Properties

Label 2667.2.a.o.1.11
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,5,-16,19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} - 13 x^{14} + 98 x^{13} + 9 x^{12} - 712 x^{11} + 565 x^{10} + 2282 x^{9} - 3082 x^{8} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(1.55853\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.55853 q^{2} -1.00000 q^{3} +0.429028 q^{4} -1.78044 q^{5} -1.55853 q^{6} -1.00000 q^{7} -2.44841 q^{8} +1.00000 q^{9} -2.77487 q^{10} +0.515364 q^{11} -0.429028 q^{12} -5.03536 q^{13} -1.55853 q^{14} +1.78044 q^{15} -4.67399 q^{16} -0.0785962 q^{17} +1.55853 q^{18} +4.96243 q^{19} -0.763858 q^{20} +1.00000 q^{21} +0.803212 q^{22} +1.02045 q^{23} +2.44841 q^{24} -1.83005 q^{25} -7.84779 q^{26} -1.00000 q^{27} -0.429028 q^{28} +4.62457 q^{29} +2.77487 q^{30} +2.09705 q^{31} -2.38775 q^{32} -0.515364 q^{33} -0.122495 q^{34} +1.78044 q^{35} +0.429028 q^{36} +5.01414 q^{37} +7.73411 q^{38} +5.03536 q^{39} +4.35924 q^{40} -2.22133 q^{41} +1.55853 q^{42} +10.4993 q^{43} +0.221106 q^{44} -1.78044 q^{45} +1.59040 q^{46} +10.2871 q^{47} +4.67399 q^{48} +1.00000 q^{49} -2.85219 q^{50} +0.0785962 q^{51} -2.16031 q^{52} -2.98505 q^{53} -1.55853 q^{54} -0.917572 q^{55} +2.44841 q^{56} -4.96243 q^{57} +7.20755 q^{58} -10.5275 q^{59} +0.763858 q^{60} -3.21732 q^{61} +3.26832 q^{62} -1.00000 q^{63} +5.62659 q^{64} +8.96515 q^{65} -0.803212 q^{66} +6.73590 q^{67} -0.0337200 q^{68} -1.02045 q^{69} +2.77487 q^{70} +7.69793 q^{71} -2.44841 q^{72} -7.37692 q^{73} +7.81471 q^{74} +1.83005 q^{75} +2.12902 q^{76} -0.515364 q^{77} +7.84779 q^{78} -3.98213 q^{79} +8.32175 q^{80} +1.00000 q^{81} -3.46202 q^{82} -4.54247 q^{83} +0.429028 q^{84} +0.139936 q^{85} +16.3635 q^{86} -4.62457 q^{87} -1.26182 q^{88} +6.80807 q^{89} -2.77487 q^{90} +5.03536 q^{91} +0.437801 q^{92} -2.09705 q^{93} +16.0329 q^{94} -8.83529 q^{95} +2.38775 q^{96} +6.33552 q^{97} +1.55853 q^{98} +0.515364 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{2} - 16 q^{3} + 19 q^{4} - q^{5} - 5 q^{6} - 16 q^{7} + 6 q^{8} + 16 q^{9} - 12 q^{10} + 11 q^{11} - 19 q^{12} + 18 q^{13} - 5 q^{14} + q^{15} + 25 q^{16} - 5 q^{17} + 5 q^{18} - 11 q^{19}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.55853 1.10205 0.551025 0.834489i \(-0.314237\pi\)
0.551025 + 0.834489i \(0.314237\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.429028 0.214514
\(5\) −1.78044 −0.796235 −0.398118 0.917334i \(-0.630336\pi\)
−0.398118 + 0.917334i \(0.630336\pi\)
\(6\) −1.55853 −0.636269
\(7\) −1.00000 −0.377964
\(8\) −2.44841 −0.865645
\(9\) 1.00000 0.333333
\(10\) −2.77487 −0.877491
\(11\) 0.515364 0.155388 0.0776940 0.996977i \(-0.475244\pi\)
0.0776940 + 0.996977i \(0.475244\pi\)
\(12\) −0.429028 −0.123850
\(13\) −5.03536 −1.39656 −0.698279 0.715825i \(-0.746051\pi\)
−0.698279 + 0.715825i \(0.746051\pi\)
\(14\) −1.55853 −0.416536
\(15\) 1.78044 0.459707
\(16\) −4.67399 −1.16850
\(17\) −0.0785962 −0.0190624 −0.00953119 0.999955i \(-0.503034\pi\)
−0.00953119 + 0.999955i \(0.503034\pi\)
\(18\) 1.55853 0.367350
\(19\) 4.96243 1.13846 0.569230 0.822179i \(-0.307242\pi\)
0.569230 + 0.822179i \(0.307242\pi\)
\(20\) −0.763858 −0.170804
\(21\) 1.00000 0.218218
\(22\) 0.803212 0.171245
\(23\) 1.02045 0.212778 0.106389 0.994325i \(-0.466071\pi\)
0.106389 + 0.994325i \(0.466071\pi\)
\(24\) 2.44841 0.499780
\(25\) −1.83005 −0.366009
\(26\) −7.84779 −1.53908
\(27\) −1.00000 −0.192450
\(28\) −0.429028 −0.0810788
\(29\) 4.62457 0.858761 0.429380 0.903124i \(-0.358732\pi\)
0.429380 + 0.903124i \(0.358732\pi\)
\(30\) 2.77487 0.506620
\(31\) 2.09705 0.376641 0.188321 0.982108i \(-0.439696\pi\)
0.188321 + 0.982108i \(0.439696\pi\)
\(32\) −2.38775 −0.422099
\(33\) −0.515364 −0.0897133
\(34\) −0.122495 −0.0210077
\(35\) 1.78044 0.300949
\(36\) 0.429028 0.0715047
\(37\) 5.01414 0.824320 0.412160 0.911112i \(-0.364774\pi\)
0.412160 + 0.911112i \(0.364774\pi\)
\(38\) 7.73411 1.25464
\(39\) 5.03536 0.806303
\(40\) 4.35924 0.689257
\(41\) −2.22133 −0.346914 −0.173457 0.984841i \(-0.555494\pi\)
−0.173457 + 0.984841i \(0.555494\pi\)
\(42\) 1.55853 0.240487
\(43\) 10.4993 1.60113 0.800565 0.599247i \(-0.204533\pi\)
0.800565 + 0.599247i \(0.204533\pi\)
\(44\) 0.221106 0.0333329
\(45\) −1.78044 −0.265412
\(46\) 1.59040 0.234492
\(47\) 10.2871 1.50053 0.750267 0.661135i \(-0.229925\pi\)
0.750267 + 0.661135i \(0.229925\pi\)
\(48\) 4.67399 0.674633
\(49\) 1.00000 0.142857
\(50\) −2.85219 −0.403360
\(51\) 0.0785962 0.0110057
\(52\) −2.16031 −0.299582
\(53\) −2.98505 −0.410029 −0.205014 0.978759i \(-0.565724\pi\)
−0.205014 + 0.978759i \(0.565724\pi\)
\(54\) −1.55853 −0.212090
\(55\) −0.917572 −0.123725
\(56\) 2.44841 0.327183
\(57\) −4.96243 −0.657290
\(58\) 7.20755 0.946397
\(59\) −10.5275 −1.37057 −0.685283 0.728277i \(-0.740322\pi\)
−0.685283 + 0.728277i \(0.740322\pi\)
\(60\) 0.763858 0.0986136
\(61\) −3.21732 −0.411936 −0.205968 0.978559i \(-0.566034\pi\)
−0.205968 + 0.978559i \(0.566034\pi\)
\(62\) 3.26832 0.415078
\(63\) −1.00000 −0.125988
\(64\) 5.62659 0.703324
\(65\) 8.96515 1.11199
\(66\) −0.803212 −0.0988685
\(67\) 6.73590 0.822921 0.411461 0.911428i \(-0.365019\pi\)
