0.777473i \(-0.716501\pi\)
−0.628916 + 0.777473i \(0.716501\pi\)
\(194\) −14.2652 −1.02418
\(195\) −16.6507 −1.19238
\(196\) 3.84663 0.274759
\(197\) −0.0269163 −0.00191771 −0.000958855 1.00000i \(-0.500305\pi\)
−0.000958855 1.00000i \(0.500305\pi\)
\(198\) −14.3692 −1.02118
\(199\) −11.1642 −0.791411 −0.395706 0.918377i \(-0.629500\pi\)
−0.395706 + 0.918377i \(0.629500\pi\)
\(200\) 14.3335 1.01353
\(201\) 2.34916 0.165697
\(202\) −0.707043 −0.0497474
\(203\) −9.12150 −0.640204
\(204\) 9.48868 0.664341
\(205\) 21.3639 1.49212
\(206\) −0.929098 −0.0647333
\(207\) 5.91940 0.411427
\(208\) 18.0335 1.25040
\(209\) −29.4803 −2.03920
\(210\) 6.92831 0.478099
\(211\) 7.93667 0.546383 0.273191 0.961960i \(-0.411921\pi\)
0.273191 + 0.961960i \(0.411921\pi\)
\(212\) 50.0941 3.44048
\(213\) −10.9342 −0.749199
\(214\) −15.6748 −1.07151
\(215\) −18.2625 −1.24549
\(216\) −4.46511 −0.303812
\(217\) −1.52132 −0.103274
\(218\) −17.7212 −1.20023
\(219\) 9.61640 0.649816
\(220\) −65.4991 −4.41595
\(221\) −14.3345 −0.964245
\(222\) −26.4406 −1.77458
\(223\) 16.2035 1.08507 0.542534 0.840034i \(-0.317465\pi\)
0.542534 + 0.840034i \(0.317465\pi\)
\(224\) 1.42653 0.0953141
\(225\) 3.21012 0.214008
\(226\) −21.1611 −1.40761
\(227\) 1.13795 0.0755283 0.0377641 0.999287i \(-0.487976\pi\)
0.0377641 + 0.999287i \(0.487976\pi\)
\(228\) −19.0824 −1.26376
\(229\) −16.1025 −1.06409 −0.532043 0.846717i \(-0.678576\pi\)
−0.532043 + 0.846717i \(0.678576\pi\)
\(230\) 41.0114 2.70421
\(231\) −5.94265 −0.390998
\(232\) 40.7285 2.67396
\(233\) −11.7016 −0.766599 −0.383300 0.923624i \(-0.625212\pi\)
−0.383300 + 0.923624i \(0.625212\pi\)
\(234\) 14.0511 0.918550
\(235\) −10.8077 −0.705014
\(236\) −46.6794 −3.03857
\(237\) 12.9373 0.840366
\(238\) 5.96456 0.386625
\(239\) 21.5712 1.39532 0.697661 0.716428i \(-0.254224\pi\)
0.697661 + 0.716428i \(0.254224\pi\)
\(240\) −8.89194 −0.573972
\(241\) 1.24666 0.0803044 0.0401522 0.999194i \(-0.487216\pi\)
0.0401522 + 0.999194i \(0.487216\pi\)
\(242\) 58.7935 3.77939
\(243\) −1.00000 −0.0641500
\(244\) −50.6632 −3.24338
\(245\) 2.86533 0.183059
\(246\) −18.0284 −1.14945
\(247\) 28.8277 1.83426
\(248\) 6.79286 0.431347
\(249\) 2.71284 0.171919
\(250\) −12.4009 −0.784299
\(251\) −17.4247 −1.09983 −0.549917 0.835219i \(-0.685341\pi\)
−0.549917 + 0.835219i \(0.685341\pi\)
\(252\) −3.84663 −0.242315
\(253\) −35.1769 −2.21156
\(254\) 2.41798 0.151718
\(255\) 7.06806 0.442619
\(256\) −30.2440 −1.89025
\(257\) 7.74905 0.483372 0.241686 0.970354i \(-0.422300\pi\)
0.241686 + 0.970354i \(0.422300\pi\)
\(258\) 15.4113 0.959463
\(259\) −10.9350 −0.679467
\(260\) 64.0490 3.97215
\(261\) 9.12150 0.564607
\(262\) 16.9004 1.04411
\(263\) −23.7131 −1.46221 −0.731107 0.682262i \(-0.760996\pi\)
−0.731107 + 0.682262i \(0.760996\pi\)
\(264\) 26.5346 1.63309
\(265\) 37.3148 2.29223
\(266\) −11.9951 −0.735468
\(267\) 1.78782 0.109413
\(268\) −9.03634 −0.551982
\(269\) −3.63039 −0.221349 −0.110674 0.993857i \(-0.535301\pi\)
−0.110674 + 0.993857i \(0.535301\pi\)
\(270\) −6.92831 −0.421644
\(271\) 13.2306 0.803699 0.401850 0.915706i \(-0.368367\pi\)
0.401850 + 0.915706i \(0.368367\pi\)
\(272\) −7.65504 −0.464155
\(273\) 5.81109 0.351703
\(274\) −32.3969 −1.95717
\(275\) −19.0766 −1.15036
\(276\) −22.7697 −1.37058
\(277\) 5.09376 0.306055 0.153027 0.988222i \(-0.451098\pi\)
0.153027 + 0.988222i \(0.451098\pi\)
\(278\) −11.0412 −0.662208
\(279\) 1.52132 0.0910790
\(280\) −12.7940 −0.764588
\(281\) 9.47263 0.565090 0.282545 0.959254i \(-0.408821\pi\)
0.282545 + 0.959254i \(0.408821\pi\)
\(282\) 9.12031 0.543106
\(283\) 29.4196 1.74881 0.874406 0.485195i \(-0.161252\pi\)
0.874406 + 0.485195i \(0.161252\pi\)
\(284\) 42.0598 2.49579
\(285\) −14.2143 −0.841985
\(286\) −83.5009 −4.93751
\(287\) −7.45599 −0.440113
\(288\) −1.42653 −0.0840591
