Properties

Label 2667.2.a.l.1.6
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $0$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [13,4,-13,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(0\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - 4 x^{12} - 10 x^{11} + 53 x^{10} + 19 x^{9} - 242 x^{8} + 61 x^{7} + 467 x^{6} - 211 x^{5} + \cdots - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.305711\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.305711 q^{2} -1.00000 q^{3} -1.90654 q^{4} -0.276458 q^{5} +0.305711 q^{6} +1.00000 q^{7} +1.19427 q^{8} +1.00000 q^{9} +0.0845162 q^{10} -5.49757 q^{11} +1.90654 q^{12} +5.85411 q^{13} -0.305711 q^{14} +0.276458 q^{15} +3.44798 q^{16} +1.15122 q^{17} -0.305711 q^{18} -6.10623 q^{19} +0.527078 q^{20} -1.00000 q^{21} +1.68067 q^{22} +4.90674 q^{23} -1.19427 q^{24} -4.92357 q^{25} -1.78966 q^{26} -1.00000 q^{27} -1.90654 q^{28} +5.37546 q^{29} -0.0845162 q^{30} -9.23065 q^{31} -3.44263 q^{32} +5.49757 q^{33} -0.351941 q^{34} -0.276458 q^{35} -1.90654 q^{36} +3.98305 q^{37} +1.86674 q^{38} -5.85411 q^{39} -0.330166 q^{40} +1.75449 q^{41} +0.305711 q^{42} -10.6978 q^{43} +10.4813 q^{44} -0.276458 q^{45} -1.50004 q^{46} -2.53420 q^{47} -3.44798 q^{48} +1.00000 q^{49} +1.50519 q^{50} -1.15122 q^{51} -11.1611 q^{52} -6.75216 q^{53} +0.305711 q^{54} +1.51985 q^{55} +1.19427 q^{56} +6.10623 q^{57} -1.64334 q^{58} +10.1143 q^{59} -0.527078 q^{60} +6.36077 q^{61} +2.82191 q^{62} +1.00000 q^{63} -5.84351 q^{64} -1.61841 q^{65} -1.68067 q^{66} +3.74324 q^{67} -2.19485 q^{68} -4.90674 q^{69} +0.0845162 q^{70} +10.2468 q^{71} +1.19427 q^{72} +0.769235 q^{73} -1.21766 q^{74} +4.92357 q^{75} +11.6418 q^{76} -5.49757 q^{77} +1.78966 q^{78} -0.396745 q^{79} -0.953221 q^{80} +1.00000 q^{81} -0.536368 q^{82} -2.27133 q^{83} +1.90654 q^{84} -0.318264 q^{85} +3.27044 q^{86} -5.37546 q^{87} -6.56559 q^{88} -6.61497 q^{89} +0.0845162 q^{90} +5.85411 q^{91} -9.35489 q^{92} +9.23065 q^{93} +0.774732 q^{94} +1.68811 q^{95} +3.44263 q^{96} +6.50324 q^{97} -0.305711 q^{98} -5.49757 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q + 4 q^{2} - 13 q^{3} + 10 q^{4} + 12 q^{5} - 4 q^{6} + 13 q^{7} + 9 q^{8} + 13 q^{9} + 6 q^{10} + 3 q^{11} - 10 q^{12} + 21 q^{13} + 4 q^{14} - 12 q^{15} + 8 q^{16} + 17 q^{17} + 4 q^{18} + 5 q^{19}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.305711 −0.216170 −0.108085 0.994142i \(-0.534472\pi\)
−0.108085 + 0.994142i \(0.534472\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.90654 −0.953270
\(5\) −0.276458 −0.123636 −0.0618178 0.998087i \(-0.519690\pi\)
−0.0618178 + 0.998087i \(0.519690\pi\)
\(6\) 0.305711 0.124806
\(7\) 1.00000 0.377964
\(8\) 1.19427 0.422239
\(9\) 1.00000 0.333333
\(10\) 0.0845162 0.0267264
\(11\) −5.49757 −1.65758 −0.828790 0.559560i \(-0.810970\pi\)
−0.828790 + 0.559560i \(0.810970\pi\)
\(12\) 1.90654 0.550371
\(13\) 5.85411 1.62364 0.811819 0.583910i \(-0.198478\pi\)