0.411461 + 0.911428i \(0.365019\pi\)
\(68\) −0.0337200 −0.00408915
\(69\) −1.02045 −0.122847
\(70\) 2.77487 0.331661
\(71\) 7.69793 0.913577 0.456788 0.889575i \(-0.349000\pi\)
0.456788 + 0.889575i \(0.349000\pi\)
\(72\) −2.44841 −0.288548
\(73\) −7.37692 −0.863403 −0.431701 0.902017i \(-0.642087\pi\)
−0.431701 + 0.902017i \(0.642087\pi\)
\(74\) 7.81471 0.908442
\(75\) 1.83005 0.211315
\(76\) 2.12902 0.244216
\(77\) −0.515364 −0.0587311
\(78\) 7.84779 0.888587
\(79\) −3.98213 −0.448025 −0.224012 0.974586i \(-0.571916\pi\)
−0.224012 + 0.974586i \(0.571916\pi\)
\(80\) 8.32175 0.930399
\(81\) 1.00000 0.111111
\(82\) −3.46202 −0.382316
\(83\) −4.54247 −0.498601 −0.249301 0.968426i \(-0.580201\pi\)
−0.249301 + 0.968426i \(0.580201\pi\)
\(84\) 0.429028 0.0468108
\(85\) 0.139936 0.0151781
\(86\) 16.3635 1.76452
\(87\) −4.62457 −0.495806
\(88\) −1.26182 −0.134511
\(89\) 6.80807 0.721654 0.360827 0.932633i \(-0.382494\pi\)
0.360827 + 0.932633i \(0.382494\pi\)
\(90\) −2.77487 −0.292497
\(91\) 5.03536 0.527850
\(92\) 0.437801 0.0456439
\(93\) −2.09705 −0.217454
\(94\) 16.0329 1.65366
\(95\) −8.83529 −0.906482
\(96\) 2.38775 0.243699
\(97\) 6.33552 0.643274 0.321637 0.946863i \(-0.395767\pi\)
0.321637 + 0.946863i \(0.395767\pi\)
\(98\) 1.55853 0.157436
\(99\) 0.515364 0.0517960
\(100\) −0.785142 −0.0785142
\(101\) 6.44299 0.641102 0.320551 0.947231i \(-0.396132\pi\)
0.320551 + 0.947231i \(0.396132\pi\)
\(102\) 0.122495 0.0121288
\(103\) 9.00401 0.887191 0.443596 0.896227i \(-0.353703\pi\)
0.443596 + 0.896227i \(0.353703\pi\)
\(104\) 12.3286 1.20892
\(105\) −1.78044 −0.173753
\(106\) −4.65231 −0.451872
\(107\) 17.9368 1.73401 0.867006 0.498298i \(-0.166041\pi\)
0.867006 + 0.498298i \(0.166041\pi\)
\(108\) −0.429028 −0.0412833
\(109\) 11.0874 1.06198 0.530991 0.847378i \(-0.321820\pi\)
0.530991 + 0.847378i \(0.321820\pi\)
\(110\) −1.43007 −0.136352
\(111\) −5.01414 −0.475921
\(112\) 4.67399 0.441651
\(113\) −8.93713 −0.840734 −0.420367 0.907354i \(-0.638099\pi\)
−0.420367 + 0.907354i \(0.638099\pi\)
\(114\) −7.73411 −0.724366
\(115\) −1.81684 −0.169421
\(116\) 1.98407 0.184216
\(117\) −5.03536 −0.465520
\(118\) −16.4075 −1.51043
\(119\) 0.0785962 0.00720490
\(120\) −4.35924 −0.397943
\(121\) −10.7344 −0.975855
\(122\) −5.01431 −0.453974
\(123\) 2.22133 0.200291
\(124\) 0.899694 0.0807949
\(125\) 12.1605 1.08766
\(126\) −1.55853 −0.138845
\(127\) 1.00000 0.0887357
\(128\) 13.5447 1.19720
\(129\) −10.4993 −0.924412
\(130\) 13.9725 1.22547
\(131\) −9.58473 −0.837422 −0.418711 0.908120i \(-0.637518\pi\)
−0.418711 + 0.908120i \(0.637518\pi\)
\(132\) −0.221106 −0.0192448
\(133\) −4.96243 −0.430297
\(134\) 10.4981 0.906900
\(135\) 1.78044 0.153236
\(136\) 0.192436 0.0165012
\(137\) 14.3286 1.22418 0.612088 0.790790i \(-0.290330\pi\)
0.612088 + 0.790790i \(0.290330\pi\)
\(138\) −1.59040 −0.135384
\(139\) −10.1363 −0.859752 −0.429876 0.902888i \(-0.641443\pi\)
−0.429876 + 0.902888i \(0.641443\pi\)
\(140\) 0.763858 0.0645578
\(141\) −10.2871 −0.866333
\(142\) 11.9975 1.00681
\(143\) −2.59504 −0.217008
\(144\) −4.67399 −0.389499
\(145\) −8.23375 −0.683776
\(146\) −11.4972 −0.951513
\(147\) −1.00000 −0.0824786
\(148\) 2.15121 0.176828
\(149\) 0.914867 0.0749489 0.0374744 0.999298i \(-0.488069\pi\)
0.0374744 + 0.999298i \(0.488069\pi\)
\(150\) 2.85219 0.232880
\(151\) 0.363833 0.0296083 0.0148042 0.999890i \(-0.495288\pi\)
0.0148042 + 0.999890i \(0.495288\pi\)
\(152\) −12.1501 −0.985501
\(153\) −0.0785962 −0.00635413
\(154\) −0.803212 −0.0647246
\(155\) −3.73366 −0.299895
\(156\) 2.16031 0.172964
\(157\) −7.86274 −0.627515 −0.313757 0.949503i \(-0.601588\pi\)
−0.313757 + 0.949503i \(0.601588\pi\)
\(158\) −6.20629 −0.493746
\(159\) 2.98505 0.236730
\(160\) 4.25124 0.336090
\(161\) −1.02045 −0.0804225
\(162\) 1.55853 0.122450
\(163\) −5.02780 −0.393808 −0.196904 0.980423i \(-0.563089\pi\)
−0.196904 + 0.980423i \(0.563089\pi\)
\(164\) −0.953014 −0.0744179
\(165\) 0.917572 0.0714329
\(166\) −7.07960 −0.549484
\(167\) 4.92702 0.381264 0.190632 0.981662i \(-0.438946\pi\)
0.190632 + 0.981662i \(0.438946\pi\)
\(168\) −2.44841 −0.188899
\(169\) 12.3549 0.950376
\(170\) 0.218094 0.0167271
\(171\) 4.96243 0.379486
\(172\) 4.50450 0.343465
\(173\) −0.354038 −0.0269170 −0.0134585 0.999909i \(-0.504284\pi\)
−0.0134585 + 0.999909i \(0.504284\pi\)
\(174\) −7.20755 −0.546403
\(175\) 1.83005 0.138338
\(176\) −2.40881 −0.181571
\(177\) 10.5275 0.791297
\(178\) 10.6106 0.795299
\(179\) 24.4892 1.83041 0.915203 0.402994i \(-0.132030\pi\)
0.915203 + 0.402994i \(0.132030\pi\)
\(180\) −0.763858 −0.0569346
\(181\) −1.28210 −0.0952977 −0.0476488 0.998864i \(-0.515173\pi\)
−0.0476488 + 0.998864i \(0.515173\pi\)
\(182\) 7.84779 0.581717
\(183\) 3.21732 0.237831
\(184\) −2.49848 −0.184190
\(185\) −8.92736 −0.656353
\(186\) −3.26832 −0.239645
\(187\) −0.0405056 −0.00296207
\(188\) 4.41347 0.321886
\(189\) 1.00000 0.0727393
\(190\) −13.7701 −0.998988
\(191\) 7.18855 0.520146 0.260073 0.965589i \(-0.416253\pi\)
0.260073 + 0.965589i \(0.416253\pi\)
\(192\) −5.62659 −0.406064
\(193\) 19.5323 1.40597 0.702983 0.711207i \(-0.251851\pi\)
0.702983 + 0.711207i \(0.251851\pi\)