\(289\) −10.9151 −0.642066
\(290\) 63.1966 3.71103
\(291\) 5.89963 0.345843
\(292\) −36.9907 −2.16472
\(293\) −12.0828 −0.705885 −0.352943 0.935645i \(-0.614819\pi\)
−0.352943 + 0.935645i \(0.614819\pi\)
\(294\) −2.41798 −0.141019
\(295\) −34.7712 −2.02446
\(296\) 48.8259 2.83795
\(297\) 5.94265 0.344828
\(298\) −10.9516 −0.634406
\(299\) 34.3982 1.98930
\(300\) −12.3481 −0.712920
\(301\) 6.37361 0.367369
\(302\) 19.5446 1.12467
\(303\) 0.292411 0.0167986
\(304\) 15.3948 0.882952
\(305\) −37.7387 −2.16091
\(306\) −5.96456 −0.340971
\(307\) −14.4483 −0.824607 −0.412304 0.911046i \(-0.635276\pi\)
−0.412304 + 0.911046i \(0.635276\pi\)
\(308\) 22.8592 1.30252
\(309\) 0.384246 0.0218590
\(310\) 10.5402 0.598642
\(311\) −8.00701 −0.454036 −0.227018 0.973891i \(-0.572898\pi\)
−0.227018 + 0.973891i \(0.572898\pi\)
\(312\) −25.9472 −1.46897
\(313\) 15.2196 0.860263 0.430131 0.902766i \(-0.358467\pi\)
0.430131 + 0.902766i \(0.358467\pi\)
\(314\) −53.2726 −3.00635
\(315\) −2.86533 −0.161443
\(316\) −49.7648 −2.79949
\(317\) −19.1583 −1.07604 −0.538019 0.842933i \(-0.680827\pi\)
−0.538019 + 0.842933i \(0.680827\pi\)
\(318\) −31.4890 −1.76582
\(319\) −54.2059 −3.03495
\(320\) −27.6673 −1.54665
\(321\) 6.48261 0.361824
\(322\) −14.3130 −0.797632
\(323\) −12.2371 −0.680889
\(324\) 3.84663 0.213702
\(325\) 18.6543 1.03475
\(326\) 21.0896 1.16804
\(327\) 7.32894 0.405292
\(328\) 33.2918 1.83823
\(329\) 3.77187 0.207950
\(330\) 41.1726 2.26648
\(331\) −34.7472 −1.90988 −0.954940 0.296799i \(-0.904081\pi\)
−0.954940 + 0.296799i \(0.904081\pi\)
\(332\) −10.4353 −0.572710
\(333\) 10.9350 0.599234
\(334\) 7.07437 0.387092
\(335\) −6.73112 −0.367760
\(336\) 3.10329 0.169298
\(337\) −15.1407 −0.824765 −0.412382 0.911011i \(-0.635303\pi\)
−0.412382 + 0.911011i \(0.635303\pi\)
\(338\) 50.2186 2.73153
\(339\) 8.75155 0.475319
\(340\) −27.1882 −1.47449
\(341\) −9.04068 −0.489580
\(342\) 11.9951 0.648622
\(343\) −1.00000 −0.0539949
\(344\) −28.4589 −1.53440
\(345\) −16.9610 −0.913151
\(346\) 44.9860 2.41846
\(347\) 9.52937 0.511564 0.255782 0.966735i \(-0.417667\pi\)
0.255782 + 0.966735i \(0.417667\pi\)
\(348\) −35.0870 −1.88086
\(349\) −17.8724 −0.956689 −0.478345 0.878172i \(-0.658763\pi\)
−0.478345 + 0.878172i \(0.658763\pi\)
\(350\) −7.76200 −0.414897
\(351\) −5.81109 −0.310173
\(352\) 8.47738 0.451846
\(353\) 29.9672 1.59499 0.797495 0.603325i \(-0.206158\pi\)
0.797495 + 0.603325i \(0.206158\pi\)
\(354\) 29.3426 1.55954
\(355\) 31.3301 1.66283
\(356\) −6.87708 −0.364485
\(357\) −2.46675 −0.130554
\(358\) 11.4412 0.604689
\(359\) 16.0299 0.846027 0.423013 0.906123i \(-0.360972\pi\)
0.423013 + 0.906123i \(0.360972\pi\)
\(360\) 12.7940 0.674304
\(361\) 5.60956 0.295240
\(362\) −24.6188 −1.29394
\(363\) −24.3151 −1.27621
\(364\) −22.3531 −1.17162
\(365\) −27.5542 −1.44225
\(366\) 31.8468 1.66466
\(367\) −30.8788 −1.61186 −0.805929 0.592012i \(-0.798334\pi\)
−0.805929 + 0.592012i \(0.798334\pi\)
\(368\) 18.3696 0.957581
\(369\) 7.45599 0.388144
\(370\) 75.7610 3.93863
\(371\) −13.0229 −0.676113
\(372\) −5.85195 −0.303410
\(373\) 5.78052 0.299304 0.149652 0.988739i \(-0.452185\pi\)
0.149652 + 0.988739i \(0.452185\pi\)
\(374\) 35.4453 1.83283
\(375\) 5.12860 0.264840
\(376\) −16.8418 −0.868550
\(377\) 53.0059 2.72994
\(378\) 2.41798 0.124367
\(379\) 13.7475 0.706159 0.353080 0.935593i \(-0.385134\pi\)
0.353080 + 0.935593i \(0.385134\pi\)
\(380\) 54.6773 2.80488
\(381\) −1.00000 −0.0512316
\(382\) 48.3348 2.47302
\(383\) 0.702358 0.0358888 0.0179444 0.999839i \(-0.494288\pi\)
0.0179444 + 0.999839i \(0.494288\pi\)
\(384\) 20.4947 1.04587
\(385\) 17.0277 0.867810
\(386\) −42.2527 −2.15060
\(387\) −6.37361 −0.323989
\(388\) −22.6937 −1.15210
\(389\) 34.6654 1.75761 0.878803 0.477184i \(-0.158342\pi\)
0.878803 + 0.477184i \(0.158342\pi\)