0.811819 + 0.583910i \(0.198478\pi\)
\(14\) −0.305711 −0.0817047
\(15\) 0.276458 0.0713811
\(16\) 3.44798 0.861995
\(17\) 1.15122 0.279213 0.139606 0.990207i \(-0.455416\pi\)
0.139606 + 0.990207i \(0.455416\pi\)
\(18\) −0.305711 −0.0720568
\(19\) −6.10623 −1.40087 −0.700433 0.713718i \(-0.747010\pi\)
−0.700433 + 0.713718i \(0.747010\pi\)
\(20\) 0.527078 0.117858
\(21\) −1.00000 −0.218218
\(22\) 1.68067 0.358319
\(23\) 4.90674 1.02313 0.511563 0.859246i \(-0.329067\pi\)
0.511563 + 0.859246i \(0.329067\pi\)
\(24\) −1.19427 −0.243780
\(25\) −4.92357 −0.984714
\(26\) −1.78966 −0.350982
\(27\) −1.00000 −0.192450
\(28\) −1.90654 −0.360302
\(29\) 5.37546 0.998198 0.499099 0.866545i \(-0.333664\pi\)
0.499099 + 0.866545i \(0.333664\pi\)
\(30\) −0.0845162 −0.0154305
\(31\) −9.23065 −1.65787 −0.828937 0.559342i \(-0.811054\pi\)
−0.828937 + 0.559342i \(0.811054\pi\)
\(32\) −3.44263 −0.608577
\(33\) 5.49757 0.957004
\(34\) −0.351941 −0.0603574
\(35\) −0.276458 −0.0467299
\(36\) −1.90654 −0.317757
\(37\) 3.98305 0.654810 0.327405 0.944884i \(-0.393826\pi\)
0.327405 + 0.944884i \(0.393826\pi\)
\(38\) 1.86674 0.302825
\(39\) −5.85411 −0.937408
\(40\) −0.330166 −0.0522038
\(41\) 1.75449 0.274006 0.137003 0.990571i \(-0.456253\pi\)
0.137003 + 0.990571i \(0.456253\pi\)
\(42\) 0.305711 0.0471722
\(43\) −10.6978 −1.63140 −0.815701 0.578474i \(-0.803649\pi\)
−0.815701 + 0.578474i \(0.803649\pi\)
\(44\) 10.4813 1.58012
\(45\) −0.276458 −0.0412119
\(46\) −1.50004 −0.221169
\(47\) −2.53420 −0.369651 −0.184825 0.982771i \(-0.559172\pi\)
−0.184825 + 0.982771i \(0.559172\pi\)
\(48\) −3.44798 −0.497673
\(49\) 1.00000 0.142857
\(50\) 1.50519 0.212866
\(51\) −1.15122 −0.161203
\(52\) −11.1611 −1.54777
\(53\) −6.75216 −0.927481 −0.463740 0.885971i \(-0.653493\pi\)
−0.463740 + 0.885971i \(0.653493\pi\)
\(54\) 0.305711 0.0416020
\(55\) 1.51985 0.204936
\(56\) 1.19427 0.159591
\(57\) 6.10623 0.808790
\(58\) −1.64334 −0.215781
\(59\) 10.1143 1.31678 0.658388 0.752679i \(-0.271239\pi\)
0.658388 + 0.752679i \(0.271239\pi\)
\(60\) −0.527078 −0.0680455
\(61\) 6.36077 0.814413 0.407206 0.913336i \(-0.366503\pi\)
0.407206 + 0.913336i \(0.366503\pi\)
\(62\) 2.82191 0.358383
\(63\) 1.00000 0.125988
\(64\) −5.84351 −0.730439
\(65\) −1.61841 −0.200740
\(66\) −1.68067 −0.206876
\(67\) 3.74324 0.457310 0.228655 0.973508i \(-0.426567\pi\)
0.228655 + 0.973508i \(0.426567\pi\)
\(68\) −2.19485 −0.266165
\(69\) −4.90674 −0.590702
\(70\) 0.0845162 0.0101016
\(71\) 10.2468 1.21607 0.608036 0.793910i \(-0.291958\pi\)
0.608036 + 0.793910i \(0.291958\pi\)
\(72\) 1.19427 0.140746
\(73\) 0.769235 0.0900321 0.0450161 0.998986i \(-0.485666\pi\)
0.0450161 + 0.998986i \(0.485666\pi\)
\(74\) −1.21766 −0.141550
\(75\) 4.92357 0.568525
\(76\) 11.6418 1.33540
\(77\) −5.49757 −0.626506
\(78\) 1.78966 0.202640
\(79\) −0.396745 −0.0446372 −0.0223186 0.999751i \(-0.507105\pi\)
−0.0223186 + 0.999751i \(0.507105\pi\)
\(80\) −0.953221 −0.106573
