Properties

Label 2667.2.a.o.1.13
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,5,-16,19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} - 13 x^{14} + 98 x^{13} + 9 x^{12} - 712 x^{11} + 565 x^{10} + 2282 x^{9} - 3082 x^{8} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(1.84800\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.84800 q^{2} -1.00000 q^{3} +1.41512 q^{4} -3.49192 q^{5} -1.84800 q^{6} -1.00000 q^{7} -1.08086 q^{8} +1.00000 q^{9} -6.45308 q^{10} +1.44812 q^{11} -1.41512 q^{12} +0.419006 q^{13} -1.84800 q^{14} +3.49192 q^{15} -4.82768 q^{16} -3.49611 q^{17} +1.84800 q^{18} -3.81133 q^{19} -4.94148 q^{20} +1.00000 q^{21} +2.67612 q^{22} +7.19568 q^{23} +1.08086 q^{24} +7.19347 q^{25} +0.774324 q^{26} -1.00000 q^{27} -1.41512 q^{28} +1.43207 q^{29} +6.45308 q^{30} +4.42140 q^{31} -6.75984 q^{32} -1.44812 q^{33} -6.46082 q^{34} +3.49192 q^{35} +1.41512 q^{36} +5.04489 q^{37} -7.04336 q^{38} -0.419006 q^{39} +3.77427 q^{40} +9.79333 q^{41} +1.84800 q^{42} -4.63261 q^{43} +2.04926 q^{44} -3.49192 q^{45} +13.2976 q^{46} -6.75497 q^{47} +4.82768 q^{48} +1.00000 q^{49} +13.2936 q^{50} +3.49611 q^{51} +0.592943 q^{52} +10.6795 q^{53} -1.84800 q^{54} -5.05670 q^{55} +1.08086 q^{56} +3.81133 q^{57} +2.64647 q^{58} +7.12059 q^{59} +4.94148 q^{60} -0.158644 q^{61} +8.17077 q^{62} -1.00000 q^{63} -2.83687 q^{64} -1.46313 q^{65} -2.67612 q^{66} +0.583961 q^{67} -4.94741 q^{68} -7.19568 q^{69} +6.45308 q^{70} -9.97501 q^{71} -1.08086 q^{72} +10.9043 q^{73} +9.32297 q^{74} -7.19347 q^{75} -5.39349 q^{76} -1.44812 q^{77} -0.774324 q^{78} +16.9790 q^{79} +16.8578 q^{80} +1.00000 q^{81} +18.0981 q^{82} +13.3539 q^{83} +1.41512 q^{84} +12.2081 q^{85} -8.56109 q^{86} -1.43207 q^{87} -1.56521 q^{88} -13.2257 q^{89} -6.45308 q^{90} -0.419006 q^{91} +10.1827 q^{92} -4.42140 q^{93} -12.4832 q^{94} +13.3088 q^{95} +6.75984 q^{96} -14.1419 q^{97} +1.84800 q^{98} +1.44812 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{2} - 16 q^{3} + 19 q^{4} - q^{5} - 5 q^{6} - 16 q^{7} + 6 q^{8} + 16 q^{9} - 12 q^{10} + 11 q^{11} - 19 q^{12} + 18 q^{13} - 5 q^{14} + q^{15} + 25 q^{16} - 5 q^{17} + 5 q^{18} - 11 q^{19}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.84800 1.30674 0.653368 0.757040i \(-0.273355\pi\)
0.653368 + 0.757040i \(0.273355\pi\)
\(3\) −1.00000 −0.577350
\(4\) 1.41512 0.707560
\(5\) −3.49192 −1.56163 −0.780816 0.624761i \(-0.785196\pi\)
−0.780816 + 0.624761i \(0.785196\pi\)
\(6\) −1.84800 −0.754445
\(7\) −1.00000 −0.377964
\(8\) −1.08086 −0.382142
\(9\) 1.00000 0.333333
\(10\) −6.45308 −2.04064
\(11\) 1.44812 0.436623 0.218312 0.975879i \(-0.429945\pi\)
0.218312 + 0.975879i \(0.429945\pi\)
\(12\) −1.41512 −0.408510
\(13\) 0.419006 0.116211 0.0581056 0.998310i \(-0.481494\pi\)
0.0581056 + 0.998310i \(0.481494\pi\)
\(14\) −1.84800 −0.493900
\(15\) 3.49192 0.901609
\(16\) −4.82768 −1.20692
\(17\) −3.49611 −0.847931 −0.423965 0.905678i \(-0.639362\pi\)
−0.423965 + 0.905678i \(0.639362\pi\)
\(18\) 1.84800 0.435579
\(19\) −3.81133 −0.874379 −0.437190 0.899369i \(-0.644026\pi\)
−0.437190 + 0.899369i \(0.644026\pi\)
\(20\) −4.94148 −1.10495
\(21\) 1.00000 0.218218
\(22\) 2.67612 0.570551
\(23\) 7.19568 1.50040 0.750201 0.661210i \(-0.229957\pi\)
0.750201 + 0.661210i \(0.229957\pi\)
\(24\) 1.08086 0.220630
\(25\) 7.19347 1.43869
\(26\) 0.774324 0.151858
\(27\) −1.00000 −0.192450
\(28\) −1.41512 −0.267433
\(29\) 1.43207 0.265928 0.132964 0.991121i \(-0.457550\pi\)
0.132964 + 0.991121i \(0.457550\pi\)
\(30\) 6.45308 1.17816
\(31\) 4.42140 0.794108 0.397054 0.917795i \(-0.370033\pi\)
0.397054 + 0.917795i \(0.370033\pi\)
\(32\) −6.75984 −1.19498
\(33\) −1.44812 −0.252085
\(34\) −6.46082 −1.10802
\(35\) 3.49192 0.590241
\(36\) 1.41512 0.235853
\(37\) 5.04489 0.829374 0.414687 0.909964i \(-0.363891\pi\)
0.414687 + 0.909964i \(0.363891\pi\)
\(38\) −7.04336 −1.14258
\(39\) −0.419006 −0.0670946
\(40\) 3.77427 0.596765
\(41\) 9.79333 1.52946 0.764731 0.644350i \(-0.222872\pi\)
0.764731 + 0.644350i \(0.222872\pi\)
\(42\) 1.84800 0.285153
\(43\) −4.63261 −0.706467 −0.353233 0.935535i \(-0.614918\pi\)
−0.353233 + 0.935535i \(0.614918\pi\)
\(44\) 2.04926 0.308937
\(45\) −3.49192 −0.520544
\(46\) 13.2976 1.96063
\(47\) −6.75497 −0.985314 −0.492657 0.870224i \(-0.663974\pi\)
−0.492657 + 0.870224i \(0.663974\pi\)
\(48\) 4.82768 0.696815
\(49\) 1.00000 0.142857
\(50\) 13.2936 1.87999
\(51\) 3.49611 0.489553
\(52\) 0.592943 0.0822265
\(53\) 10.6795 1.46694 0.733468 0.679724i \(-0.237900\pi\)
0.733468 + 0.679724i \(0.237900\pi\)
\(54\) −1.84800 −0.251482
\(55\) −5.05670 −0.681845
\(56\) 1.08086 0.144436
\(57\) 3.81133 0.504823
\(58\) 2.64647 0.347498
\(59\) 7.12059 0.927021 0.463511 0.886091i \(-0.346590\pi\)
0.463511 + 0.886091i \(0.346590\pi\)
\(60\) 4.94148 0.637942
\(61\) −0.158644 −0.0203123 −0.0101561 0.999948i \(-0.503233\pi\)
−0.0101561 + 0.999948i \(0.503233\pi\)
\(62\) 8.17077 1.03769
\(63\) −1.00000 −0.125988
\(64\) −2.83687 −0.354609
\(65\) −1.46313 −0.181479
\(66\) −2.67612 −0.329408
\(67\) 0.583961 0.0713422 0.0356711 0.999364i \(-0.488643\pi\)