\(390\) −40.2611 −2.03870
\(391\) −14.6017 −0.738440
\(392\) 4.46511 0.225522
\(393\) −6.98949 −0.352573
\(394\) −0.0650832 −0.00327884
\(395\) −37.0695 −1.86517
\(396\) −22.8592 −1.14872
\(397\) −16.7668 −0.841501 −0.420751 0.907176i \(-0.638233\pi\)
−0.420751 + 0.907176i \(0.638233\pi\)
\(398\) −26.9949 −1.35313
\(399\) 4.96080 0.248351
\(400\) 9.96192 0.498096
\(401\) −4.08639 −0.204065 −0.102032 0.994781i \(-0.532535\pi\)
−0.102032 + 0.994781i \(0.532535\pi\)
\(402\) 5.68022 0.283304
\(403\) 8.84053 0.440378
\(404\) −1.12480 −0.0559607
\(405\) 2.86533 0.142379
\(406\) −22.0556 −1.09460
\(407\) −64.9829 −3.22108
\(408\) 11.0143 0.545290
\(409\) 28.8726 1.42766 0.713830 0.700319i \(-0.246959\pi\)
0.713830 + 0.700319i \(0.246959\pi\)
\(410\) 51.6575 2.55118
\(411\) 13.3983 0.660892
\(412\) −1.47805 −0.0728183
\(413\) 12.1352 0.597132
\(414\) 14.3130 0.703445
\(415\) −7.77317 −0.381570
\(416\) −8.28970 −0.406436
\(417\) 4.56630 0.223613
\(418\) −71.2829 −3.48656
\(419\) −12.8305 −0.626811 −0.313406 0.949619i \(-0.601470\pi\)
−0.313406 + 0.949619i \(0.601470\pi\)
\(420\) 11.0219 0.537812
\(421\) −4.40335 −0.214606 −0.107303 0.994226i \(-0.534222\pi\)
−0.107303 + 0.994226i \(0.534222\pi\)
\(422\) 19.1907 0.934189
\(423\) −3.77187 −0.183395
\(424\) 58.1485 2.82394
\(425\) −7.91857 −0.384107
\(426\) −26.4387 −1.28096
\(427\) 13.1708 0.637380
\(428\) −24.9362 −1.20534
\(429\) 34.5333 1.66728
\(430\) −44.1584 −2.12951
\(431\) 12.8114 0.617103 0.308552 0.951208i \(-0.400156\pi\)
0.308552 + 0.951208i \(0.400156\pi\)
\(432\) −3.10329 −0.149307
\(433\) −10.6612 −0.512344 −0.256172 0.966631i \(-0.582461\pi\)
−0.256172 + 0.966631i \(0.582461\pi\)
\(434\) −3.67852 −0.176575
\(435\) −26.1361 −1.25313
\(436\) −28.1917 −1.35014
\(437\) 29.3650 1.40472
\(438\) 23.2523 1.11104
\(439\) 7.15197 0.341345 0.170672 0.985328i \(-0.445406\pi\)
0.170672 + 0.985328i \(0.445406\pi\)
\(440\) −76.0304 −3.62461
\(441\) 1.00000 0.0476190
\(442\) −34.6606 −1.64864
\(443\) 39.4432 1.87400 0.937000 0.349329i \(-0.113590\pi\)
0.937000 + 0.349329i \(0.113590\pi\)
\(444\) −42.0628 −1.99621
\(445\) −5.12270 −0.242839
\(446\) 39.1798 1.85522
\(447\) 4.52922 0.214225
\(448\) 9.65590 0.456198
\(449\) −21.2990 −1.00516 −0.502582 0.864530i \(-0.667616\pi\)
−0.502582 + 0.864530i \(0.667616\pi\)
\(450\) 7.76200 0.365904
\(451\) −44.3084 −2.08640
\(452\) −33.6640 −1.58342
\(453\) −8.08303 −0.379774
\(454\) 2.75154 0.129136
\(455\) −16.6507 −0.780597
\(456\) −22.1505 −1.03729
\(457\) 28.1983 1.31906 0.659530 0.751678i \(-0.270755\pi\)
0.659530 + 0.751678i \(0.270755\pi\)
\(458\) −38.9356 −1.81934
\(459\) 2.46675 0.115138
\(460\) 65.2428 3.04196
\(461\) 33.2624 1.54919 0.774593 0.632461i \(-0.217955\pi\)
0.774593 + 0.632461i \(0.217955\pi\)
\(462\) −14.3692 −0.668517
\(463\) 24.3142 1.12998 0.564988 0.825099i \(-0.308881\pi\)
0.564988 + 0.825099i \(0.308881\pi\)
\(464\) 28.3066 1.31410
\(465\) −4.35908 −0.202148
\(466\) −28.2943 −1.31071
\(467\) −4.18602 −0.193706 −0.0968529 0.995299i \(-0.530878\pi\)
−0.0968529 + 0.995299i \(0.530878\pi\)
\(468\) 22.3531 1.03327
\(469\) 2.34916 0.108474
\(470\) −26.1327 −1.20541
\(471\) 22.0319 1.01518
\(472\) −54.1848 −2.49406
\(473\) 37.8762 1.74155
\(474\) 31.2821 1.43683
\(475\) 15.9248 0.730678
\(476\) 9.48868 0.434913
\(477\) 13.0229 0.596276
\(478\) 52.1586 2.38568
\(479\) −24.6994 −1.12854 −0.564271 0.825589i \(-0.690843\pi\)
−0.564271 + 0.825589i \(0.690843\pi\)
\(480\) 4.08748 0.186567
\(481\) 63.5442 2.89737
\(482\) 3.01440 0.137302
\(483\) 5.91940 0.269342
\(484\) 93.5313 4.25142
\(485\) −16.9044 −0.767589
\(486\) −2.41798 −0.109682
\(487\) −3.19849 −0.144937 −0.0724686 0.997371i \(-0.523088\pi\)
−0.0724686 + 0.997371i \(0.523088\pi\)
\(488\) −58.8091 −2.66216
\(489\) −8.72198 −0.394422