\(81\) 1.00000 0.111111
\(82\) −0.536368 −0.0592319
\(83\) −2.27133 −0.249311 −0.124656 0.992200i \(-0.539783\pi\)
−0.124656 + 0.992200i \(0.539783\pi\)
\(84\) 1.90654 0.208021
\(85\) −0.318264 −0.0345206
\(86\) 3.27044 0.352661
\(87\) −5.37546 −0.576310
\(88\) −6.56559 −0.699895
\(89\) −6.61497 −0.701185 −0.350593 0.936528i \(-0.614020\pi\)
−0.350593 + 0.936528i \(0.614020\pi\)
\(90\) 0.0845162 0.00890879
\(91\) 5.85411 0.613677
\(92\) −9.35489 −0.975315
\(93\) 9.23065 0.957174
\(94\) 0.774732 0.0799075
\(95\) 1.68811 0.173197
\(96\) 3.44263 0.351362
\(97\) 6.50324 0.660304 0.330152 0.943928i \(-0.392900\pi\)
0.330152 + 0.943928i \(0.392900\pi\)
\(98\) −0.305711 −0.0308815
\(99\) −5.49757 −0.552527
\(100\) 9.38699 0.938699
\(101\) 6.45399 0.642196 0.321098 0.947046i \(-0.395948\pi\)
0.321098 + 0.947046i \(0.395948\pi\)
\(102\) 0.351941 0.0348474
\(103\) −7.17745 −0.707215 −0.353608 0.935394i \(-0.615045\pi\)
−0.353608 + 0.935394i \(0.615045\pi\)
\(104\) 6.99140 0.685563
\(105\) 0.276458 0.0269795
\(106\) 2.06421 0.200494
\(107\) 2.58615 0.250012 0.125006 0.992156i \(-0.460105\pi\)
0.125006 + 0.992156i \(0.460105\pi\)
\(108\) 1.90654 0.183457
\(109\) 16.7781 1.60705 0.803524 0.595272i \(-0.202956\pi\)
0.803524 + 0.595272i \(0.202956\pi\)
\(110\) −0.464633 −0.0443011
\(111\) −3.98305 −0.378055
\(112\) 3.44798 0.325803
\(113\) 10.3192 0.970744 0.485372 0.874308i \(-0.338684\pi\)
0.485372 + 0.874308i \(0.338684\pi\)
\(114\) −1.86674 −0.174836
\(115\) −1.35651 −0.126495
\(116\) −10.2485 −0.951553
\(117\) 5.85411 0.541213
\(118\) −3.09207 −0.284648
\(119\) 1.15122 0.105532
\(120\) 0.330166 0.0301399
\(121\) 19.2233 1.74757
\(122\) −1.94456 −0.176052
\(123\) −1.75449 −0.158197
\(124\) 17.5986 1.58040
\(125\) 2.74345 0.245381
\(126\) −0.305711 −0.0272349
\(127\) −1.00000 −0.0887357
\(128\) 8.67168 0.766476
\(129\) 10.6978 0.941891
\(130\) 0.494767 0.0433939
\(131\) 11.9275 1.04211 0.521056 0.853522i \(-0.325538\pi\)
0.521056 + 0.853522i \(0.325538\pi\)
\(132\) −10.4813 −0.912284
\(133\) −6.10623 −0.529477
\(134\) −1.14435 −0.0988568
\(135\) 0.276458 0.0237937
\(136\) 1.37487 0.117894
\(137\) 8.19429 0.700086 0.350043 0.936734i \(-0.386167\pi\)
0.350043 + 0.936734i \(0.386167\pi\)
\(138\) 1.50004 0.127692
\(139\) −13.5478 −1.14911 −0.574553 0.818467i \(-0.694824\pi\)
−0.574553 + 0.818467i \(0.694824\pi\)
\(140\) 0.527078 0.0445462
\(141\) 2.53420 0.213418
\(142\) −3.13256 −0.262878
\(143\) −32.1834 −2.69131
\(144\) 3.44798 0.287332
\(145\) −1.48609 −0.123413
\(146\) −0.235164 −0.0194623
\(147\) −1.00000 −0.0824786
\(148\) −7.59385 −0.624211
\(149\) 4.98742 0.408585 0.204293 0.978910i \(-0.434511\pi\)
0.204293 + 0.978910i \(0.434511\pi\)
\(150\) −1.50519 −0.122898
\(151\) 4.17561 0.339806 0.169903 0.985461i \(-0.445655\pi\)
0.169903 + 0.985461i \(0.445655\pi\)
\(152\) −7.29250 −0.591500
\(153\) 1.15122 0.0930708
\(154\) 1.68067 0.135432
\(155\) 2.55189 0.204972
\(156\) 11.1611 0.893603