0.0356711 + 0.999364i \(0.488643\pi\)
\(68\) −4.94741 −0.599962
\(69\) −7.19568 −0.866258
\(70\) 6.45308 0.771290
\(71\) −9.97501 −1.18382 −0.591908 0.806006i \(-0.701625\pi\)
−0.591908 + 0.806006i \(0.701625\pi\)
\(72\) −1.08086 −0.127381
\(73\) 10.9043 1.27626 0.638129 0.769930i \(-0.279709\pi\)
0.638129 + 0.769930i \(0.279709\pi\)
\(74\) 9.32297 1.08377
\(75\) −7.19347 −0.830631
\(76\) −5.39349 −0.618676
\(77\) −1.44812 −0.165028
\(78\) −0.774324 −0.0876750
\(79\) 16.9790 1.91028 0.955142 0.296147i \(-0.0957017\pi\)
0.955142 + 0.296147i \(0.0957017\pi\)
\(80\) 16.8578 1.88476
\(81\) 1.00000 0.111111
\(82\) 18.0981 1.99860
\(83\) 13.3539 1.46578 0.732892 0.680345i \(-0.238170\pi\)
0.732892 + 0.680345i \(0.238170\pi\)
\(84\) 1.41512 0.154402
\(85\) 12.2081 1.32416
\(86\) −8.56109 −0.923166
\(87\) −1.43207 −0.153534
\(88\) −1.56521 −0.166852
\(89\) −13.2257 −1.40192 −0.700958 0.713202i \(-0.747244\pi\)
−0.700958 + 0.713202i \(0.747244\pi\)
\(90\) −6.45308 −0.680214
\(91\) −0.419006 −0.0439237
\(92\) 10.1827 1.06162
\(93\) −4.42140 −0.458478
\(94\) −12.4832 −1.28755
\(95\) 13.3088 1.36546
\(96\) 6.75984 0.689924
\(97\) −14.1419 −1.43590 −0.717948 0.696097i \(-0.754919\pi\)
−0.717948 + 0.696097i \(0.754919\pi\)
\(98\) 1.84800 0.186677
\(99\) 1.44812 0.145541
\(100\) 10.1796 1.01796
\(101\) −1.82679 −0.181772 −0.0908862 0.995861i \(-0.528970\pi\)
−0.0908862 + 0.995861i \(0.528970\pi\)
\(102\) 6.46082 0.639717
\(103\) −11.7530 −1.15806 −0.579029 0.815307i \(-0.696568\pi\)
−0.579029 + 0.815307i \(0.696568\pi\)
\(104\) −0.452887 −0.0444092
\(105\) −3.49192 −0.340776
\(106\) 19.7357 1.91690
\(107\) 8.74315 0.845232 0.422616 0.906309i \(-0.361112\pi\)
0.422616 + 0.906309i \(0.361112\pi\)
\(108\) −1.41512 −0.136170
\(109\) −12.5844 −1.20536 −0.602682 0.797982i \(-0.705901\pi\)
−0.602682 + 0.797982i \(0.705901\pi\)
\(110\) −9.34480 −0.890991
\(111\) −5.04489 −0.478840
\(112\) 4.82768 0.456172
\(113\) 0.626982 0.0589815 0.0294908 0.999565i \(-0.490611\pi\)
0.0294908 + 0.999565i \(0.490611\pi\)
\(114\) 7.04336 0.659671
\(115\) −25.1267 −2.34308
\(116\) 2.02655 0.188160
\(117\) 0.419006 0.0387371
\(118\) 13.1589 1.21137
\(119\) 3.49611 0.320488
\(120\) −3.77427 −0.344542
\(121\) −8.90296 −0.809360
\(122\) −0.293175 −0.0265428
\(123\) −9.79333 −0.883035
\(124\) 6.25682 0.561879
\(125\) −7.65942 −0.685080
\(126\) −1.84800 −0.164633
\(127\) 1.00000 0.0887357
\(128\) 8.27714 0.731603
\(129\) 4.63261 0.407879
\(130\) −2.70388 −0.237146
\(131\) 17.2259 1.50503 0.752516 0.658574i \(-0.228840\pi\)
0.752516 + 0.658574i \(0.228840\pi\)
\(132\) −2.04926 −0.178365
\(133\) 3.81133 0.330484
\(134\) 1.07916 0.0932255
\(135\) 3.49192 0.300536
\(136\) 3.77881 0.324030
\(137\) 16.4927 1.40906 0.704531 0.709673i \(-0.251157\pi\)
0.704531 + 0.709673i \(0.251157\pi\)
\(138\) −13.2976 −1.13197
\(139\) 7.22877 0.613137 0.306568 0.951849i \(-0.400819\pi\)
0.306568 + 0.951849i \(0.400819\pi\)
\(140\) 4.94148 0.417631
\(141\) 6.75497 0.568871
\(142\) −18.4339 −1.54694
\(143\) 0.606769 0.0507405
\(144\) −4.82768 −0.402306
\(145\) −5.00066 −0.415282
\(146\) 20.1513 1.66773
\(147\) −1.00000 −0.0824786
\(148\) 7.13912 0.586832
\(149\) 10.3005 0.843853 0.421926 0.906630i \(-0.361354\pi\)
0.421926 + 0.906630i \(0.361354\pi\)
\(150\) −13.2936 −1.08542
\(151\) −11.3170 −0.920966 −0.460483 0.887668i \(-0.652324\pi\)
−0.460483 + 0.887668i \(0.652324\pi\)
\(152\) 4.11952 0.334137
\(153\) −3.49611 −0.282644
\(154\) −2.67612 −0.215648
\(155\) −15.4392 −1.24010
\(156\) −0.592943 −0.0474735
\(157\) 17.5508 1.40071 0.700354 0.713795i \(-0.253025\pi\)
0.700354 + 0.713795i \(0.253025\pi\)
\(158\) 31.3772 2.49624
\(159\) −10.6795 −0.846936
\(160\) 23.6048 1.86612
\(161\) −7.19568 −0.567099
\(162\) 1.84800 0.145193
\(163\) 15.1587 1.18732 0.593662 0.804714i \(-0.297681\pi\)
0.593662 + 0.804714i \(0.297681\pi\)
\(164\) 13.8587 1.08219
\(165\) 5.05670 0.393663
\(166\) 24.6781 1.91539
\(167\) 4.61494 0.357114 0.178557 0.983930i \(-0.442857\pi\)
0.178557 + 0.983930i \(0.442857\pi\)
\(168\) −1.08086 −0.0833902
\(169\) −12.8244 −0.986495
\(170\) 22.5607 1.73032
\(171\) −3.81133 −0.291460
\(172\) −6.55570 −0.499868
\(173\) −6.06659 −0.461234 −0.230617 0.973045i \(-0.574074\pi\)
−0.230617 + 0.973045i \(0.574074\pi\)
\(174\) −2.64647 −0.200628
\(175\) −7.19347 −0.543776
\(176\) −6.99103 −0.526969
\(177\) −7.12059 −0.535216
\(178\) −24.4411 −1.83194
\(179\) 25.1683 1.88117 0.940583 0.339563i \(-0.110279\pi\)
0.940583 + 0.339563i \(0.110279\pi\)
\(180\) −4.94148 −0.368316
\(181\) 14.3744 1.06844 0.534221 0.845345i \(-0.320605\pi\)
0.534221 + 0.845345i \(0.320605\pi\)
\(182\) −0.774324 −0.0573968
\(183\) 0.158644 0.0117273
\(184\) −7.77752 −0.573367
\(185\) −17.6163 −1.29518
\(186\) −8.17077 −0.599110
\(187\) −5.06277 −0.370226
\(188\) −9.55910 −0.697169
\(189\) 1.00000 0.0727393
\(190\) 24.5948 1.78429
\(191\) −8.81798 −0.638047 −0.319023 0.947747i \(-0.603355\pi\)
−0.319023 + 0.947747i \(0.603355\pi\)
\(192\) 2.83687 0.204733
\(193\) −7.57577 −0.545316 −0.272658 0.962111i \(-0.587903\pi\)
−0.272658 + 0.962111i \(0.587903\pi\)
\(194\) −26.1344 −1.87634