\(194\) 9.87412 0.708921
\(195\) −8.96515 −0.642007
\(196\) 0.429028 0.0306449
\(197\) 0.445897 0.0317688 0.0158844 0.999874i \(-0.494944\pi\)
0.0158844 + 0.999874i \(0.494944\pi\)
\(198\) 0.803212 0.0570818
\(199\) −0.902735 −0.0639932 −0.0319966 0.999488i \(-0.510187\pi\)
−0.0319966 + 0.999488i \(0.510187\pi\)
\(200\) 4.48071 0.316834
\(201\) −6.73590 −0.475114
\(202\) 10.0416 0.706526
\(203\) −4.62457 −0.324581
\(204\) 0.0337200 0.00236087
\(205\) 3.95494 0.276225
\(206\) 14.0331 0.977729
\(207\) 1.02045 0.0709260
\(208\) 23.5352 1.63188
\(209\) 2.55745 0.176903
\(210\) −2.77487 −0.191484
\(211\) −7.09394 −0.488367 −0.244184 0.969729i \(-0.578520\pi\)
−0.244184 + 0.969729i \(0.578520\pi\)
\(212\) −1.28067 −0.0879570
\(213\) −7.69793 −0.527454
\(214\) 27.9550 1.91097
\(215\) −18.6933 −1.27488
\(216\) 2.44841 0.166593
\(217\) −2.09705 −0.142357
\(218\) 17.2801 1.17036
\(219\) 7.37692 0.498486
\(220\) −0.393665 −0.0265409
\(221\) 0.395761 0.0266217
\(222\) −7.81471 −0.524489
\(223\) −14.1415 −0.946983 −0.473492 0.880798i \(-0.657007\pi\)
−0.473492 + 0.880798i \(0.657007\pi\)
\(224\) 2.38775 0.159538
\(225\) −1.83005 −0.122003
\(226\) −13.9288 −0.926531
\(227\) 4.17585 0.277161 0.138580 0.990351i \(-0.455746\pi\)
0.138580 + 0.990351i \(0.455746\pi\)
\(228\) −2.12902 −0.140998
\(229\) −6.56707 −0.433964 −0.216982 0.976176i \(-0.569621\pi\)
−0.216982 + 0.976176i \(0.569621\pi\)
\(230\) −2.83161 −0.186711
\(231\) 0.515364 0.0339084
\(232\) −11.3229 −0.743382
\(233\) 13.1952 0.864449 0.432224 0.901766i \(-0.357729\pi\)
0.432224 + 0.901766i \(0.357729\pi\)
\(234\) −7.84779 −0.513026
\(235\) −18.3156 −1.19478
\(236\) −4.51661 −0.294006
\(237\) 3.98213 0.258667
\(238\) 0.122495 0.00794016
\(239\) −15.5726 −1.00731 −0.503653 0.863906i \(-0.668011\pi\)
−0.503653 + 0.863906i \(0.668011\pi\)
\(240\) −8.32175 −0.537166
\(241\) −27.5918 −1.77735 −0.888673 0.458541i \(-0.848372\pi\)
−0.888673 + 0.458541i \(0.848372\pi\)
\(242\) −16.7299 −1.07544
\(243\) −1.00000 −0.0641500
\(244\) −1.38032 −0.0883661
\(245\) −1.78044 −0.113748
\(246\) 3.46202 0.220730
\(247\) −24.9876 −1.58992
\(248\) −5.13444 −0.326038
\(249\) 4.54247 0.287868
\(250\) 18.9525 1.19866
\(251\) −22.0431 −1.39135 −0.695676 0.718356i \(-0.744895\pi\)
−0.695676 + 0.718356i \(0.744895\pi\)
\(252\) −0.429028 −0.0270263
\(253\) 0.525902 0.0330631
\(254\) 1.55853 0.0977911
\(255\) −0.139936 −0.00876311
\(256\) 9.85675 0.616047
\(257\) −1.48239 −0.0924692 −0.0462346 0.998931i \(-0.514722\pi\)
−0.0462346 + 0.998931i \(0.514722\pi\)
\(258\) −16.3635 −1.01875
\(259\) −5.01414 −0.311564
\(260\) 3.84630 0.238538
\(261\) 4.62457 0.286254
\(262\) −14.9381 −0.922881
\(263\) 2.26700 0.139789 0.0698946 0.997554i \(-0.477734\pi\)
0.0698946 + 0.997554i \(0.477734\pi\)
\(264\) 1.26182 0.0776598
\(265\) 5.31470 0.326479
\(266\) −7.73411 −0.474209
\(267\) −6.80807 −0.416647
\(268\) 2.88989 0.176528
\(269\) 21.6954 1.32279 0.661396 0.750036i \(-0.269964\pi\)
0.661396 + 0.750036i \(0.269964\pi\)
\(270\) 2.77487 0.168873
\(271\) 22.5226 1.36815 0.684077 0.729410i \(-0.260205\pi\)
0.684077 + 0.729410i \(0.260205\pi\)
\(272\) 0.367358 0.0222744
\(273\) −5.03536 −0.304754
\(274\) 22.3316 1.34910
\(275\) −0.943139 −0.0568734
\(276\) −0.437801 −0.0263525
\(277\) 7.27304 0.436994 0.218497 0.975838i \(-0.429885\pi\)
0.218497 + 0.975838i \(0.429885\pi\)
\(278\) −15.7978 −0.947490
\(279\) 2.09705 0.125547
\(280\) −4.35924 −0.260515
\(281\) −17.9035 −1.06803 −0.534016 0.845474i \(-0.679318\pi\)
−0.534016 + 0.845474i \(0.679318\pi\)
\(282\) −16.0329 −0.954743
\(283\) 12.0940 0.718916 0.359458 0.933161i \(-0.382962\pi\)
0.359458 + 0.933161i \(0.382962\pi\)
\(284\) 3.30263 0.195975
\(285\) 8.83529 0.523357
\(286\) −4.04446 −0.239154
\(287\) 2.22133 0.131121
\(288\) −2.38775 −0.140700
\(289\) −16.9938 −0.999637
\(290\) −12.8326 −0.753555
\(291\) −6.33552 −0.371395
\(292\) −3.16491 −0.185212
\(293\) 23.2269 1.35693 0.678465 0.734632i \(-0.262645\pi\)
0.678465 + 0.734632i \(0.262645\pi\)
\(294\) −1.55853 −0.0908956
\(295\) 18.7436 1.09129
\(296\) −12.2767 −0.713568
\(297\) −0.515364 −0.0299044
\(298\) 1.42585 0.0825974
\(299\) −5.13832 −0.297157
\(300\) 0.785142 0.0453302
\(301\) −10.4993 −0.605170
\(302\) 0.567046 0.0326298
\(303\) −6.44299 −0.370140
\(304\) −23.1943 −1.33029
\(305\) 5.72824 0.327998
\(306\) −0.122495 −0.00700257
\(307\) −3.68668 −0.210410 −0.105205 0.994451i \(-0.533550\pi\)
−0.105205 + 0.994451i \(0.533550\pi\)
\(308\) −0.221106 −0.0125987
\(309\) −9.00401 −0.512220
\(310\) −5.81904 −0.330499
\(311\) −12.1597 −0.689513 −0.344756 0.938692i \(-0.612038\pi\)
−0.344756 + 0.938692i \(0.612038\pi\)
\(312\) −12.3286 −0.697972
\(313\) 27.8377 1.57348 0.786741 0.617283i \(-0.211767\pi\)
0.786741 + 0.617283i \(0.211767\pi\)
\(314\) −12.2543 −0.691553
\(315\) 1.78044 0.100316
\(316\) −1.70845 −0.0961077
\(317\) −23.2275 −1.30458 −0.652292 0.757967i \(-0.726193\pi\)
−0.652292 + 0.757967i \(0.726193\pi\)
\(318\) 4.65231 0.260888
\(319\) 2.38333 0.133441
\(320\) −10.0178 −0.560012
\(321\) −17.9368 −1.00113
\(322\) −1.59040 −0.0886297
\(323\) −0.390028 −0.0217017
\(324\) 0.429028 0.0238349