\(490\) 6.92831 0.312989
\(491\) 14.4712 0.653075 0.326538 0.945184i \(-0.394118\pi\)
0.326538 + 0.945184i \(0.394118\pi\)
\(492\) −28.6804 −1.29301
\(493\) −22.5005 −1.01337
\(494\) 69.7048 3.13617
\(495\) −17.0277 −0.765337
\(496\) 4.72109 0.211983
\(497\) −10.9342 −0.490466
\(498\) 6.55958 0.293942
\(499\) 9.59004 0.429309 0.214655 0.976690i \(-0.431137\pi\)
0.214655 + 0.976690i \(0.431137\pi\)
\(500\) −19.7278 −0.882255
\(501\) −2.92573 −0.130712
\(502\) −42.1325 −1.88046
\(503\) −3.29941 −0.147114 −0.0735568 0.997291i \(-0.523435\pi\)
−0.0735568 + 0.997291i \(0.523435\pi\)
\(504\) −4.46511 −0.198892
\(505\) −0.837854 −0.0372840
\(506\) −85.0571 −3.78125
\(507\) −20.7688 −0.922375
\(508\) 3.84663 0.170666
\(509\) −25.4914 −1.12988 −0.564942 0.825131i \(-0.691102\pi\)
−0.564942 + 0.825131i \(0.691102\pi\)
\(510\) 17.0904 0.756777
\(511\) 9.61640 0.425404
\(512\) −32.1400 −1.42040
\(513\) −4.96080 −0.219025
\(514\) 18.7370 0.826455
\(515\) −1.10099 −0.0485154
\(516\) 24.5169 1.07930
\(517\) 22.4149 0.985807
\(518\) −26.4406 −1.16173
\(519\) −18.6048 −0.816660
\(520\) 74.3472 3.26034
\(521\) 14.4182 0.631672 0.315836 0.948814i \(-0.397715\pi\)
0.315836 + 0.948814i \(0.397715\pi\)
\(522\) 22.0556 0.965347
\(523\) −15.8407 −0.692667 −0.346333 0.938112i \(-0.612573\pi\)
−0.346333 + 0.938112i \(0.612573\pi\)
\(524\) 26.8860 1.17452
\(525\) 3.21012 0.140101
\(526\) −57.3379 −2.50005
\(527\) −3.75272 −0.163471
\(528\) 18.4418 0.802575
\(529\) 12.0393 0.523447
\(530\) 90.2264 3.91919
\(531\) −12.1352 −0.526621
\(532\) −19.0824 −0.827325
\(533\) 43.3275 1.87672
\(534\) 4.32292 0.187071
\(535\) −18.5748 −0.803059
\(536\) −10.4892 −0.453066
\(537\) −4.73174 −0.204190
\(538\) −8.77820 −0.378455
\(539\) −5.94265 −0.255968
\(540\) −11.0219 −0.474305
\(541\) −29.1139 −1.25170 −0.625851 0.779943i \(-0.715248\pi\)
−0.625851 + 0.779943i \(0.715248\pi\)
\(542\) 31.9912 1.37414
\(543\) 10.1816 0.436933
\(544\) 3.51890 0.150872
\(545\) −20.9998 −0.899535
\(546\) 14.0511 0.601332
\(547\) −33.0139 −1.41157 −0.705786 0.708425i \(-0.749406\pi\)
−0.705786 + 0.708425i \(0.749406\pi\)
\(548\) −51.5384 −2.20161
\(549\) −13.1708 −0.562117
\(550\) −46.1269 −1.96686
\(551\) 45.2500 1.92771
\(552\) −26.4308 −1.12497
\(553\) 12.9373 0.550149
\(554\) 12.3166 0.523283
\(555\) −31.3324 −1.32998
\(556\) −17.5649 −0.744916
\(557\) −21.0505 −0.891940 −0.445970 0.895048i \(-0.647141\pi\)
−0.445970 + 0.895048i \(0.647141\pi\)
\(558\) 3.67852 0.155724
\(559\) −37.0376 −1.56653
\(560\) −8.89194 −0.375753
\(561\) −14.6591 −0.618906
\(562\) 22.9046 0.966174
\(563\) −18.6899 −0.787686 −0.393843 0.919178i \(-0.628855\pi\)
−0.393843 + 0.919178i \(0.628855\pi\)
\(564\) 14.5090 0.610938
\(565\) −25.0761 −1.05496
\(566\) 71.1359 2.99007
\(567\) −1.00000 −0.0419961
\(568\) 48.8224 2.04854
\(569\) −15.5497 −0.651877 −0.325938 0.945391i \(-0.605680\pi\)
−0.325938 + 0.945391i \(0.605680\pi\)
\(570\) −34.3700 −1.43960
\(571\) 10.8384 0.453571 0.226786 0.973945i \(-0.427178\pi\)
0.226786 + 0.973945i \(0.427178\pi\)
\(572\) −132.837 −5.55419
\(573\) −19.9897 −0.835083
\(574\) −18.0284 −0.752493
\(575\) 19.0020 0.792437
\(576\) −9.65590 −0.402329
\(577\) 26.5432 1.10501 0.552505 0.833510i \(-0.313672\pi\)
0.552505 + 0.833510i \(0.313672\pi\)
\(578\) −26.3926 −1.09779
\(579\) 17.4744 0.726210
\(580\) 100.536 4.17452
\(581\) 2.71284 0.112547
\(582\) 14.2652 0.591311
\(583\) −77.3904 −3.20518
\(584\) −42.9383 −1.77680
\(585\) 16.6507 0.688422
\(586\) −29.2160 −1.20690
\(587\) 22.6806 0.936128 0.468064 0.883695i \(-0.344952\pi\)
0.468064 + 0.883695i \(0.344952\pi\)
\(588\) −3.84663 −0.158632
\(589\) 7.54697 0.310967
\(590\) −84.0762 −3.46136
\(591\) 0.0269163 0.00110719
\(592\) 33.9344 1.39470
\(593\) −31.6754 −1.30075 −0.650376 0.759612i \(-0.725389\pi\)