\(195\) 1.46313 0.104777
\(196\) 1.41512 0.101080
\(197\) −15.6743 −1.11675 −0.558375 0.829589i \(-0.688575\pi\)
−0.558375 + 0.829589i \(0.688575\pi\)
\(198\) 2.67612 0.190184
\(199\) −11.7367 −0.831993 −0.415997 0.909366i \(-0.636567\pi\)
−0.415997 + 0.909366i \(0.636567\pi\)
\(200\) −7.77514 −0.549786
\(201\) −0.583961 −0.0411895
\(202\) −3.37591 −0.237529
\(203\) −1.43207 −0.100512
\(204\) 4.94741 0.346388
\(205\) −34.1975 −2.38846
\(206\) −21.7196 −1.51328
\(207\) 7.19568 0.500134
\(208\) −2.02282 −0.140258
\(209\) −5.51925 −0.381774
\(210\) −6.45308 −0.445304
\(211\) −7.35010 −0.506002 −0.253001 0.967466i \(-0.581418\pi\)
−0.253001 + 0.967466i \(0.581418\pi\)
\(212\) 15.1127 1.03795
\(213\) 9.97501 0.683476
\(214\) 16.1574 1.10450
\(215\) 16.1767 1.10324
\(216\) 1.08086 0.0735433
\(217\) −4.42140 −0.300144
\(218\) −23.2560 −1.57509
\(219\) −10.9043 −0.736848
\(220\) −7.15583 −0.482446
\(221\) −1.46489 −0.0985391
\(222\) −9.32297 −0.625717
\(223\) 4.71132 0.315493 0.157747 0.987480i \(-0.449577\pi\)
0.157747 + 0.987480i \(0.449577\pi\)
\(224\) 6.75984 0.451661
\(225\) 7.19347 0.479565
\(226\) 1.15867 0.0770733
\(227\) 23.9529 1.58981 0.794905 0.606734i \(-0.207521\pi\)
0.794905 + 0.606734i \(0.207521\pi\)
\(228\) 5.39349 0.357193
\(229\) −2.82845 −0.186910 −0.0934548 0.995624i \(-0.529791\pi\)
−0.0934548 + 0.995624i \(0.529791\pi\)
\(230\) −46.4342 −3.06178
\(231\) 1.44812 0.0952790
\(232\) −1.54787 −0.101622
\(233\) 14.5002 0.949941 0.474970 0.880002i \(-0.342459\pi\)
0.474970 + 0.880002i \(0.342459\pi\)
\(234\) 0.774324 0.0506192
\(235\) 23.5878 1.53870
\(236\) 10.0765 0.655923
\(237\) −16.9790 −1.10290
\(238\) 6.46082 0.418793
\(239\) −5.36336 −0.346927 −0.173463 0.984840i \(-0.555496\pi\)
−0.173463 + 0.984840i \(0.555496\pi\)
\(240\) −16.8578 −1.08817
\(241\) −0.0791557 −0.00509887 −0.00254943 0.999997i \(-0.500812\pi\)
−0.00254943 + 0.999997i \(0.500812\pi\)
\(242\) −16.4527 −1.05762
\(243\) −1.00000 −0.0641500
\(244\) −0.224500 −0.0143722
\(245\) −3.49192 −0.223090
\(246\) −18.0981 −1.15389
\(247\) −1.59697 −0.101613
\(248\) −4.77892 −0.303462
\(249\) −13.3539 −0.846270
\(250\) −14.1547 −0.895219
\(251\) −22.5878 −1.42573 −0.712864 0.701302i \(-0.752602\pi\)
−0.712864 + 0.701302i \(0.752602\pi\)
\(252\) −1.41512 −0.0891442
\(253\) 10.4202 0.655110
\(254\) 1.84800 0.115954
\(255\) −12.2081 −0.764502
\(256\) 20.9699 1.31062
\(257\) 0.699357 0.0436247 0.0218124 0.999762i \(-0.493056\pi\)
0.0218124 + 0.999762i \(0.493056\pi\)
\(258\) 8.56109 0.532990
\(259\) −5.04489 −0.313474
\(260\) −2.07051 −0.128407
\(261\) 1.43207 0.0886428
\(262\) 31.8335 1.96668
\(263\) 10.8149 0.666874 0.333437 0.942772i \(-0.391791\pi\)
0.333437 + 0.942772i \(0.391791\pi\)
\(264\) 1.56521 0.0963321
\(265\) −37.2918 −2.29081
\(266\) 7.04336 0.431856
\(267\) 13.2257 0.809397
\(268\) 0.826375 0.0504789
\(269\) −8.14144 −0.496392 −0.248196 0.968710i \(-0.579838\pi\)
−0.248196 + 0.968710i \(0.579838\pi\)
\(270\) 6.45308 0.392722
\(271\) −10.6047 −0.644190 −0.322095 0.946707i \(-0.604387\pi\)
−0.322095 + 0.946707i \(0.604387\pi\)
\(272\) 16.8781 1.02338
\(273\) 0.419006 0.0253594
\(274\) 30.4785 1.84127
\(275\) 10.4170 0.628168
\(276\) −10.1827 −0.612929
\(277\) 0.284090 0.0170693 0.00853466 0.999964i \(-0.497283\pi\)
0.00853466 + 0.999964i \(0.497283\pi\)
\(278\) 13.3588 0.801208
\(279\) 4.42140 0.264703
\(280\) −3.77427 −0.225556
\(281\) −2.76057 −0.164682 −0.0823409 0.996604i \(-0.526240\pi\)
−0.0823409 + 0.996604i \(0.526240\pi\)
\(282\) 12.4832 0.743365
\(283\) −26.1803 −1.55626 −0.778128 0.628105i \(-0.783831\pi\)
−0.778128 + 0.628105i \(0.783831\pi\)
\(284\) −14.1158 −0.837621
\(285\) −13.3088 −0.788348
\(286\) 1.12131 0.0663045
\(287\) −9.79333 −0.578082
\(288\) −6.75984 −0.398328
\(289\) −4.77723 −0.281013
\(290\) −9.24125 −0.542665
\(291\) 14.1419 0.829015
\(292\) 15.4310 0.903029
\(293\) −17.8356 −1.04197 −0.520985 0.853566i \(-0.674435\pi\)
−0.520985 + 0.853566i \(0.674435\pi\)
\(294\) −1.84800 −0.107778
\(295\) −24.8645 −1.44767
\(296\) −5.45282 −0.316939
\(297\) −1.44812 −0.0840282
\(298\) 19.0354 1.10269
\(299\) 3.01503 0.174364
\(300\) −10.1796 −0.587721
\(301\) 4.63261 0.267019
\(302\) −20.9139 −1.20346
\(303\) 1.82679 0.104946
\(304\) 18.3999 1.05530
\(305\) 0.553971 0.0317203
\(306\) −6.46082 −0.369341
\(307\) −18.4266 −1.05166 −0.525832 0.850589i \(-0.676246\pi\)
−0.525832 + 0.850589i \(0.676246\pi\)
\(308\) −2.04926 −0.116767
\(309\) 11.7530 0.668605
\(310\) −28.5317 −1.62049
\(311\) −9.26368 −0.525295 −0.262648 0.964892i \(-0.584596\pi\)
−0.262648 + 0.964892i \(0.584596\pi\)
\(312\) 0.452887 0.0256397
\(313\) −9.06608 −0.512445 −0.256223 0.966618i \(-0.582478\pi\)
−0.256223 + 0.966618i \(0.582478\pi\)
\(314\) 32.4340 1.83036
\(315\) 3.49192 0.196747
\(316\) 24.0273 1.35164
\(317\) 4.01530 0.225522 0.112761 0.993622i \(-0.464031\pi\)
0.112761 + 0.993622i \(0.464031\pi\)
\(318\) −19.7357 −1.10672
\(319\) 2.07380 0.116111
\(320\) 9.90611 0.553768
\(321\) −8.74315 −0.487995
\(322\) −13.2976 −0.741049
\(323\) 13.3248 0.741413
\(324\) 1.41512 0.0786178
\(325\) 3.01411 0.167193