\(325\) 9.21494 0.511153
\(326\) −7.83600 −0.433996
\(327\) −11.0874 −0.613135
\(328\) 5.43873 0.300304
\(329\) −10.2871 −0.567148
\(330\) 1.43007 0.0787226
\(331\) −16.1213 −0.886109 −0.443054 0.896495i \(-0.646105\pi\)
−0.443054 + 0.896495i \(0.646105\pi\)
\(332\) −1.94885 −0.106957
\(333\) 5.01414 0.274773
\(334\) 7.67893 0.420172
\(335\) −11.9928 −0.655239
\(336\) −4.67399 −0.254987
\(337\) 32.7239 1.78258 0.891292 0.453430i \(-0.149800\pi\)
0.891292 + 0.453430i \(0.149800\pi\)
\(338\) 19.2555 1.04736
\(339\) 8.93713 0.485398
\(340\) 0.0600364 0.00325593
\(341\) 1.08074 0.0585255
\(342\) 7.73411 0.418213
\(343\) −1.00000 −0.0539949
\(344\) −25.7066 −1.38601
\(345\) 1.81684 0.0978155
\(346\) −0.551781 −0.0296639
\(347\) 32.5547 1.74763 0.873814 0.486260i \(-0.161639\pi\)
0.873814 + 0.486260i \(0.161639\pi\)
\(348\) −1.98407 −0.106357
\(349\) −16.9971 −0.909832 −0.454916 0.890534i \(-0.650331\pi\)
−0.454916 + 0.890534i \(0.650331\pi\)
\(350\) 2.85219 0.152456
\(351\) 5.03536 0.268768
\(352\) −1.23056 −0.0655890
\(353\) −16.4266 −0.874298 −0.437149 0.899389i \(-0.644012\pi\)
−0.437149 + 0.899389i \(0.644012\pi\)
\(354\) 16.4075 0.872049
\(355\) −13.7057 −0.727422
\(356\) 2.92086 0.154805
\(357\) −0.0785962 −0.00415975
\(358\) 38.1672 2.01720
\(359\) −20.0155 −1.05638 −0.528190 0.849126i \(-0.677129\pi\)
−0.528190 + 0.849126i \(0.677129\pi\)
\(360\) 4.35924 0.229752
\(361\) 5.62570 0.296089
\(362\) −1.99819 −0.105023
\(363\) 10.7344 0.563410
\(364\) 2.16031 0.113231
\(365\) 13.1341 0.687472
\(366\) 5.01431 0.262102
\(367\) −3.06255 −0.159864 −0.0799319 0.996800i \(-0.525470\pi\)
−0.0799319 + 0.996800i \(0.525470\pi\)
\(368\) −4.76956 −0.248631
\(369\) −2.22133 −0.115638
\(370\) −13.9136 −0.723333
\(371\) 2.98505 0.154976
\(372\) −0.899694 −0.0466470
\(373\) −18.7049 −0.968501 −0.484250 0.874929i \(-0.660908\pi\)
−0.484250 + 0.874929i \(0.660908\pi\)
\(374\) −0.0631294 −0.00326434
\(375\) −12.1605 −0.627964
\(376\) −25.1872 −1.29893
\(377\) −23.2864 −1.19931
\(378\) 1.55853 0.0801623
\(379\) −11.0442 −0.567300 −0.283650 0.958928i \(-0.591545\pi\)
−0.283650 + 0.958928i \(0.591545\pi\)
\(380\) −3.79059 −0.194453
\(381\) −1.00000 −0.0512316
\(382\) 11.2036 0.573226
\(383\) 5.24124 0.267815 0.133907 0.990994i \(-0.457248\pi\)
0.133907 + 0.990994i \(0.457248\pi\)
\(384\) −13.5447 −0.691202
\(385\) 0.917572 0.0467638
\(386\) 30.4418 1.54944
\(387\) 10.4993 0.533710
\(388\) 2.71812 0.137992
\(389\) 29.4180 1.49155 0.745776 0.666197i \(-0.232079\pi\)
0.745776 + 0.666197i \(0.232079\pi\)
\(390\) −13.9725 −0.707524
\(391\) −0.0802033 −0.00405606
\(392\) −2.44841 −0.123664
\(393\) 9.58473 0.483486
\(394\) 0.694945 0.0350108
\(395\) 7.08993 0.356733
\(396\) 0.221106 0.0111110
\(397\) 11.1886 0.561541 0.280770 0.959775i \(-0.409410\pi\)
0.280770 + 0.959775i \(0.409410\pi\)
\(398\) −1.40694 −0.0705237
\(399\) 4.96243 0.248432
\(400\) 8.55362 0.427681
\(401\) −10.9819 −0.548411 −0.274205 0.961671i \(-0.588415\pi\)
−0.274205 + 0.961671i \(0.588415\pi\)
\(402\) −10.4981 −0.523599
\(403\) −10.5594 −0.526002
\(404\) 2.76423 0.137525
\(405\) −1.78044 −0.0884706
\(406\) −7.20755 −0.357705
\(407\) 2.58411 0.128089
\(408\) −0.192436 −0.00952700
\(409\) −20.2531 −1.00145 −0.500725 0.865607i \(-0.666933\pi\)
−0.500725 + 0.865607i \(0.666933\pi\)
\(410\) 6.16391 0.304414
\(411\) −14.3286 −0.706778
\(412\) 3.86298 0.190315
\(413\) 10.5275 0.518025
\(414\) 1.59040 0.0781640
\(415\) 8.08759 0.397004
\(416\) 12.0232 0.589485
\(417\) 10.1363 0.496378
\(418\) 3.98588 0.194956
\(419\) −1.17174 −0.0572431 −0.0286216 0.999590i \(-0.509112\pi\)
−0.0286216 + 0.999590i \(0.509112\pi\)
\(420\) −0.763858 −0.0372725
\(421\) −23.9827 −1.16885 −0.584423 0.811449i \(-0.698679\pi\)
−0.584423 + 0.811449i \(0.698679\pi\)
\(422\) −11.0562 −0.538205
\(423\) 10.2871 0.500178
\(424\) 7.30864 0.354939
\(425\) 0.143835 0.00697701
\(426\) −11.9975 −0.581280
\(427\) 3.21732 0.155697
\(428\) 7.69538 0.371970
\(429\) 2.59504 0.125290
\(430\) −29.1342 −1.40498
\(431\) 21.8335 1.05168 0.525841 0.850583i \(-0.323751\pi\)
0.525841 + 0.850583i \(0.323751\pi\)
\(432\) 4.67399 0.224878
\(433\) 37.4203 1.79830 0.899152 0.437637i \(-0.144185\pi\)
0.899152 + 0.437637i \(0.144185\pi\)
\(434\) −3.26832 −0.156885
\(435\) 8.23375 0.394778
\(436\) 4.75682 0.227810
\(437\) 5.06390 0.242239
\(438\) 11.4972 0.549356
\(439\) −31.4000 −1.49864 −0.749319 0.662209i \(-0.769619\pi\)
−0.749319 + 0.662209i \(0.769619\pi\)
\(440\) 2.24660 0.107102
\(441\) 1.00000 0.0476190
\(442\) 0.616806 0.0293385
\(443\) 40.6534 1.93150 0.965750 0.259473i \(-0.0835489\pi\)
0.965750 + 0.259473i \(0.0835489\pi\)
\(444\) −2.15121 −0.102092
\(445\) −12.1213 −0.574607
\(446\) −22.0400 −1.04362
\(447\) −0.914867 −0.0432717
\(448\) −5.62659 −0.265832
\(449\) −20.9174 −0.987155 −0.493578 0.869702i \(-0.664311\pi\)
−0.493578 + 0.869702i \(0.664311\pi\)
\(450\) −2.85219 −0.134453
\(451\) −1.14479 −0.0539062
\(452\) −3.83428 −0.180350
\(453\) −0.363833 −0.0170944
\(454\) 6.50820 0.305445
\(455\) −8.96515 −0.420292
\(456\) 12.1501 0.568979
\(457\) 38.7768 1.81390 0.906951 0.421236i \(-0.138404\pi\)