−0.650376 + 0.759612i \(0.725389\pi\)
\(594\) 14.3692 0.589576
\(595\) 7.06806 0.289762
\(596\) −17.4222 −0.713641
\(597\) 11.1642 0.456922
\(598\) 83.1741 3.40124
\(599\) −13.2647 −0.541980 −0.270990 0.962582i \(-0.587351\pi\)
−0.270990 + 0.962582i \(0.587351\pi\)
\(600\) −14.3335 −0.585164
\(601\) −28.7624 −1.17324 −0.586622 0.809861i \(-0.699542\pi\)
−0.586622 + 0.809861i \(0.699542\pi\)
\(602\) 15.4113 0.628116
\(603\) −2.34916 −0.0956651
\(604\) 31.0924 1.26513
\(605\) 69.6709 2.83253
\(606\) 0.707043 0.0287217
\(607\) 13.7938 0.559873 0.279937 0.960018i \(-0.409687\pi\)
0.279937 + 0.960018i \(0.409687\pi\)
\(608\) −7.07673 −0.286999
\(609\) 9.12150 0.369622
\(610\) −91.2515 −3.69467
\(611\) −21.9187 −0.886735
\(612\) −9.48868 −0.383557
\(613\) −2.67053 −0.107862 −0.0539308 0.998545i \(-0.517175\pi\)
−0.0539308 + 0.998545i \(0.517175\pi\)
\(614\) −34.9357 −1.40989
\(615\) −21.3639 −0.861475
\(616\) 26.5346 1.06911
\(617\) 3.24977 0.130831 0.0654155 0.997858i \(-0.479163\pi\)
0.0654155 + 0.997858i \(0.479163\pi\)
\(618\) 0.929098 0.0373738
\(619\) −39.3418 −1.58128 −0.790640 0.612282i \(-0.790252\pi\)
−0.790640 + 0.612282i \(0.790252\pi\)
\(620\) 16.7678 0.673410
\(621\) −5.91940 −0.237537
\(622\) −19.3608 −0.776297
\(623\) 1.78782 0.0716275
\(624\) −18.0335 −0.721917
\(625\) −30.7457 −1.22983
\(626\) 36.8007 1.47085
\(627\) 29.4803 1.17733
\(628\) −84.7484 −3.38183
\(629\) −26.9739 −1.07552
\(630\) −6.92831 −0.276031
\(631\) 11.7580 0.468077 0.234039 0.972227i \(-0.424806\pi\)
0.234039 + 0.972227i \(0.424806\pi\)
\(632\) −57.7663 −2.29782
\(633\) −7.93667 −0.315454
\(634\) −46.3244 −1.83978
\(635\) 2.86533 0.113707
\(636\) −50.0941 −1.98636
\(637\) 5.81109 0.230244
\(638\) −131.069 −5.18906
\(639\) 10.9342 0.432551
\(640\) −58.7241 −2.32127
\(641\) −26.1532 −1.03299 −0.516494 0.856291i \(-0.672763\pi\)
−0.516494 + 0.856291i \(0.672763\pi\)
\(642\) 15.6748 0.618636
\(643\) −42.2728 −1.66708 −0.833539 0.552461i \(-0.813689\pi\)
−0.833539 + 0.552461i \(0.813689\pi\)
\(644\) −22.7697 −0.897253
\(645\) 18.2625 0.719085
\(646\) −29.5890 −1.16416
\(647\) −18.8312 −0.740331 −0.370165 0.928966i \(-0.620699\pi\)
−0.370165 + 0.928966i \(0.620699\pi\)
\(648\) 4.46511 0.175406
\(649\) 72.1150 2.83076
\(650\) 45.1057 1.76919
\(651\) 1.52132 0.0596252
\(652\) 33.5502 1.31393
\(653\) −42.9175 −1.67949 −0.839746 0.542979i \(-0.817296\pi\)
−0.839746 + 0.542979i \(0.817296\pi\)
\(654\) 17.7212 0.692955
\(655\) 20.0272 0.782527
\(656\) 23.1381 0.903391
\(657\) −9.61640 −0.375171
\(658\) 9.12031 0.355547
\(659\) 36.1838 1.40952 0.704760 0.709446i \(-0.251055\pi\)
0.704760 + 0.709446i \(0.251055\pi\)
\(660\) 65.4991 2.54955
\(661\) −10.4284 −0.405620 −0.202810 0.979218i \(-0.565007\pi\)
−0.202810 + 0.979218i \(0.565007\pi\)
\(662\) −84.0181 −3.26546
\(663\) 14.3345 0.556707
\(664\) −12.1131 −0.470080
\(665\) −14.2143 −0.551208
\(666\) 26.4406 1.02455
\(667\) 53.9938 2.09065
\(668\) 11.2542 0.435439
\(669\) −16.2035 −0.626464
\(670\) −16.2757 −0.628785
\(671\) 78.2696 3.02156
\(672\) −1.42653 −0.0550296
\(673\) 1.54766 0.0596579 0.0298290 0.999555i \(-0.490504\pi\)
0.0298290 + 0.999555i \(0.490504\pi\)
\(674\) −36.6098 −1.41016
\(675\) −3.21012 −0.123558
\(676\) 79.8899 3.07269
\(677\) −13.1548 −0.505580 −0.252790 0.967521i \(-0.581348\pi\)
−0.252790 + 0.967521i \(0.581348\pi\)
\(678\) 21.1611 0.812686
\(679\) 5.89963 0.226407
\(680\) −31.5597 −1.21026
\(681\) −1.13795 −0.0436063
\(682\) −21.8602 −0.837070
\(683\) 6.32001 0.241828 0.120914 0.992663i \(-0.461417\pi\)
0.120914 + 0.992663i \(0.461417\pi\)
\(684\) 19.0824 0.729632
\(685\) −38.3907 −1.46683
\(686\) −2.41798 −0.0923189
\(687\) 16.1025 0.614350
\(688\) −19.7791 −0.754073
\(689\) 75.6771 2.88307
\(690\) −41.0114 −1.56128
\(691\) −12.5225 −0.476379 −0.238190 0.971219i \(-0.576554\pi\)