\(326\) 28.0134 1.55152
\(327\) 12.5844 0.695917
\(328\) −10.5852 −0.584471
\(329\) 6.75497 0.372414
\(330\) 9.34480 0.514414
\(331\) −6.96401 −0.382777 −0.191388 0.981514i \(-0.561299\pi\)
−0.191388 + 0.981514i \(0.561299\pi\)
\(332\) 18.8974 1.03713
\(333\) 5.04489 0.276458
\(334\) 8.52842 0.466654
\(335\) −2.03914 −0.111410
\(336\) −4.82768 −0.263371
\(337\) −22.6756 −1.23522 −0.617610 0.786485i \(-0.711899\pi\)
−0.617610 + 0.786485i \(0.711899\pi\)
\(338\) −23.6996 −1.28909
\(339\) −0.626982 −0.0340530
\(340\) 17.2759 0.936920
\(341\) 6.40270 0.346726
\(342\) −7.04336 −0.380861
\(343\) −1.00000 −0.0539949
\(344\) 5.00721 0.269971
\(345\) 25.1267 1.35278
\(346\) −11.2111 −0.602711
\(347\) −16.4715 −0.884238 −0.442119 0.896956i \(-0.645773\pi\)
−0.442119 + 0.896956i \(0.645773\pi\)
\(348\) −2.02655 −0.108634
\(349\) 31.8015 1.70230 0.851148 0.524926i \(-0.175907\pi\)
0.851148 + 0.524926i \(0.175907\pi\)
\(350\) −13.2936 −0.710571
\(351\) −0.419006 −0.0223649
\(352\) −9.78903 −0.521757
\(353\) 15.7422 0.837871 0.418935 0.908016i \(-0.362403\pi\)
0.418935 + 0.908016i \(0.362403\pi\)
\(354\) −13.1589 −0.699386
\(355\) 34.8319 1.84868
\(356\) −18.7159 −0.991940
\(357\) −3.49611 −0.185034
\(358\) 46.5111 2.45819
\(359\) 8.98942 0.474443 0.237222 0.971456i \(-0.423763\pi\)
0.237222 + 0.971456i \(0.423763\pi\)
\(360\) 3.77427 0.198922
\(361\) −4.47376 −0.235461
\(362\) 26.5640 1.39617
\(363\) 8.90296 0.467284
\(364\) −0.592943 −0.0310787
\(365\) −38.0771 −1.99304
\(366\) 0.293175 0.0153245
\(367\) −16.9185 −0.883140 −0.441570 0.897227i \(-0.645578\pi\)
−0.441570 + 0.897227i \(0.645578\pi\)
\(368\) −34.7384 −1.81086
\(369\) 9.79333 0.509821
\(370\) −32.5550 −1.69246
\(371\) −10.6795 −0.554450
\(372\) −6.25682 −0.324401
\(373\) 27.7577 1.43724 0.718621 0.695402i \(-0.244774\pi\)
0.718621 + 0.695402i \(0.244774\pi\)
\(374\) −9.35602 −0.483788
\(375\) 7.65942 0.395531
\(376\) 7.30119 0.376530
\(377\) 0.600045 0.0309039
\(378\) 1.84800 0.0950511
\(379\) 26.0214 1.33663 0.668314 0.743879i \(-0.267016\pi\)
0.668314 + 0.743879i \(0.267016\pi\)
\(380\) 18.8336 0.966144
\(381\) −1.00000 −0.0512316
\(382\) −16.2957 −0.833759
\(383\) 18.4705 0.943799 0.471900 0.881652i \(-0.343568\pi\)
0.471900 + 0.881652i \(0.343568\pi\)
\(384\) −8.27714 −0.422391
\(385\) 5.05670 0.257713
\(386\) −14.0000 −0.712584
\(387\) −4.63261 −0.235489
\(388\) −20.0125 −1.01598
\(389\) 23.4582 1.18938 0.594689 0.803956i \(-0.297275\pi\)
0.594689 + 0.803956i \(0.297275\pi\)
\(390\) 2.70388 0.136916
\(391\) −25.1569 −1.27224
\(392\) −1.08086 −0.0545917
\(393\) −17.2259 −0.868931
\(394\) −28.9662 −1.45930
\(395\) −59.2892 −2.98316
\(396\) 2.04926 0.102979
\(397\) 36.3769 1.82570 0.912851 0.408293i \(-0.133876\pi\)
0.912851 + 0.408293i \(0.133876\pi\)
\(398\) −21.6895 −1.08720
\(399\) −3.81133 −0.190805
\(400\) −34.7278 −1.73639
\(401\) −13.6275 −0.680524 −0.340262 0.940331i \(-0.610516\pi\)
−0.340262 + 0.940331i \(0.610516\pi\)
\(402\) −1.07916 −0.0538238
\(403\) 1.85259 0.0922843
\(404\) −2.58513 −0.128615
\(405\) −3.49192 −0.173515
\(406\) −2.64647 −0.131342
\(407\) 7.30558 0.362124
\(408\) −3.77881 −0.187079
\(409\) 31.4185 1.55355 0.776773 0.629780i \(-0.216855\pi\)
0.776773 + 0.629780i \(0.216855\pi\)
\(410\) −63.1971 −3.12108
\(411\) −16.4927 −0.813522
\(412\) −16.6319 −0.819396
\(413\) −7.12059 −0.350381
\(414\) 13.2976 0.653543
\(415\) −46.6308 −2.28901
\(416\) −2.83241 −0.138871
\(417\) −7.22877 −0.353995
\(418\) −10.1996 −0.498878
\(419\) 8.75006 0.427469 0.213734 0.976892i \(-0.431437\pi\)
0.213734 + 0.976892i \(0.431437\pi\)
\(420\) −4.94148 −0.241120
\(421\) 28.5520 1.39154 0.695771 0.718264i \(-0.255063\pi\)
0.695771 + 0.718264i \(0.255063\pi\)
\(422\) −13.5830 −0.661211
\(423\) −6.75497 −0.328438
\(424\) −11.5430 −0.560578
\(425\) −25.1492 −1.21991
\(426\) 18.4339 0.893124
\(427\) 0.158644 0.00767732
\(428\) 12.3726 0.598052
\(429\) −0.606769 −0.0292951
\(430\) 29.8946 1.44165
\(431\) −1.57612 −0.0759193 −0.0379596 0.999279i \(-0.512086\pi\)
−0.0379596 + 0.999279i \(0.512086\pi\)
\(432\) 4.82768 0.232272
\(433\) 14.8219 0.712296 0.356148 0.934430i \(-0.384090\pi\)
0.356148 + 0.934430i \(0.384090\pi\)
\(434\) −8.17077 −0.392210
\(435\) 5.00066 0.239763
\(436\) −17.8084 −0.852867
\(437\) −27.4251 −1.31192
\(438\) −20.1513 −0.962866
\(439\) 1.75545 0.0837833 0.0418916 0.999122i \(-0.486662\pi\)
0.0418916 + 0.999122i \(0.486662\pi\)
\(440\) 5.46558 0.260561
\(441\) 1.00000 0.0476190
\(442\) −2.70712 −0.128765
\(443\) 27.5472 1.30881 0.654403 0.756146i \(-0.272920\pi\)
0.654403 + 0.756146i \(0.272920\pi\)
\(444\) −7.13912 −0.338808
\(445\) 46.1829 2.18928
\(446\) 8.70654 0.412267
\(447\) −10.3005 −0.487199
\(448\) 2.83687 0.134030
\(449\) 22.4661 1.06024 0.530120 0.847923i \(-0.322147\pi\)
0.530120 + 0.847923i \(0.322147\pi\)
\(450\) 13.2936 0.626665
\(451\) 14.1819 0.667798
\(452\) 0.887255 0.0417330
\(453\) 11.3170 0.531720
\(454\) 44.2651 2.07746
\(455\) 1.46313 0.0685927
\(456\) −4.11952 −0.192914
\(457\) 18.3869 0.860103 0.430052 0.902804i \(-0.358495\pi\)
0.430052 + 0.902804i \(0.358495\pi\)