0.906951 + 0.421236i \(0.138404\pi\)
\(458\) −10.2350 −0.478251
\(459\) 0.0785962 0.00366856
\(460\) −0.779477 −0.0363433
\(461\) 28.3743 1.32152 0.660761 0.750596i \(-0.270234\pi\)
0.660761 + 0.750596i \(0.270234\pi\)
\(462\) 0.803212 0.0373688
\(463\) 6.90362 0.320838 0.160419 0.987049i \(-0.448715\pi\)
0.160419 + 0.987049i \(0.448715\pi\)
\(464\) −21.6152 −1.00346
\(465\) 3.73366 0.173145
\(466\) 20.5652 0.952666
\(467\) −9.72062 −0.449816 −0.224908 0.974380i \(-0.572208\pi\)
−0.224908 + 0.974380i \(0.572208\pi\)
\(468\) −2.16031 −0.0998606
\(469\) −6.73590 −0.311035
\(470\) −28.5455 −1.31670
\(471\) 7.86274 0.362296
\(472\) 25.7757 1.18642
\(473\) 5.41096 0.248796
\(474\) 6.20629 0.285064
\(475\) −9.08147 −0.416686
\(476\) 0.0337200 0.00154555
\(477\) −2.98505 −0.136676
\(478\) −24.2704 −1.11010
\(479\) 38.8371 1.77451 0.887256 0.461277i \(-0.152609\pi\)
0.887256 + 0.461277i \(0.152609\pi\)
\(480\) −4.25124 −0.194042
\(481\) −25.2480 −1.15121
\(482\) −43.0028 −1.95872
\(483\) 1.02045 0.0464320
\(484\) −4.60536 −0.209335
\(485\) −11.2800 −0.512198
\(486\) −1.55853 −0.0706965
\(487\) −8.67843 −0.393257 −0.196629 0.980478i \(-0.562999\pi\)
−0.196629 + 0.980478i \(0.562999\pi\)
\(488\) 7.87733 0.356590
\(489\) 5.02780 0.227365
\(490\) −2.77487 −0.125356
\(491\) −8.02175 −0.362017 −0.181008 0.983482i \(-0.557936\pi\)
−0.181008 + 0.983482i \(0.557936\pi\)
\(492\) 0.953014 0.0429652
\(493\) −0.363474 −0.0163700
\(494\) −38.9441 −1.75218
\(495\) −0.917572 −0.0412418
\(496\) −9.80159 −0.440105
\(497\) −7.69793 −0.345299
\(498\) 7.07960 0.317245
\(499\) 3.20665 0.143549 0.0717746 0.997421i \(-0.477134\pi\)
0.0717746 + 0.997421i \(0.477134\pi\)
\(500\) 5.21718 0.233320
\(501\) −4.92702 −0.220123
\(502\) −34.3550 −1.53334
\(503\) −6.43794 −0.287053 −0.143527 0.989646i \(-0.545844\pi\)
−0.143527 + 0.989646i \(0.545844\pi\)
\(504\) 2.44841 0.109061
\(505\) −11.4713 −0.510468
\(506\) 0.819635 0.0364372
\(507\) −12.3549 −0.548700
\(508\) 0.429028 0.0190351
\(509\) 35.6794 1.58146 0.790732 0.612163i \(-0.209700\pi\)
0.790732 + 0.612163i \(0.209700\pi\)
\(510\) −0.218094 −0.00965738
\(511\) 7.37692 0.326336
\(512\) −11.7274 −0.518283
\(513\) −4.96243 −0.219097
\(514\) −2.31036 −0.101906
\(515\) −16.0311 −0.706413
\(516\) −4.50450 −0.198300
\(517\) 5.30162 0.233165
\(518\) −7.81471 −0.343359
\(519\) 0.354038 0.0155406
\(520\) −21.9504 −0.962588
\(521\) 27.0870 1.18670 0.593351 0.804944i \(-0.297805\pi\)
0.593351 + 0.804944i \(0.297805\pi\)
\(522\) 7.20755 0.315466
\(523\) −10.9602 −0.479257 −0.239628 0.970865i \(-0.577026\pi\)
−0.239628 + 0.970865i \(0.577026\pi\)
\(524\) −4.11212 −0.179639
\(525\) −1.83005 −0.0798697
\(526\) 3.53319 0.154055
\(527\) −0.164820 −0.00717968
\(528\) 2.40881 0.104830
\(529\) −21.9587 −0.954726
\(530\) 8.28314 0.359797
\(531\) −10.5275 −0.456856
\(532\) −2.12902 −0.0923049
\(533\) 11.1852 0.484485
\(534\) −10.6106 −0.459166
\(535\) −31.9353 −1.38068
\(536\) −16.4923 −0.712357
\(537\) −24.4892 −1.05679
\(538\) 33.8130 1.45778
\(539\) 0.515364 0.0221983
\(540\) 0.763858 0.0328712
\(541\) 8.76283 0.376743 0.188372 0.982098i \(-0.439679\pi\)
0.188372 + 0.982098i \(0.439679\pi\)
\(542\) 35.1023 1.50777
\(543\) 1.28210 0.0550201
\(544\) 0.187668 0.00804620
\(545\) −19.7404 −0.845587
\(546\) −7.84779 −0.335854
\(547\) −15.1052 −0.645851 −0.322925 0.946424i \(-0.604666\pi\)
−0.322925 + 0.946424i \(0.604666\pi\)
\(548\) 6.14738 0.262603
\(549\) −3.21732 −0.137312
\(550\) −1.46991 −0.0626773
\(551\) 22.9491 0.977664
\(552\) 2.49848 0.106342
\(553\) 3.98213 0.169337
\(554\) 11.3353 0.481590
\(555\) 8.92736 0.378945
\(556\) −4.34877 −0.184429
\(557\) 30.1447 1.27727 0.638636 0.769509i \(-0.279499\pi\)
0.638636 + 0.769509i \(0.279499\pi\)
\(558\) 3.26832 0.138359
\(559\) −52.8678 −2.23607
\(560\) −8.32175 −0.351658
\(561\) 0.0405056 0.00171015
\(562\) −27.9032 −1.17703
\(563\) 17.7284 0.747165 0.373582 0.927597i \(-0.378129\pi\)
0.373582 + 0.927597i \(0.378129\pi\)
\(564\) −4.41347 −0.185841
\(565\) 15.9120 0.669423
\(566\) 18.8490 0.792281
\(567\) −1.00000 −0.0419961
\(568\) −18.8477 −0.790833
\(569\) −11.0414 −0.462878 −0.231439 0.972849i \(-0.574343\pi\)
−0.231439 + 0.972849i \(0.574343\pi\)
\(570\) 13.7701 0.576766
\(571\) 20.2102 0.845772 0.422886 0.906183i \(-0.361017\pi\)
0.422886 + 0.906183i \(0.361017\pi\)
\(572\) −1.11335 −0.0465514
\(573\) −7.18855 −0.300306
\(574\) 3.46202 0.144502
\(575\) −1.86747 −0.0778787
\(576\) 5.62659 0.234441
\(577\) 10.6062 0.441544 0.220772 0.975325i \(-0.429142\pi\)
0.220772 + 0.975325i \(0.429142\pi\)
\(578\) −26.4855 −1.10165
\(579\) −19.5323 −0.811735
\(580\) −3.53251 −0.146680
\(581\) 4.54247 0.188454
\(582\) −9.87412 −0.409296
\(583\) −1.53839 −0.0637135
\(584\) 18.0617 0.747400
\(585\) 8.96515 0.370663
\(586\) 36.1999 1.49541
\(587\) −1.49954 −0.0618924 −0.0309462 0.999521i \(-0.509852\pi\)
−0.0309462 + 0.999521i \(0.509852\pi\)
\(588\) −0.429028 −0.0176928
\(589\) 10.4065 0.428791
\(590\) 29.2125 1.20266
\(591\) −0.445897 −0.0183417
\(592\) −23.4361 −0.963216
\(593\) 27.4075 1.12549 0.562745 0.826631i \(-0.309745\pi\)
0.562745 + 0.826631i \(0.309745\pi\)
\(594\) −0.803212 −0.0329562