−0.238190 + 0.971219i \(0.576554\pi\)
\(692\) 71.5657 2.72052
\(693\) 5.94265 0.225743
\(694\) 23.0418 0.874656
\(695\) −13.0840 −0.496303
\(696\) −40.7285 −1.54381
\(697\) −18.3921 −0.696650
\(698\) −43.2152 −1.63572
\(699\) 11.7016 0.442596
\(700\) −12.3481 −0.466715
\(701\) 32.2849 1.21939 0.609693 0.792638i \(-0.291293\pi\)
0.609693 + 0.792638i \(0.291293\pi\)
\(702\) −14.0511 −0.530325
\(703\) 54.2463 2.04594
\(704\) 57.3816 2.16265
\(705\) 10.8077 0.407040
\(706\) 72.4600 2.72707
\(707\) 0.292411 0.0109972
\(708\) 46.6794 1.75432
\(709\) 24.5194 0.920846 0.460423 0.887700i \(-0.347698\pi\)
0.460423 + 0.887700i \(0.347698\pi\)
\(710\) 75.7556 2.84306
\(711\) −12.9373 −0.485185
\(712\) −7.98281 −0.299169
\(713\) 9.00530 0.337251
\(714\) −5.96456 −0.223218
\(715\) −98.9494 −3.70050
\(716\) 18.2012 0.680212
\(717\) −21.5712 −0.805590
\(718\) 38.7600 1.44651
\(719\) −4.97860 −0.185670 −0.0928352 0.995681i \(-0.529593\pi\)
−0.0928352 + 0.995681i \(0.529593\pi\)
\(720\) 8.89194 0.331383
\(721\) 0.384246 0.0143101
\(722\) 13.5638 0.504793
\(723\) −1.24666 −0.0463638
\(724\) −39.1647 −1.45554
\(725\) 29.2811 1.08747
\(726\) −58.7935 −2.18203
\(727\) −5.39878 −0.200230 −0.100115 0.994976i \(-0.531921\pi\)
−0.100115 + 0.994976i \(0.531921\pi\)
\(728\) −25.9472 −0.961666
\(729\) 1.00000 0.0370370
\(730\) −66.6254 −2.46592
\(731\) 15.7221 0.581504
\(732\) 50.6632 1.87257
\(733\) 46.1590 1.70492 0.852460 0.522792i \(-0.175110\pi\)
0.852460 + 0.522792i \(0.175110\pi\)
\(734\) −74.6642 −2.75591
\(735\) −2.86533 −0.105689
\(736\) −8.44420 −0.311257
\(737\) 13.9602 0.514232
\(738\) 18.0284 0.663636
\(739\) −7.62697 −0.280563 −0.140281 0.990112i \(-0.544801\pi\)
−0.140281 + 0.990112i \(0.544801\pi\)
\(740\) 120.524 4.43055
\(741\) −28.8277 −1.05901
\(742\) −31.4890 −1.15600
\(743\) 29.1648 1.06995 0.534977 0.844867i \(-0.320320\pi\)
0.534977 + 0.844867i \(0.320320\pi\)
\(744\) −6.79286 −0.249038
\(745\) −12.9777 −0.475466
\(746\) 13.9772 0.511741
\(747\) −2.71284 −0.0992575
\(748\) 56.3880 2.06175
\(749\) 6.48261 0.236869
\(750\) 12.4009 0.452815
\(751\) −16.1853 −0.590609 −0.295304 0.955403i \(-0.595421\pi\)
−0.295304 + 0.955403i \(0.595421\pi\)
\(752\) −11.7052 −0.426844
\(753\) 17.4247 0.634990
\(754\) 128.167 4.66757
\(755\) 23.1606 0.842899
\(756\) 3.84663 0.139900
\(757\) 29.7380 1.08085 0.540424 0.841393i \(-0.318264\pi\)
0.540424 + 0.841393i \(0.318264\pi\)
\(758\) 33.2411 1.20737
\(759\) 35.1769 1.27684
\(760\) 63.4686 2.30225
\(761\) 30.9215 1.12090 0.560451 0.828188i \(-0.310628\pi\)
0.560451 + 0.828188i \(0.310628\pi\)
\(762\) −2.41798 −0.0875942
\(763\) 7.32894 0.265326
\(764\) 76.8931 2.78189
\(765\) −7.06806 −0.255546
\(766\) 1.69829 0.0613617
\(767\) −70.5185 −2.54628
\(768\) 30.2440 1.09134
\(769\) 8.67272 0.312746 0.156373 0.987698i \(-0.450020\pi\)
0.156373 + 0.987698i \(0.450020\pi\)
\(770\) 41.1726 1.48376
\(771\) −7.74905 −0.279075
\(772\) −67.2174 −2.41921
\(773\) 46.3828 1.66827 0.834137 0.551557i \(-0.185966\pi\)
0.834137 + 0.551557i \(0.185966\pi\)
\(774\) −15.4113 −0.553946
\(775\) 4.88362 0.175425
\(776\) −26.3425 −0.945641
\(777\) 10.9350 0.392290
\(778\) 83.8203 3.00510
\(779\) 36.9877 1.32522
\(780\) −64.0490 −2.29332
\(781\) −64.9782 −2.32510
\(782\) −35.3066 −1.26256
\(783\) −9.12150 −0.325976
\(784\) 3.10329 0.110832
\(785\) −63.1286 −2.25316
\(786\) −16.9004 −0.602819
\(787\) 3.41934 0.121886 0.0609431 0.998141i \(-0.480589\pi\)
0.0609431 + 0.998141i \(0.480589\pi\)
\(788\) −0.103537 −0.00368836
\(789\) 23.7131 0.844210
\(790\) −89.6334 −3.18901
\(791\) 8.75155 0.311169
\(792\) −26.5346 −0.942866
\(793\) −76.5368 −2.71790
\(794\) −40.5418 −1.43877
\(795\) −37.3148 −1.32342
\(796\) −42.9446 −1.52213
\(797\) 25.0547 0.887482 0.443741 0.896155i \(-0.353651\pi\)