\(458\) −5.22700 −0.244241
\(459\) 3.49611 0.163184
\(460\) −35.5573 −1.65787
\(461\) −4.12751 −0.192237 −0.0961187 0.995370i \(-0.530643\pi\)
−0.0961187 + 0.995370i \(0.530643\pi\)
\(462\) 2.67612 0.124505
\(463\) −1.59082 −0.0739317 −0.0369659 0.999317i \(-0.511769\pi\)
−0.0369659 + 0.999317i \(0.511769\pi\)
\(464\) −6.91356 −0.320954
\(465\) 15.4392 0.715974
\(466\) 26.7965 1.24132
\(467\) −16.8791 −0.781072 −0.390536 0.920588i \(-0.627710\pi\)
−0.390536 + 0.920588i \(0.627710\pi\)
\(468\) 0.592943 0.0274088
\(469\) −0.583961 −0.0269648
\(470\) 43.5904 2.01067
\(471\) −17.5508 −0.808699
\(472\) −7.69636 −0.354254
\(473\) −6.70856 −0.308460
\(474\) −31.3772 −1.44120
\(475\) −27.4167 −1.25796
\(476\) 4.94741 0.226764
\(477\) 10.6795 0.488979
\(478\) −9.91151 −0.453342
\(479\) 36.3592 1.66130 0.830648 0.556798i \(-0.187970\pi\)
0.830648 + 0.556798i \(0.187970\pi\)
\(480\) −23.6048 −1.07741
\(481\) 2.11384 0.0963827
\(482\) −0.146280 −0.00666288
\(483\) 7.19568 0.327415
\(484\) −12.5988 −0.572671
\(485\) 49.3825 2.24234
\(486\) −1.84800 −0.0838272
\(487\) 38.1782 1.73002 0.865010 0.501754i \(-0.167312\pi\)
0.865010 + 0.501754i \(0.167312\pi\)
\(488\) 0.171472 0.00776217
\(489\) −15.1587 −0.685502
\(490\) −6.45308 −0.291520
\(491\) −17.7847 −0.802614 −0.401307 0.915944i \(-0.631444\pi\)
−0.401307 + 0.915944i \(0.631444\pi\)
\(492\) −13.8587 −0.624800
\(493\) −5.00667 −0.225489
\(494\) −2.95121 −0.132781
\(495\) −5.05670 −0.227282
\(496\) −21.3451 −0.958423
\(497\) 9.97501 0.447440
\(498\) −24.6781 −1.10585
\(499\) −16.1862 −0.724592 −0.362296 0.932063i \(-0.618007\pi\)
−0.362296 + 0.932063i \(0.618007\pi\)
\(500\) −10.8390 −0.484735
\(501\) −4.61494 −0.206180
\(502\) −41.7423 −1.86305
\(503\) −32.8060 −1.46275 −0.731373 0.681978i \(-0.761120\pi\)
−0.731373 + 0.681978i \(0.761120\pi\)
\(504\) 1.08086 0.0481454
\(505\) 6.37899 0.283862
\(506\) 19.2565 0.856057
\(507\) 12.8244 0.569553
\(508\) 1.41512 0.0627858
\(509\) 10.9244 0.484217 0.242109 0.970249i \(-0.422161\pi\)
0.242109 + 0.970249i \(0.422161\pi\)
\(510\) −22.5607 −0.999002
\(511\) −10.9043 −0.482380
\(512\) 22.1982 0.981033
\(513\) 3.81133 0.168274
\(514\) 1.29242 0.0570060
\(515\) 41.0405 1.80846
\(516\) 6.55570 0.288599
\(517\) −9.78198 −0.430211
\(518\) −9.32297 −0.409628
\(519\) 6.06659 0.266294
\(520\) 1.58144 0.0693508
\(521\) 7.05981 0.309296 0.154648 0.987970i \(-0.450576\pi\)
0.154648 + 0.987970i \(0.450576\pi\)
\(522\) 2.64647 0.115833
\(523\) 17.9412 0.784513 0.392256 0.919856i \(-0.371695\pi\)
0.392256 + 0.919856i \(0.371695\pi\)
\(524\) 24.3767 1.06490
\(525\) 7.19347 0.313949
\(526\) 19.9860 0.871429
\(527\) −15.4577 −0.673348
\(528\) 6.99103 0.304246
\(529\) 28.7778 1.25121
\(530\) −68.9153 −2.99349
\(531\) 7.12059 0.309007
\(532\) 5.39349 0.233837
\(533\) 4.10346 0.177741
\(534\) 24.4411 1.05767
\(535\) −30.5303 −1.31994
\(536\) −0.631181 −0.0272629
\(537\) −25.1683 −1.08609
\(538\) −15.0454 −0.648654
\(539\) 1.44812 0.0623747
\(540\) 4.94148 0.212647
\(541\) −16.8290 −0.723536 −0.361768 0.932268i \(-0.617827\pi\)
−0.361768 + 0.932268i \(0.617827\pi\)
\(542\) −19.5975 −0.841787
\(543\) −14.3744 −0.616865
\(544\) 23.6331 1.01326
\(545\) 43.9435 1.88233
\(546\) 0.774324 0.0331380
\(547\) 2.13355 0.0912240 0.0456120 0.998959i \(-0.485476\pi\)
0.0456120 + 0.998959i \(0.485476\pi\)
\(548\) 23.3391 0.996996
\(549\) −0.158644 −0.00677076
\(550\) 19.2506 0.820849
\(551\) −5.45809 −0.232522
\(552\) 7.77752 0.331033
\(553\) −16.9790 −0.722020
\(554\) 0.525000 0.0223051
\(555\) 17.6163 0.747771
\(556\) 10.2296 0.433831
\(557\) 29.0162 1.22946 0.614729 0.788738i \(-0.289265\pi\)
0.614729 + 0.788738i \(0.289265\pi\)
\(558\) 8.17077 0.345896
\(559\) −1.94109 −0.0820994
\(560\) −16.8578 −0.712374
\(561\) 5.06277 0.213750
\(562\) −5.10154 −0.215196
\(563\) 45.2094 1.90535 0.952675 0.303991i \(-0.0983192\pi\)
0.952675 + 0.303991i \(0.0983192\pi\)
\(564\) 9.55910 0.402511
\(565\) −2.18937 −0.0921075
\(566\) −48.3813 −2.03362
\(567\) −1.00000 −0.0419961
\(568\) 10.7816 0.452386
\(569\) 11.2454 0.471432 0.235716 0.971822i \(-0.424256\pi\)
0.235716 + 0.971822i \(0.424256\pi\)
\(570\) −24.5948 −1.03016
\(571\) −38.6605 −1.61789 −0.808946 0.587883i \(-0.799962\pi\)
−0.808946 + 0.587883i \(0.799962\pi\)
\(572\) 0.858651 0.0359020
\(573\) 8.81798 0.368376
\(574\) −18.0981 −0.755401
\(575\) 51.7619 2.15862
\(576\) −2.83687 −0.118203
\(577\) 40.7588 1.69681 0.848406 0.529347i \(-0.177563\pi\)
0.848406 + 0.529347i \(0.177563\pi\)
\(578\) −8.82833 −0.367210
\(579\) 7.57577 0.314838
\(580\) −7.07654 −0.293837
\(581\) −13.3539 −0.554014
\(582\) 26.1344 1.08330
\(583\) 15.4651 0.640498
\(584\) −11.7861 −0.487712
\(585\) −1.46313 −0.0604931
\(586\) −32.9603 −1.36158
\(587\) 41.4546 1.71102 0.855508 0.517790i \(-0.173245\pi\)
0.855508 + 0.517790i \(0.173245\pi\)
\(588\) −1.41512 −0.0583586
\(589\) −16.8514 −0.694351
\(590\) −45.9497 −1.89172
\(591\) 15.6743 0.644756
\(592\) −24.3551 −1.00099
\(593\) −8.51817 −0.349799 −0.174900 0.984586i \(-0.555960\pi\)
−0.174900 + 0.984586i \(0.555960\pi\)
\(594\) −2.67612 −0.109803
\(595\) −12.2081 −0.500484