\(595\) −0.139936 −0.00573680
\(596\) 0.392504 0.0160776
\(597\) 0.902735 0.0369465
\(598\) −8.00825 −0.327482
\(599\) 11.0899 0.453120 0.226560 0.973997i \(-0.427252\pi\)
0.226560 + 0.973997i \(0.427252\pi\)
\(600\) −4.48071 −0.182924
\(601\) −23.0051 −0.938399 −0.469199 0.883092i \(-0.655457\pi\)
−0.469199 + 0.883092i \(0.655457\pi\)
\(602\) −16.3635 −0.666927
\(603\) 6.73590 0.274307
\(604\) 0.156095 0.00635140
\(605\) 19.1119 0.777010
\(606\) −10.0416 −0.407913
\(607\) −31.3846 −1.27386 −0.636930 0.770922i \(-0.719796\pi\)
−0.636930 + 0.770922i \(0.719796\pi\)
\(608\) −11.8490 −0.480542
\(609\) 4.62457 0.187397
\(610\) 8.92765 0.361470
\(611\) −51.7995 −2.09558
\(612\) −0.0337200 −0.00136305
\(613\) 2.27107 0.0917275 0.0458637 0.998948i \(-0.485396\pi\)
0.0458637 + 0.998948i \(0.485396\pi\)
\(614\) −5.74581 −0.231882
\(615\) −3.95494 −0.159478
\(616\) 1.26182 0.0508403
\(617\) −21.4443 −0.863314 −0.431657 0.902038i \(-0.642071\pi\)
−0.431657 + 0.902038i \(0.642071\pi\)
\(618\) −14.0331 −0.564492
\(619\) 29.7159 1.19438 0.597191 0.802099i \(-0.296284\pi\)
0.597191 + 0.802099i \(0.296284\pi\)
\(620\) −1.60185 −0.0643318
\(621\) −1.02045 −0.0409492
\(622\) −18.9513 −0.759878
\(623\) −6.80807 −0.272760
\(624\) −23.5352 −0.942164
\(625\) −12.5007 −0.500028
\(626\) 43.3861 1.73406
\(627\) −2.55745 −0.102135
\(628\) −3.37334 −0.134611
\(629\) −0.394093 −0.0157135
\(630\) 2.77487 0.110554
\(631\) 30.4100 1.21060 0.605302 0.795996i \(-0.293052\pi\)
0.605302 + 0.795996i \(0.293052\pi\)
\(632\) 9.74990 0.387830
\(633\) 7.09394 0.281959
\(634\) −36.2008 −1.43772
\(635\) −1.78044 −0.0706545
\(636\) 1.28067 0.0507820
\(637\) −5.03536 −0.199508
\(638\) 3.71451 0.147059
\(639\) 7.69793 0.304526
\(640\) −24.1155 −0.953251
\(641\) 20.0927 0.793612 0.396806 0.917902i \(-0.370119\pi\)
0.396806 + 0.917902i \(0.370119\pi\)
\(642\) −27.9550 −1.10330
\(643\) −1.91571 −0.0755484 −0.0377742 0.999286i \(-0.512027\pi\)
−0.0377742 + 0.999286i \(0.512027\pi\)
\(644\) −0.437801 −0.0172518
\(645\) 18.6933 0.736050
\(646\) −0.607872 −0.0239164
\(647\) 2.27974 0.0896259 0.0448130 0.998995i \(-0.485731\pi\)
0.0448130 + 0.998995i \(0.485731\pi\)
\(648\) −2.44841 −0.0961827
\(649\) −5.42550 −0.212970
\(650\) 14.3618 0.563316
\(651\) 2.09705 0.0821899
\(652\) −2.15707 −0.0844774
\(653\) 16.9385 0.662856 0.331428 0.943481i \(-0.392470\pi\)
0.331428 + 0.943481i \(0.392470\pi\)
\(654\) −17.2801 −0.675706
\(655\) 17.0650 0.666785
\(656\) 10.3825 0.405368
\(657\) −7.37692 −0.287801
\(658\) −16.0329 −0.625026
\(659\) 26.4392 1.02992 0.514962 0.857213i \(-0.327806\pi\)
0.514962 + 0.857213i \(0.327806\pi\)
\(660\) 0.393665 0.0153234
\(661\) 5.49530 0.213743 0.106871 0.994273i \(-0.465917\pi\)
0.106871 + 0.994273i \(0.465917\pi\)
\(662\) −25.1256 −0.976536
\(663\) −0.395761 −0.0153701
\(664\) 11.1219 0.431612
\(665\) 8.83529 0.342618
\(666\) 7.81471 0.302814
\(667\) 4.71913 0.182725
\(668\) 2.11383 0.0817866
\(669\) 14.1415 0.546741
\(670\) −18.6913 −0.722106
\(671\) −1.65809 −0.0640099
\(672\) −2.38775 −0.0921094
\(673\) 4.88115 0.188154 0.0940772 0.995565i \(-0.470010\pi\)
0.0940772 + 0.995565i \(0.470010\pi\)
\(674\) 51.0013 1.96450
\(675\) 1.83005 0.0704385
\(676\) 5.30060 0.203869
\(677\) 36.6675 1.40925 0.704624 0.709581i \(-0.251116\pi\)
0.704624 + 0.709581i \(0.251116\pi\)
\(678\) 13.9288 0.534933
\(679\) −6.33552 −0.243135
\(680\) −0.342620 −0.0131389
\(681\) −4.17585 −0.160019
\(682\) 1.68438 0.0644981
\(683\) −16.8378 −0.644281 −0.322141 0.946692i \(-0.604402\pi\)
−0.322141 + 0.946692i \(0.604402\pi\)
\(684\) 2.12902 0.0814052
\(685\) −25.5112 −0.974732
\(686\) −1.55853 −0.0595051
\(687\) 6.56707 0.250550
\(688\) −49.0737 −1.87092
\(689\) 15.0308 0.572629
\(690\) 2.83161 0.107798
\(691\) 9.26464 0.352443 0.176222 0.984350i \(-0.443612\pi\)
0.176222 + 0.984350i \(0.443612\pi\)
\(692\) −0.151892 −0.00577408
\(693\) −0.515364 −0.0195770
\(694\) 50.7376 1.92597
\(695\) 18.0471 0.684565
\(696\) 11.3229 0.429192
\(697\) 0.174588 0.00661300
\(698\) −26.4905 −1.00268
\(699\) −13.1952 −0.499090
\(700\) 0.785142 0.0296756
\(701\) 19.4041 0.732882 0.366441 0.930441i \(-0.380576\pi\)
0.366441 + 0.930441i \(0.380576\pi\)
\(702\) 7.84779 0.296196
\(703\) 24.8823 0.938454
\(704\) 2.89974 0.109288
\(705\) 18.3156 0.689805
\(706\) −25.6014 −0.963520
\(707\) −6.44299 −0.242314
\(708\) 4.51661 0.169744
\(709\) 15.2697 0.573466 0.286733 0.958011i \(-0.407431\pi\)
0.286733 + 0.958011i \(0.407431\pi\)
\(710\) −21.3608 −0.801655
\(711\) −3.98213 −0.149342
\(712\) −16.6690 −0.624696
\(713\) 2.13993 0.0801410
\(714\) −0.122495 −0.00458426
\(715\) 4.62031 0.172790
\(716\) 10.5065 0.392648
\(717\) 15.5726 0.581569
\(718\) −31.1949 −1.16418
\(719\) −32.2131 −1.20135 −0.600673 0.799495i \(-0.705101\pi\)
−0.600673 + 0.799495i \(0.705101\pi\)
\(720\) 8.32175 0.310133
\(721\) −9.00401 −0.335327
\(722\) 8.76784 0.326305
\(723\) 27.5918 1.02615
\(724\) −0.550057 −0.0204427
\(725\) −8.46317 −0.314314
\(726\) 16.7299 0.620906
\(727\) −24.3075 −0.901516 −0.450758 0.892646i \(-0.648846\pi\)
−0.450758 + 0.892646i \(0.648846\pi\)
\(728\) −12.3286 −0.456930