0.443741 + 0.896155i \(0.353651\pi\)
\(798\) 11.9951 0.424623
\(799\) 9.30427 0.329161
\(800\) −4.57933 −0.161904
\(801\) −1.78782 −0.0631696
\(802\) −9.88081 −0.348904
\(803\) 57.1469 2.01667
\(804\) 9.03634 0.318687
\(805\) −16.9610 −0.597798
\(806\) 21.3762 0.752946
\(807\) 3.63039 0.127796
\(808\) −1.30565 −0.0459325
\(809\) 31.7389 1.11588 0.557941 0.829881i \(-0.311592\pi\)
0.557941 + 0.829881i \(0.311592\pi\)
\(810\) 6.92831 0.243436
\(811\) 11.1326 0.390920 0.195460 0.980712i \(-0.437380\pi\)
0.195460 + 0.980712i \(0.437380\pi\)
\(812\) −35.0870 −1.23131
\(813\) −13.2306 −0.464016
\(814\) −157.127 −5.50731
\(815\) 24.9914 0.875409
\(816\) 7.65504 0.267980
\(817\) −31.6182 −1.10618
\(818\) 69.8135 2.44097
\(819\) −5.81109 −0.203056
\(820\) 82.1789 2.86981
\(821\) 30.4868 1.06400 0.531998 0.846746i \(-0.321441\pi\)
0.531998 + 0.846746i \(0.321441\pi\)
\(822\) 32.3969 1.12997
\(823\) 51.0907 1.78091 0.890454 0.455073i \(-0.150387\pi\)
0.890454 + 0.455073i \(0.150387\pi\)
\(824\) −1.71570 −0.0597692
\(825\) 19.0766 0.664163
\(826\) 29.3426 1.02096
\(827\) −33.8562 −1.17730 −0.588648 0.808389i \(-0.700340\pi\)
−0.588648 + 0.808389i \(0.700340\pi\)
\(828\) 22.7697 0.791303
\(829\) −31.5681 −1.09640 −0.548202 0.836346i \(-0.684687\pi\)
−0.548202 + 0.836346i \(0.684687\pi\)
\(830\) −18.7954 −0.652397
\(831\) −5.09376 −0.176701
\(832\) −56.1113 −1.94531
\(833\) −2.46675 −0.0854679
\(834\) 11.0412 0.382326
\(835\) 8.38320 0.290113
\(836\) −113.400 −3.92202
\(837\) −1.52132 −0.0525845
\(838\) −31.0239 −1.07170
\(839\) −38.0449 −1.31346 −0.656728 0.754128i \(-0.728060\pi\)
−0.656728 + 0.754128i \(0.728060\pi\)
\(840\) 12.7940 0.441435
\(841\) 54.2017 1.86902
\(842\) −10.6472 −0.366927
\(843\) −9.47263 −0.326255
\(844\) 30.5294 1.05087
\(845\) 59.5095 2.04719
\(846\) −9.12031 −0.313563
\(847\) −24.3151 −0.835478
\(848\) 40.4137 1.38781
\(849\) −29.4196 −1.00968
\(850\) −19.1469 −0.656735
\(851\) 64.7286 2.21887
\(852\) −42.0598 −1.44095
\(853\) −49.6692 −1.70064 −0.850320 0.526266i \(-0.823592\pi\)
−0.850320 + 0.526266i \(0.823592\pi\)
\(854\) 31.8468 1.08977
\(855\) 14.2143 0.486120
\(856\) −28.9455 −0.989338
\(857\) −51.1798 −1.74827 −0.874135 0.485683i \(-0.838571\pi\)
−0.874135 + 0.485683i \(0.838571\pi\)
\(858\) 83.5009 2.85067
\(859\) 22.3730 0.763357 0.381678 0.924295i \(-0.375346\pi\)
0.381678 + 0.924295i \(0.375346\pi\)
\(860\) −70.2490 −2.39547
\(861\) 7.45599 0.254100
\(862\) 30.9777 1.05510
\(863\) −36.7882 −1.25229 −0.626143 0.779708i \(-0.715367\pi\)
−0.626143 + 0.779708i \(0.715367\pi\)
\(864\) 1.42653 0.0485315
\(865\) 53.3089 1.81256
\(866\) −25.7786 −0.875991
\(867\) 10.9151 0.370697
\(868\) −5.85195 −0.198628
\(869\) 76.8817 2.60803
\(870\) −63.1966 −2.14256
\(871\) −13.6512 −0.462553
\(872\) −32.7245 −1.10819
\(873\) −5.89963 −0.199672
\(874\) 71.0039 2.40174
\(875\) 5.12860 0.173378
\(876\) 36.9907 1.24980
\(877\) 8.02579 0.271012 0.135506 0.990777i \(-0.456734\pi\)
0.135506 + 0.990777i \(0.456734\pi\)
\(878\) 17.2933 0.583621
\(879\) 12.0828 0.407543
\(880\) −52.8417 −1.78129
\(881\) 42.4618 1.43058 0.715288 0.698830i \(-0.246296\pi\)
0.715288 + 0.698830i \(0.246296\pi\)
\(882\) 2.41798 0.0814176
\(883\) 54.1159 1.82114 0.910572 0.413350i \(-0.135641\pi\)
0.910572 + 0.413350i \(0.135641\pi\)
\(884\) −55.1396 −1.85455
\(885\) 34.7712 1.16882
\(886\) 95.3727 3.20411
\(887\) 8.66097 0.290807 0.145403 0.989372i \(-0.453552\pi\)
0.145403 + 0.989372i \(0.453552\pi\)
\(888\) −48.8259 −1.63849
\(889\) −1.00000 −0.0335389
\(890\) −12.3866 −0.415199
\(891\) −5.94265 −0.199086
\(892\) 62.3289 2.08693
\(893\) −18.7115 −0.626157
\(894\) 10.9516 0.366275
\(895\) 13.5580 0.453194
\(896\) 20.4947 0.684680
\(897\) −34.3982 −1.14852
\(898\) −51.5007 −1.71860
\(899\) 13.8767 0.462814
\(900\) 12.3481 0.411604