\(596\) 14.5765 0.597077
\(597\) 11.7367 0.480351
\(598\) 5.57179 0.227847
\(599\) 35.6398 1.45620 0.728101 0.685470i \(-0.240403\pi\)
0.728101 + 0.685470i \(0.240403\pi\)
\(600\) 7.77514 0.317419
\(601\) 21.3659 0.871534 0.435767 0.900059i \(-0.356477\pi\)
0.435767 + 0.900059i \(0.356477\pi\)
\(602\) 8.56109 0.348924
\(603\) 0.583961 0.0237807
\(604\) −16.0150 −0.651639
\(605\) 31.0884 1.26392
\(606\) 3.37591 0.137137
\(607\) −7.55226 −0.306537 −0.153268 0.988185i \(-0.548980\pi\)
−0.153268 + 0.988185i \(0.548980\pi\)
\(608\) 25.7640 1.04487
\(609\) 1.43207 0.0580304
\(610\) 1.02374 0.0414501
\(611\) −2.83037 −0.114505
\(612\) −4.94741 −0.199987
\(613\) −2.34120 −0.0945601 −0.0472800 0.998882i \(-0.515055\pi\)
−0.0472800 + 0.998882i \(0.515055\pi\)
\(614\) −34.0525 −1.37425
\(615\) 34.1975 1.37898
\(616\) 1.56521 0.0630641
\(617\) −17.1585 −0.690774 −0.345387 0.938460i \(-0.612252\pi\)
−0.345387 + 0.938460i \(0.612252\pi\)
\(618\) 21.7196 0.873691
\(619\) −0.926565 −0.0372418 −0.0186209 0.999827i \(-0.505928\pi\)
−0.0186209 + 0.999827i \(0.505928\pi\)
\(620\) −21.8483 −0.877448
\(621\) −7.19568 −0.288753
\(622\) −17.1193 −0.686423
\(623\) 13.2257 0.529875
\(624\) 2.02282 0.0809778
\(625\) −9.22130 −0.368852
\(626\) −16.7542 −0.669631
\(627\) 5.51925 0.220417
\(628\) 24.8365 0.991085
\(629\) −17.6375 −0.703252
\(630\) 6.45308 0.257097
\(631\) −32.5006 −1.29383 −0.646915 0.762562i \(-0.723941\pi\)
−0.646915 + 0.762562i \(0.723941\pi\)
\(632\) −18.3519 −0.730000
\(633\) 7.35010 0.292140
\(634\) 7.42030 0.294698
\(635\) −3.49192 −0.138572
\(636\) −15.1127 −0.599258
\(637\) 0.419006 0.0166016
\(638\) 3.83239 0.151726
\(639\) −9.97501 −0.394605
\(640\) −28.9031 −1.14249
\(641\) 11.4244 0.451235 0.225617 0.974216i \(-0.427560\pi\)
0.225617 + 0.974216i \(0.427560\pi\)
\(642\) −16.1574 −0.637681
\(643\) −1.81971 −0.0717623 −0.0358811 0.999356i \(-0.511424\pi\)
−0.0358811 + 0.999356i \(0.511424\pi\)
\(644\) −10.1827 −0.401256
\(645\) −16.1767 −0.636956
\(646\) 24.6243 0.968832
\(647\) 36.2813 1.42636 0.713182 0.700979i \(-0.247253\pi\)
0.713182 + 0.700979i \(0.247253\pi\)
\(648\) −1.08086 −0.0424602
\(649\) 10.3114 0.404759
\(650\) 5.57008 0.218477
\(651\) 4.42140 0.173288
\(652\) 21.4514 0.840104
\(653\) −4.38103 −0.171443 −0.0857215 0.996319i \(-0.527320\pi\)
−0.0857215 + 0.996319i \(0.527320\pi\)
\(654\) 23.2560 0.909380
\(655\) −60.1513 −2.35031
\(656\) −47.2790 −1.84594
\(657\) 10.9043 0.425419
\(658\) 12.4832 0.486647
\(659\) −5.14544 −0.200438 −0.100219 0.994965i \(-0.531954\pi\)
−0.100219 + 0.994965i \(0.531954\pi\)
\(660\) 7.15583 0.278540
\(661\) 22.5345 0.876490 0.438245 0.898856i \(-0.355600\pi\)
0.438245 + 0.898856i \(0.355600\pi\)
\(662\) −12.8695 −0.500188
\(663\) 1.46489 0.0568916
\(664\) −14.4337 −0.560137
\(665\) −13.3088 −0.516095
\(666\) 9.32297 0.361258
\(667\) 10.3047 0.399000
\(668\) 6.53069 0.252680
\(669\) −4.71132 −0.182150
\(670\) −3.76835 −0.145584
\(671\) −0.229735 −0.00886881
\(672\) −6.75984 −0.260767
\(673\) −25.8857 −0.997820 −0.498910 0.866654i \(-0.666266\pi\)
−0.498910 + 0.866654i \(0.666266\pi\)
\(674\) −41.9046 −1.61411
\(675\) −7.19347 −0.276877
\(676\) −18.1481 −0.698004
\(677\) −17.1281 −0.658287 −0.329143 0.944280i \(-0.606760\pi\)
−0.329143 + 0.944280i \(0.606760\pi\)
\(678\) −1.15867 −0.0444983
\(679\) 14.1419 0.542718
\(680\) −13.1953 −0.506016
\(681\) −23.9529 −0.917877
\(682\) 11.8322 0.453079
\(683\) −1.44948 −0.0554627 −0.0277314 0.999615i \(-0.508828\pi\)
−0.0277314 + 0.999615i \(0.508828\pi\)
\(684\) −5.39349 −0.206225
\(685\) −57.5909 −2.20044
\(686\) −1.84800 −0.0705571
\(687\) 2.82845 0.107912
\(688\) 22.3647 0.852648
\(689\) 4.47475 0.170475
\(690\) 46.4342 1.76772
\(691\) −46.8428 −1.78198 −0.890991 0.454020i \(-0.849989\pi\)
−0.890991 + 0.454020i \(0.849989\pi\)
\(692\) −8.58495 −0.326351
\(693\) −1.44812 −0.0550094
\(694\) −30.4395 −1.15547
\(695\) −25.2423 −0.957494
\(696\) 1.54787 0.0586717
\(697\) −34.2386 −1.29688
\(698\) 58.7693 2.22445
\(699\) −14.5002 −0.548448
\(700\) −10.1796 −0.384754
\(701\) −6.33668 −0.239333 −0.119667 0.992814i \(-0.538183\pi\)
−0.119667 + 0.992814i \(0.538183\pi\)
\(702\) −0.774324 −0.0292250
\(703\) −19.2277 −0.725188
\(704\) −4.10811 −0.154830
\(705\) −23.5878 −0.888368
\(706\) 29.0916 1.09488
\(707\) 1.82679 0.0687035
\(708\) −10.0765 −0.378697
\(709\) −26.7976 −1.00641 −0.503203 0.864168i \(-0.667845\pi\)
−0.503203 + 0.864168i \(0.667845\pi\)
\(710\) 64.3695 2.41574
\(711\) 16.9790 0.636762
\(712\) 14.2951 0.535731
\(713\) 31.8150 1.19148
\(714\) −6.46082 −0.241790
\(715\) −2.11878 −0.0792381
\(716\) 35.6162 1.33104
\(717\) 5.36336 0.200298
\(718\) 16.6125 0.619972
\(719\) −12.0689 −0.450093 −0.225047 0.974348i \(-0.572253\pi\)
−0.225047 + 0.974348i \(0.572253\pi\)
\(720\) 16.8578 0.628254
\(721\) 11.7530 0.437705
\(722\) −8.26752 −0.307685
\(723\) 0.0791557 0.00294383
\(724\) 20.3415 0.755987
\(725\) 10.3015 0.382590
\(726\) 16.4527 0.610617
\(727\) −29.2807 −1.08596 −0.542980 0.839746i \(-0.682704\pi\)
−0.542980 + 0.839746i \(0.682704\pi\)
\(728\) 0.452887 0.0167851