\(729\) 1.00000 0.0370370
\(730\) 20.4700 0.757629
\(731\) −0.825206 −0.0305213
\(732\) 1.38032 0.0510182
\(733\) 31.6574 1.16929 0.584647 0.811288i \(-0.301233\pi\)
0.584647 + 0.811288i \(0.301233\pi\)
\(734\) −4.77309 −0.176178
\(735\) 1.78044 0.0656724
\(736\) −2.43657 −0.0898133
\(737\) 3.47144 0.127872
\(738\) −3.46202 −0.127439
\(739\) −15.9162 −0.585487 −0.292743 0.956191i \(-0.594568\pi\)
−0.292743 + 0.956191i \(0.594568\pi\)
\(740\) −3.83009 −0.140797
\(741\) 24.9876 0.917944
\(742\) 4.65231 0.170792
\(743\) 12.7798 0.468847 0.234423 0.972135i \(-0.424680\pi\)
0.234423 + 0.972135i \(0.424680\pi\)
\(744\) 5.13444 0.188238
\(745\) −1.62886 −0.0596769
\(746\) −29.1522 −1.06734
\(747\) −4.54247 −0.166200
\(748\) −0.0173781 −0.000635405 0
\(749\) −17.9368 −0.655395
\(750\) −18.9525 −0.692047
\(751\) 21.2634 0.775913 0.387956 0.921678i \(-0.373181\pi\)
0.387956 + 0.921678i \(0.373181\pi\)
\(752\) −48.0820 −1.75337
\(753\) 22.0431 0.803297
\(754\) −36.2926 −1.32170
\(755\) −0.647782 −0.0235752
\(756\) 0.429028 0.0156036
\(757\) −12.8093 −0.465563 −0.232782 0.972529i \(-0.574783\pi\)
−0.232782 + 0.972529i \(0.574783\pi\)
\(758\) −17.2127 −0.625193
\(759\) −0.525902 −0.0190890
\(760\) 21.6324 0.784691
\(761\) −39.8743 −1.44544 −0.722720 0.691141i \(-0.757109\pi\)
−0.722720 + 0.691141i \(0.757109\pi\)
\(762\) −1.55853 −0.0564597
\(763\) −11.0874 −0.401391
\(764\) 3.08409 0.111579
\(765\) 0.139936 0.00505938
\(766\) 8.16864 0.295145
\(767\) 53.0099 1.91408
\(768\) −9.85675 −0.355675
\(769\) 5.50092 0.198368 0.0991842 0.995069i \(-0.468377\pi\)
0.0991842 + 0.995069i \(0.468377\pi\)
\(770\) 1.43007 0.0515361
\(771\) 1.48239 0.0533871
\(772\) 8.37991 0.301600
\(773\) 34.0279 1.22390 0.611949 0.790897i \(-0.290386\pi\)
0.611949 + 0.790897i \(0.290386\pi\)
\(774\) 16.3635 0.588175
\(775\) −3.83770 −0.137854
\(776\) −15.5120 −0.556847
\(777\) 5.01414 0.179881
\(778\) 45.8489 1.64376
\(779\) −11.0232 −0.394947
\(780\) −3.84630 −0.137720
\(781\) 3.96723 0.141959
\(782\) −0.125000 −0.00446998
\(783\) −4.62457 −0.165269
\(784\) −4.67399 −0.166928
\(785\) 13.9991 0.499650
\(786\) 14.9381 0.532826
\(787\) −20.5802 −0.733605 −0.366803 0.930299i \(-0.619548\pi\)
−0.366803 + 0.930299i \(0.619548\pi\)
\(788\) 0.191302 0.00681487
\(789\) −2.26700 −0.0807073
\(790\) 11.0499 0.393138
\(791\) 8.93713 0.317768
\(792\) −1.26182 −0.0448369
\(793\) 16.2004 0.575292
\(794\) 17.4378 0.618846
\(795\) −5.31470 −0.188493
\(796\) −0.387299 −0.0137274
\(797\) −3.94676 −0.139801 −0.0699007 0.997554i \(-0.522268\pi\)
−0.0699007 + 0.997554i \(0.522268\pi\)
\(798\) 7.73411 0.273785
\(799\) −0.808530 −0.0286037
\(800\) 4.36969 0.154492
\(801\) 6.80807 0.240551
\(802\) −17.1157 −0.604376
\(803\) −3.80179 −0.134162
\(804\) −2.88989 −0.101919
\(805\) 1.81684 0.0640353
\(806\) −16.4572 −0.579680
\(807\) −21.6954 −0.763715
\(808\) −15.7751 −0.554966
\(809\) 23.5792 0.828999 0.414500 0.910049i \(-0.363957\pi\)
0.414500 + 0.910049i \(0.363957\pi\)
\(810\) −2.77487 −0.0974990
\(811\) −29.0528 −1.02018 −0.510091 0.860121i \(-0.670388\pi\)
−0.510091 + 0.860121i \(0.670388\pi\)
\(812\) −1.98407 −0.0696273
\(813\) −22.5226 −0.789904
\(814\) 4.02742 0.141161
\(815\) 8.95168 0.313564
\(816\) −0.367358 −0.0128601
\(817\) 52.1021 1.82282
\(818\) −31.5651 −1.10365
\(819\) 5.03536 0.175950
\(820\) 1.69678 0.0592542
\(821\) 12.1475 0.423951 0.211976 0.977275i \(-0.432010\pi\)
0.211976 + 0.977275i \(0.432010\pi\)
\(822\) −22.3316 −0.778905
\(823\) −30.1618 −1.05138 −0.525688 0.850678i \(-0.676192\pi\)
−0.525688 + 0.850678i \(0.676192\pi\)
\(824\) −22.0455 −0.767992
\(825\) 0.943139 0.0328359
\(826\) 16.4075 0.570890
\(827\) 0.711655 0.0247467 0.0123733 0.999923i \(-0.496061\pi\)
0.0123733 + 0.999923i \(0.496061\pi\)
\(828\) 0.437801 0.0152146
\(829\) 22.9180 0.795976 0.397988 0.917391i \(-0.369709\pi\)
0.397988 + 0.917391i \(0.369709\pi\)
\(830\) 12.6048 0.437518
\(831\) −7.27304 −0.252299
\(832\) −28.3319 −0.982233
\(833\) −0.0785962 −0.00272320
\(834\) 15.7978 0.547034
\(835\) −8.77225 −0.303576
\(836\) 1.09722 0.0379482
\(837\) −2.09705 −0.0724847
\(838\) −1.82619 −0.0630848
\(839\) 16.7052 0.576729 0.288364 0.957521i \(-0.406889\pi\)
0.288364 + 0.957521i \(0.406889\pi\)
\(840\) 4.35924 0.150408
\(841\) −7.61336 −0.262530
\(842\) −37.3779 −1.28813
\(843\) 17.9035 0.616629
\(844\) −3.04350 −0.104762
\(845\) −21.9971 −0.756723
\(846\) 16.0329 0.551221
\(847\) 10.7344 0.368838
\(848\) 13.9521 0.479118
\(849\) −12.0940 −0.415066
\(850\) 0.224171 0.00768901
\(851\) 5.11667 0.175397
\(852\) −3.30263 −0.113146
\(853\) 43.1401 1.47709 0.738544 0.674205i \(-0.235514\pi\)
0.738544 + 0.674205i \(0.235514\pi\)
\(854\) 5.01431 0.171586
\(855\) −8.83529 −0.302161
\(856\) −43.9166 −1.50104
\(857\) 40.8276 1.39465 0.697323 0.716757i \(-0.254375\pi\)
0.697323 + 0.716757i \(0.254375\pi\)
\(858\) 4.04446 0.138076
\(859\) −14.5718 −0.497185 −0.248592 0.968608i \(-0.579968\pi\)
−0.248592 + 0.968608i \(0.579968\pi\)
\(860\) −8.01998 −0.273479
\(861\) −2.22133 −0.0757027
\(862\) 34.0282 1.15901
\(863\) 7.00504 0.238454 0.119227 0.992867i \(-0.461958\pi\)
0.119227 + 0.992867i \(0.461958\pi\)