\(901\) −32.1242 −1.07021
\(902\) −107.137 −3.56727
\(903\) −6.37361 −0.212100
\(904\) −39.0766 −1.29967
\(905\) −29.1736 −0.969762
\(906\) −19.5446 −0.649326
\(907\) 25.1110 0.833798 0.416899 0.908953i \(-0.363117\pi\)
0.416899 + 0.908953i \(0.363117\pi\)
\(908\) 4.37726 0.145265
\(909\) −0.292411 −0.00969865
\(910\) −40.2611 −1.33464
\(911\) 10.3906 0.344255 0.172128 0.985075i \(-0.444936\pi\)
0.172128 + 0.985075i \(0.444936\pi\)
\(912\) −15.3948 −0.509773
\(913\) 16.1214 0.533542
\(914\) 68.1829 2.25529
\(915\) 37.7387 1.24760
\(916\) −61.9405 −2.04657
\(917\) −6.98949 −0.230813
\(918\) 5.96456 0.196860
\(919\) 35.9077 1.18448 0.592242 0.805760i \(-0.298243\pi\)
0.592242 + 0.805760i \(0.298243\pi\)
\(920\) 75.7328 2.49684
\(921\) 14.4483 0.476087
\(922\) 80.4279 2.64875
\(923\) 63.5397 2.09143
\(924\) −22.8592 −0.752012
\(925\) 35.1026 1.15417
\(926\) 58.7912 1.93200
\(927\) −0.384246 −0.0126203
\(928\) −13.0121 −0.427143
\(929\) 13.2349 0.434222 0.217111 0.976147i \(-0.430337\pi\)
0.217111 + 0.976147i \(0.430337\pi\)
\(930\) −10.5402 −0.345626
\(931\) 4.96080 0.162584
\(932\) −45.0118 −1.47441
\(933\) 8.00701 0.262138
\(934\) −10.1217 −0.331192
\(935\) 42.0031 1.37365
\(936\) 25.9472 0.848109
\(937\) −58.2756 −1.90378 −0.951890 0.306441i \(-0.900862\pi\)
−0.951890 + 0.306441i \(0.900862\pi\)
\(938\) 5.68022 0.185466
\(939\) −15.2196 −0.496673
\(940\) −41.5730 −1.35596
\(941\) 1.11789 0.0364421 0.0182210 0.999834i \(-0.494200\pi\)
0.0182210 + 0.999834i \(0.494200\pi\)
\(942\) 53.2726 1.73572
\(943\) 44.1350 1.43723
\(944\) −37.6589 −1.22569
\(945\) 2.86533 0.0932092
\(946\) 91.5838 2.97765
\(947\) 14.8068 0.481157 0.240579 0.970630i \(-0.422663\pi\)
0.240579 + 0.970630i \(0.422663\pi\)
\(948\) 49.7648 1.61629
\(949\) −55.8818 −1.81400
\(950\) 38.5058 1.24929
\(951\) 19.1583 0.621251
\(952\) 11.0143 0.356976
\(953\) 43.8606 1.42079 0.710393 0.703806i \(-0.248517\pi\)
0.710393 + 0.703806i \(0.248517\pi\)
\(954\) 31.4890 1.01949
\(955\) 57.2772 1.85345
\(956\) 82.9762 2.68364
\(957\) 54.2059 1.75223
\(958\) −59.7226 −1.92955
\(959\) 13.3983 0.432655
\(960\) 27.6673 0.892959
\(961\) −28.6856 −0.925341
\(962\) 153.649 4.95383
\(963\) −6.48261 −0.208899
\(964\) 4.79544 0.154451
\(965\) −50.0698 −1.61181
\(966\) 14.3130 0.460513
\(967\) 24.8577 0.799371 0.399686 0.916652i \(-0.369119\pi\)
0.399686 + 0.916652i \(0.369119\pi\)
\(968\) 108.570 3.48956
\(969\) 12.2371 0.393112
\(970\) −40.8745 −1.31240
\(971\) −10.5828 −0.339617 −0.169808 0.985477i \(-0.554315\pi\)
−0.169808 + 0.985477i \(0.554315\pi\)
\(972\) −3.84663 −0.123381
\(973\) 4.56630 0.146389
\(974\) −7.73388 −0.247809
\(975\) −18.6543 −0.597416
\(976\) −40.8728 −1.30831
\(977\) 27.6129 0.883416 0.441708 0.897159i \(-0.354373\pi\)
0.441708 + 0.897159i \(0.354373\pi\)
\(978\) −21.0896 −0.674370
\(979\) 10.6244 0.339557
\(980\) 11.0219 0.352080
\(981\) −7.32894 −0.233995
\(982\) 34.9910 1.11661
\(983\) −3.15604 −0.100662 −0.0503310 0.998733i \(-0.516028\pi\)
−0.0503310 + 0.998733i \(0.516028\pi\)
\(984\) −33.2918 −1.06130
\(985\) −0.0771242 −0.00245738
\(986\) −54.4057 −1.73263
\(987\) −3.77187 −0.120060
\(988\) 110.889 3.52786
\(989\) −37.7279 −1.19968
\(990\) −41.1726 −1.30855
\(991\) −24.4911 −0.777987 −0.388993 0.921241i \(-0.627177\pi\)
−0.388993 + 0.921241i \(0.627177\pi\)
\(992\) −2.17021 −0.0689042
\(993\) 34.7472 1.10267
\(994\) −26.4387 −0.838584
\(995\) −31.9892 −1.01413
\(996\) 10.4353 0.330654
\(997\) 5.17107 0.163769 0.0818847 0.996642i \(-0.473906\pi\)
0.0818847 + 0.996642i \(0.473906\pi\)
\(998\) 23.1885 0.734020
\(999\) −10.9350 −0.345968
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.o.1.14 16
3.2 odd 2 8001.2.a.r.1.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.o.1.14 16 1.1 even 1 trivial
8001.2.a.r.1.3 16 3.2 odd 2