\(729\) 1.00000 0.0370370
\(730\) −70.3666 −2.60438
\(731\) 16.1961 0.599035
\(732\) 0.224500 0.00829777
\(733\) 19.8440 0.732956 0.366478 0.930427i \(-0.380564\pi\)
0.366478 + 0.930427i \(0.380564\pi\)
\(734\) −31.2655 −1.15403
\(735\) 3.49192 0.128801
\(736\) −48.6416 −1.79295
\(737\) 0.845643 0.0311497
\(738\) 18.0981 0.666201
\(739\) 14.9392 0.549546 0.274773 0.961509i \(-0.411397\pi\)
0.274773 + 0.961509i \(0.411397\pi\)
\(740\) −24.9292 −0.916416
\(741\) 1.59697 0.0586661
\(742\) −19.7357 −0.724520
\(743\) −18.3036 −0.671495 −0.335748 0.941952i \(-0.608989\pi\)
−0.335748 + 0.941952i \(0.608989\pi\)
\(744\) 4.77892 0.175204
\(745\) −35.9686 −1.31779
\(746\) 51.2964 1.87810
\(747\) 13.3539 0.488594
\(748\) −7.16443 −0.261957
\(749\) −8.74315 −0.319468
\(750\) 14.1547 0.516855
\(751\) −45.1608 −1.64794 −0.823970 0.566634i \(-0.808245\pi\)
−0.823970 + 0.566634i \(0.808245\pi\)
\(752\) 32.6108 1.18919
\(753\) 22.5878 0.823144
\(754\) 1.10889 0.0403832
\(755\) 39.5181 1.43821
\(756\) 1.41512 0.0514674
\(757\) 23.8554 0.867040 0.433520 0.901144i \(-0.357271\pi\)
0.433520 + 0.901144i \(0.357271\pi\)
\(758\) 48.0876 1.74662
\(759\) −10.4202 −0.378228
\(760\) −14.3850 −0.521799
\(761\) 41.1513 1.49173 0.745866 0.666096i \(-0.232036\pi\)
0.745866 + 0.666096i \(0.232036\pi\)
\(762\) −1.84800 −0.0669461
\(763\) 12.5844 0.455585
\(764\) −12.4785 −0.451456
\(765\) 12.2081 0.441385
\(766\) 34.1336 1.23330
\(767\) 2.98357 0.107730
\(768\) −20.9699 −0.756687
\(769\) 0.0467258 0.00168498 0.000842488 1.00000i \(-0.499732\pi\)
0.000842488 1.00000i \(0.499732\pi\)
\(770\) 9.34480 0.336763
\(771\) −0.699357 −0.0251867
\(772\) −10.7206 −0.385844
\(773\) 1.51524 0.0544994 0.0272497 0.999629i \(-0.491325\pi\)
0.0272497 + 0.999629i \(0.491325\pi\)
\(774\) −8.56109 −0.307722
\(775\) 31.8053 1.14248
\(776\) 15.2855 0.548716
\(777\) 5.04489 0.180984
\(778\) 43.3508 1.55420
\(779\) −37.3256 −1.33733
\(780\) 2.07051 0.0741361
\(781\) −14.4450 −0.516881
\(782\) −46.4900 −1.66248
\(783\) −1.43207 −0.0511780
\(784\) −4.82768 −0.172417
\(785\) −61.2860 −2.18739
\(786\) −31.8335 −1.13546
\(787\) −10.0243 −0.357327 −0.178663 0.983910i \(-0.557177\pi\)
−0.178663 + 0.983910i \(0.557177\pi\)
\(788\) −22.1811 −0.790168
\(789\) −10.8149 −0.385020
\(790\) −109.567 −3.89821
\(791\) −0.626982 −0.0222929
\(792\) −1.56521 −0.0556173
\(793\) −0.0664727 −0.00236052
\(794\) 67.2246 2.38571
\(795\) 37.2918 1.32260
\(796\) −16.6089 −0.588685
\(797\) −34.0735 −1.20694 −0.603472 0.797384i \(-0.706217\pi\)
−0.603472 + 0.797384i \(0.706217\pi\)
\(798\) −7.04336 −0.249332
\(799\) 23.6161 0.835478
\(800\) −48.6268 −1.71922
\(801\) −13.2257 −0.467306
\(802\) −25.1837 −0.889266
\(803\) 15.7908 0.557244
\(804\) −0.826375 −0.0291440
\(805\) 25.1267 0.885600
\(806\) 3.42360 0.120591
\(807\) 8.14144 0.286592
\(808\) 1.97450 0.0694628
\(809\) 15.2746 0.537026 0.268513 0.963276i \(-0.413468\pi\)
0.268513 + 0.963276i \(0.413468\pi\)
\(810\) −6.45308 −0.226738
\(811\) 20.6806 0.726194 0.363097 0.931751i \(-0.381719\pi\)
0.363097 + 0.931751i \(0.381719\pi\)
\(812\) −2.02655 −0.0711179
\(813\) 10.6047 0.371923
\(814\) 13.5007 0.473201
\(815\) −52.9331 −1.85416
\(816\) −16.8781 −0.590851
\(817\) 17.6564 0.617720
\(818\) 58.0616 2.03008
\(819\) −0.419006 −0.0146412
\(820\) −48.3936 −1.68998
\(821\) 46.0840 1.60834 0.804172 0.594397i \(-0.202609\pi\)
0.804172 + 0.594397i \(0.202609\pi\)
\(822\) −30.4785 −1.06306
\(823\) 26.8038 0.934323 0.467162 0.884172i \(-0.345277\pi\)
0.467162 + 0.884172i \(0.345277\pi\)
\(824\) 12.7034 0.442543
\(825\) −10.4170 −0.362673
\(826\) −13.1589 −0.457856
\(827\) −8.30934 −0.288944 −0.144472 0.989509i \(-0.546148\pi\)
−0.144472 + 0.989509i \(0.546148\pi\)
\(828\) 10.1827 0.353875
\(829\) 32.2106 1.11872 0.559360 0.828925i \(-0.311047\pi\)
0.559360 + 0.828925i \(0.311047\pi\)
\(830\) −86.1739 −2.99114
\(831\) −0.284090 −0.00985497
\(832\) −1.18866 −0.0412095
\(833\) −3.49611 −0.121133
\(834\) −13.3588 −0.462578
\(835\) −16.1150 −0.557681
\(836\) −7.81040 −0.270128
\(837\) −4.42140 −0.152826
\(838\) 16.1702 0.558589
\(839\) −28.8183 −0.994918 −0.497459 0.867487i \(-0.665734\pi\)
−0.497459 + 0.867487i \(0.665734\pi\)
\(840\) 3.77427 0.130225
\(841\) −26.9492 −0.929282
\(842\) 52.7643 1.81838
\(843\) 2.76057 0.0950790
\(844\) −10.4013 −0.358027
\(845\) 44.7818 1.54054
\(846\) −12.4832 −0.429182
\(847\) 8.90296 0.305909
\(848\) −51.5570 −1.77047
\(849\) 26.1803 0.898505
\(850\) −46.4758 −1.59411
\(851\) 36.3014 1.24440
\(852\) 14.1158 0.483601
\(853\) 46.9004 1.60584 0.802919 0.596089i \(-0.203279\pi\)
0.802919 + 0.596089i \(0.203279\pi\)
\(854\) 0.293175 0.0100322
\(855\) 13.3088 0.455153
\(856\) −9.45012 −0.322999
\(857\) 39.1541 1.33748 0.668739 0.743497i \(-0.266834\pi\)
0.668739 + 0.743497i \(0.266834\pi\)
\(858\) −1.12131 −0.0382809
\(859\) 14.0808 0.480432 0.240216 0.970720i \(-0.422782\pi\)
0.240216 + 0.970720i \(0.422782\pi\)
\(860\) 22.8920 0.780609
\(861\) 9.79333 0.333756
\(862\) −2.91269 −0.0992065
\(863\) 15.8939 0.541036 0.270518 0.962715i \(-0.412805\pi\)
0.270518 + 0.962715i \(0.412805\pi\)
\(864\) 6.75984 0.229975