\(864\) 2.38775 0.0812329
\(865\) 0.630342 0.0214323
\(866\) 58.3208 1.98182
\(867\) 16.9938 0.577140
\(868\) −0.899694 −0.0305376
\(869\) −2.05224 −0.0696176
\(870\) 12.8326 0.435065
\(871\) −33.9177 −1.14926
\(872\) −27.1466 −0.919299
\(873\) 6.33552 0.214425
\(874\) 7.89226 0.266960
\(875\) −12.1605 −0.411099
\(876\) 3.16491 0.106932
\(877\) −54.4272 −1.83787 −0.918937 0.394404i \(-0.870951\pi\)
−0.918937 + 0.394404i \(0.870951\pi\)
\(878\) −48.9379 −1.65157
\(879\) −23.2269 −0.783424
\(880\) 4.28872 0.144573
\(881\) −17.1113 −0.576494 −0.288247 0.957556i \(-0.593072\pi\)
−0.288247 + 0.957556i \(0.593072\pi\)
\(882\) 1.55853 0.0524786
\(883\) −27.0710 −0.911011 −0.455505 0.890233i \(-0.650541\pi\)
−0.455505 + 0.890233i \(0.650541\pi\)
\(884\) 0.169793 0.00571074
\(885\) −18.7436 −0.630059
\(886\) 63.3597 2.12861
\(887\) −1.70221 −0.0571546 −0.0285773 0.999592i \(-0.509098\pi\)
−0.0285773 + 0.999592i \(0.509098\pi\)
\(888\) 12.2767 0.411979
\(889\) −1.00000 −0.0335389
\(890\) −18.8915 −0.633245
\(891\) 0.515364 0.0172653
\(892\) −6.06710 −0.203141
\(893\) 51.0492 1.70830
\(894\) −1.42585 −0.0476876
\(895\) −43.6014 −1.45743
\(896\) −13.5447 −0.452498
\(897\) 5.13832 0.171564
\(898\) −32.6005 −1.08789
\(899\) 9.69795 0.323445
\(900\) −0.785142 −0.0261714
\(901\) 0.234614 0.00781612
\(902\) −1.78420 −0.0594073
\(903\) 10.4993 0.349395
\(904\) 21.8818 0.727777
\(905\) 2.28270 0.0758794
\(906\) −0.567046 −0.0188388
\(907\) 11.0234 0.366026 0.183013 0.983111i \(-0.441415\pi\)
0.183013 + 0.983111i \(0.441415\pi\)
\(908\) 1.79156 0.0594549
\(909\) 6.44299 0.213701
\(910\) −13.9725 −0.463183
\(911\) 30.6668 1.01604 0.508018 0.861346i \(-0.330378\pi\)
0.508018 + 0.861346i \(0.330378\pi\)
\(912\) 23.1943 0.768042
\(913\) −2.34103 −0.0774767
\(914\) 60.4350 1.99901
\(915\) −5.72824 −0.189370
\(916\) −2.81746 −0.0930916
\(917\) 9.58473 0.316516
\(918\) 0.122495 0.00404293
\(919\) 37.9535 1.25197 0.625985 0.779835i \(-0.284697\pi\)
0.625985 + 0.779835i \(0.284697\pi\)
\(920\) 4.44838 0.146659
\(921\) 3.68668 0.121480
\(922\) 44.2223 1.45638
\(923\) −38.7619 −1.27586
\(924\) 0.221106 0.00727384
\(925\) −9.17611 −0.301709
\(926\) 10.7595 0.353580
\(927\) 9.00401 0.295730
\(928\) −11.0423 −0.362482
\(929\) −0.956910 −0.0313952 −0.0156976 0.999877i \(-0.504997\pi\)
−0.0156976 + 0.999877i \(0.504997\pi\)
\(930\) 5.81904 0.190814
\(931\) 4.96243 0.162637
\(932\) 5.66113 0.185437
\(933\) 12.1597 0.398090
\(934\) −15.1499 −0.495720
\(935\) 0.0721177 0.00235850
\(936\) 12.3286 0.402974
\(937\) 2.47200 0.0807567 0.0403783 0.999184i \(-0.487144\pi\)
0.0403783 + 0.999184i \(0.487144\pi\)
\(938\) −10.4981 −0.342776
\(939\) −27.8377 −0.908450
\(940\) −7.85791 −0.256297
\(941\) 8.23741 0.268532 0.134266 0.990945i \(-0.457132\pi\)
0.134266 + 0.990945i \(0.457132\pi\)
\(942\) 12.2543 0.399268
\(943\) −2.26675 −0.0738156
\(944\) 49.2055 1.60150
\(945\) −1.78044 −0.0579176
\(946\) 8.43317 0.274186
\(947\) −9.38242 −0.304888 −0.152444 0.988312i \(-0.548714\pi\)
−0.152444 + 0.988312i \(0.548714\pi\)
\(948\) 1.70845 0.0554878
\(949\) 37.1455 1.20579
\(950\) −14.1538 −0.459209
\(951\) 23.2275 0.753202
\(952\) −0.192436 −0.00623689
\(953\) −3.12669 −0.101283 −0.0506417 0.998717i \(-0.516127\pi\)
−0.0506417 + 0.998717i \(0.516127\pi\)
\(954\) −4.65231 −0.150624
\(955\) −12.7988 −0.414158
\(956\) −6.68108 −0.216082
\(957\) −2.38333 −0.0770423
\(958\) 60.5289 1.95560
\(959\) −14.3286 −0.462695
\(960\) 10.0178 0.323323
\(961\) −26.6024 −0.858141
\(962\) −39.3499 −1.26869
\(963\) 17.9368 0.578004
\(964\) −11.8377 −0.381266
\(965\) −34.7760 −1.11948
\(966\) 1.59040 0.0511704
\(967\) −26.6441 −0.856817 −0.428408 0.903585i \(-0.640926\pi\)
−0.428408 + 0.903585i \(0.640926\pi\)
\(968\) 26.2822 0.844743
\(969\) 0.390028 0.0125295
\(970\) −17.5802 −0.564468
\(971\) 47.1816 1.51413 0.757064 0.653341i \(-0.226633\pi\)
0.757064 + 0.653341i \(0.226633\pi\)
\(972\) −0.429028 −0.0137611
\(973\) 10.1363 0.324956
\(974\) −13.5256 −0.433389
\(975\) −9.21494 −0.295114
\(976\) 15.0377 0.481346
\(977\) 32.3530 1.03507 0.517533 0.855663i \(-0.326851\pi\)
0.517533 + 0.855663i \(0.326851\pi\)
\(978\) 7.83600 0.250568
\(979\) 3.50863 0.112136
\(980\) −0.763858 −0.0244005
\(981\) 11.0874 0.353994
\(982\) −12.5022 −0.398960
\(983\) −19.9109 −0.635058 −0.317529 0.948249i \(-0.602853\pi\)
−0.317529 + 0.948249i \(0.602853\pi\)
\(984\) −5.43873 −0.173380
\(985\) −0.793891 −0.0252955
\(986\) −0.566486 −0.0180406
\(987\) 10.2871 0.327443
\(988\) −10.7204 −0.341062
\(989\) 10.7140 0.340685
\(990\) −1.43007 −0.0454505
\(991\) 22.2465 0.706684 0.353342 0.935494i \(-0.385045\pi\)
0.353342 + 0.935494i \(0.385045\pi\)
\(992\) −5.00723 −0.158980
\(993\) 16.1213 0.511595
\(994\) −11.9975 −0.380537
\(995\) 1.60726 0.0509536
\(996\) 1.94885 0.0617517
\(997\) 33.9575 1.07544 0.537722 0.843122i \(-0.319285\pi\)
0.537722 + 0.843122i \(0.319285\pi\)
\(998\) 4.99767 0.158198
\(999\) −5.01414 −0.158640
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.o.1.11 16
3.2 odd 2 8001.2.a.r.1.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.o.1.11 16 1.1 even 1 trivial
8001.2.a.r.1.6 16 3.2 odd 2