\(865\) 21.1840 0.720278
\(866\) 27.3910 0.930782
\(867\) 4.77723 0.162243
\(868\) −6.25682 −0.212370
\(869\) 24.5875 0.834075
\(870\) 9.24125 0.313308
\(871\) 0.244683 0.00829077
\(872\) 13.6019 0.460620
\(873\) −14.1419 −0.478632
\(874\) −50.6817 −1.71433
\(875\) 7.65942 0.258936
\(876\) −15.4310 −0.521364
\(877\) −8.40763 −0.283906 −0.141953 0.989873i \(-0.545338\pi\)
−0.141953 + 0.989873i \(0.545338\pi\)
\(878\) 3.24409 0.109483
\(879\) 17.8356 0.601581
\(880\) 24.4121 0.822931
\(881\) −13.0385 −0.439277 −0.219639 0.975581i \(-0.570488\pi\)
−0.219639 + 0.975581i \(0.570488\pi\)
\(882\) 1.84800 0.0622255
\(883\) −49.0892 −1.65198 −0.825991 0.563684i \(-0.809384\pi\)
−0.825991 + 0.563684i \(0.809384\pi\)
\(884\) −2.07299 −0.0697224
\(885\) 24.8645 0.835810
\(886\) 50.9073 1.71026
\(887\) 19.3140 0.648500 0.324250 0.945971i \(-0.394888\pi\)
0.324250 + 0.945971i \(0.394888\pi\)
\(888\) 5.45282 0.182985
\(889\) −1.00000 −0.0335389
\(890\) 85.3461 2.86081
\(891\) 1.44812 0.0485137
\(892\) 6.66708 0.223230
\(893\) 25.7454 0.861538
\(894\) −19.0354 −0.636640
\(895\) −87.8856 −2.93769
\(896\) −8.27714 −0.276520
\(897\) −3.01503 −0.100669
\(898\) 41.5174 1.38545
\(899\) 6.33175 0.211176
\(900\) 10.1796 0.339321
\(901\) −37.3365 −1.24386
\(902\) 26.2082 0.872636
\(903\) −4.63261 −0.154164
\(904\) −0.677681 −0.0225393
\(905\) −50.1943 −1.66851
\(906\) 20.9139 0.694818
\(907\) −31.7689 −1.05487 −0.527434 0.849596i \(-0.676846\pi\)
−0.527434 + 0.849596i \(0.676846\pi\)
\(908\) 33.8962 1.12489
\(909\) −1.82679 −0.0605908
\(910\) 2.70388 0.0896326
\(911\) 1.29050 0.0427562 0.0213781 0.999771i \(-0.493195\pi\)
0.0213781 + 0.999771i \(0.493195\pi\)
\(912\) −18.3999 −0.609281
\(913\) 19.3380 0.639995
\(914\) 33.9791 1.12393
\(915\) −0.553971 −0.0183137
\(916\) −4.00260 −0.132250
\(917\) −17.2259 −0.568849
\(918\) 6.46082 0.213239
\(919\) −48.2784 −1.59256 −0.796278 0.604931i \(-0.793201\pi\)
−0.796278 + 0.604931i \(0.793201\pi\)
\(920\) 27.1585 0.895388
\(921\) 18.4266 0.607178
\(922\) −7.62766 −0.251204
\(923\) −4.17959 −0.137573
\(924\) 2.04926 0.0674156
\(925\) 36.2903 1.19322
\(926\) −2.93984 −0.0966093
\(927\) −11.7530 −0.386019
\(928\) −9.68056 −0.317780
\(929\) −36.9922 −1.21368 −0.606838 0.794826i \(-0.707562\pi\)
−0.606838 + 0.794826i \(0.707562\pi\)
\(930\) 28.5317 0.935590
\(931\) −3.81133 −0.124911
\(932\) 20.5195 0.672140
\(933\) 9.26368 0.303279
\(934\) −31.1927 −1.02066
\(935\) 17.6788 0.578157
\(936\) −0.452887 −0.0148031
\(937\) −4.71575 −0.154057 −0.0770284 0.997029i \(-0.524543\pi\)
−0.0770284 + 0.997029i \(0.524543\pi\)
\(938\) −1.07916 −0.0352359
\(939\) 9.06608 0.295860
\(940\) 33.3796 1.08872
\(941\) 42.7164 1.39252 0.696258 0.717792i \(-0.254847\pi\)
0.696258 + 0.717792i \(0.254847\pi\)
\(942\) −32.4340 −1.05676
\(943\) 70.4697 2.29481
\(944\) −34.3759 −1.11884
\(945\) −3.49192 −0.113592
\(946\) −12.3974 −0.403076
\(947\) 39.7768 1.29257 0.646286 0.763096i \(-0.276321\pi\)
0.646286 + 0.763096i \(0.276321\pi\)
\(948\) −24.0273 −0.780370
\(949\) 4.56899 0.148316
\(950\) −50.6662 −1.64383
\(951\) −4.01530 −0.130205
\(952\) −3.77881 −0.122472
\(953\) 6.09718 0.197507 0.0987535 0.995112i \(-0.468514\pi\)
0.0987535 + 0.995112i \(0.468514\pi\)
\(954\) 19.7357 0.638966
\(955\) 30.7916 0.996394
\(956\) −7.58980 −0.245472
\(957\) −2.07380 −0.0670365
\(958\) 67.1920 2.17088
\(959\) −16.4927 −0.532575
\(960\) −9.90611 −0.319718
\(961\) −11.4512 −0.369393
\(962\) 3.90638 0.125947
\(963\) 8.74315 0.281744
\(964\) −0.112015 −0.00360776
\(965\) 26.4539 0.851582
\(966\) 13.2976 0.427845
\(967\) 29.0575 0.934427 0.467214 0.884144i \(-0.345258\pi\)
0.467214 + 0.884144i \(0.345258\pi\)
\(968\) 9.62286 0.309290
\(969\) −13.3248 −0.428055
\(970\) 91.2590 2.93015
\(971\) −11.9169 −0.382430 −0.191215 0.981548i \(-0.561243\pi\)
−0.191215 + 0.981548i \(0.561243\pi\)
\(972\) −1.41512 −0.0453900
\(973\) −7.22877 −0.231744
\(974\) 70.5535 2.26068
\(975\) −3.01411 −0.0965287
\(976\) 0.765881 0.0245153
\(977\) −20.5871 −0.658638 −0.329319 0.944219i \(-0.606819\pi\)
−0.329319 + 0.944219i \(0.606819\pi\)
\(978\) −28.0134 −0.895771
\(979\) −19.1523 −0.612109
\(980\) −4.94148 −0.157850
\(981\) −12.5844 −0.401788
\(982\) −32.8663 −1.04880
\(983\) 53.1167 1.69416 0.847080 0.531466i \(-0.178359\pi\)
0.847080 + 0.531466i \(0.178359\pi\)
\(984\) 10.5852 0.337445
\(985\) 54.7335 1.74395
\(986\) −9.25234 −0.294655
\(987\) −6.75497 −0.215013
\(988\) −2.25990 −0.0718971
\(989\) −33.3348 −1.05998
\(990\) −9.34480 −0.296997
\(991\) −44.1874 −1.40366 −0.701829 0.712345i \(-0.747633\pi\)
−0.701829 + 0.712345i \(0.747633\pi\)
\(992\) −29.8880 −0.948945
\(993\) 6.96401 0.220996
\(994\) 18.4339 0.584687
\(995\) 40.9836 1.29927
\(996\) −18.8974 −0.598787
\(997\) −26.6778 −0.844896 −0.422448 0.906387i \(-0.638829\pi\)
−0.422448 + 0.906387i \(0.638829\pi\)
\(998\) −29.9121 −0.946851
\(999\) −5.04489 −0.159613
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.o.1.13 16
3.2 odd 2 8001.2.a.r.1.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.o.1.13 16 1.1 even 1 trivial
8001.2.a.r.1.4 16 3.2 odd 2