\(157\) 5.35019 0.426991 0.213496 0.976944i \(-0.431515\pi\)
0.213496 + 0.976944i \(0.431515\pi\)
\(158\) 0.121289 0.00964925
\(159\) 6.75216 0.535481
\(160\) 0.951742 0.0752418
\(161\) 4.90674 0.386705
\(162\) −0.305711 −0.0240189
\(163\) −7.82336 −0.612773 −0.306386 0.951907i \(-0.599120\pi\)
−0.306386 + 0.951907i \(0.599120\pi\)
\(164\) −3.34501 −0.261202
\(165\) −1.51985 −0.118320
\(166\) 0.694371 0.0538937
\(167\) 8.35675 0.646665 0.323332 0.946285i \(-0.395197\pi\)
0.323332 + 0.946285i \(0.395197\pi\)
\(168\) −1.19427 −0.0921401
\(169\) 21.2706 1.63620
\(170\) 0.0972969 0.00746233
\(171\) −6.10623 −0.466955
\(172\) 20.3958 1.55517
\(173\) 7.00766 0.532783 0.266391 0.963865i \(-0.414169\pi\)
0.266391 + 0.963865i \(0.414169\pi\)
\(174\) 1.64334 0.124581
\(175\) −4.92357 −0.372187
\(176\) −18.9555 −1.42883
\(177\) −10.1143 −0.760241
\(178\) 2.02227 0.151575
\(179\) 25.1904 1.88282 0.941410 0.337263i \(-0.109501\pi\)
0.941410 + 0.337263i \(0.109501\pi\)
\(180\) 0.527078 0.0392861
\(181\) 16.9017 1.25629 0.628147 0.778095i \(-0.283814\pi\)
0.628147 + 0.778095i \(0.283814\pi\)
\(182\) −1.78966 −0.132659
\(183\) −6.36077 −0.470201
\(184\) 5.85998 0.432003
\(185\) −1.10115 −0.0809578
\(186\) −2.82191 −0.206913
\(187\) −6.32893 −0.462817
\(188\) 4.83155 0.352377
\(189\) −1.00000 −0.0727393
\(190\) −0.516075 −0.0374400
\(191\) −21.8166 −1.57859 −0.789296 0.614013i \(-0.789554\pi\)
−0.789296 + 0.614013i \(0.789554\pi\)
\(192\) 5.84351 0.421719
\(193\) −17.6982 −1.27395 −0.636973 0.770886i \(-0.719814\pi\)
−0.636973 + 0.770886i \(0.719814\pi\)
\(194\) −1.98811 −0.142738
\(195\) 1.61841 0.115897
\(196\) −1.90654 −0.136181
\(197\) 9.11313 0.649284 0.324642 0.945837i \(-0.394756\pi\)
0.324642 + 0.945837i \(0.394756\pi\)
\(198\) 1.68067 0.119440
\(199\) −0.0226194 −0.00160344 −0.000801722 1.00000i \(-0.500255\pi\)
−0.000801722 1.00000i \(0.500255\pi\)
\(200\) −5.88008 −0.415785
\(201\) −3.74324 −0.264028
\(202\) −1.97306 −0.138824
\(203\) 5.37546 0.377283
\(204\) 2.19485 0.153670
\(205\) −0.485043 −0.0338769
\(206\) 2.19423 0.152879
\(207\) 4.90674 0.341042
\(208\) 20.1848 1.39957
\(209\) 33.5694 2.32205
\(210\) −0.0845162 −0.00583217
\(211\) 13.0645 0.899399 0.449700 0.893180i \(-0.351531\pi\)
0.449700 + 0.893180i \(0.351531\pi\)
\(212\) 12.8733 0.884140
\(213\) −10.2468 −0.702099
\(214\) −0.790614 −0.0540452
\(215\) 2.95750 0.201700
\(216\) −1.19427 −0.0812599
\(217\) −9.23065 −0.626618
\(218\) −5.12924 −0.347396
\(219\) −0.769235 −0.0519801
\(220\) −2.89765 −0.195359
\(221\) 6.73938 0.453340
\(222\) 1.21766 0.0817242
\(223\) 14.4547 0.967958 0.483979 0.875080i \(-0.339191\pi\)
0.483979 + 0.875080i \(0.339191\pi\)
\(224\) −3.44263 −0.230020
\(225\) −4.92357 −0.328238
\(226\) −3.15468 −0.209846
\(227\) 5.34653 0.354862 0.177431 0.984133i \(-0.443221\pi\)
0.177431 + 0.984133i \(0.443221\pi\)
\(228\) −11.6418 −0.770996
\(229\) 12.2399 0.808839 0.404419 0.914574i \(-0.367474\pi\)
0.404419 + 0.914574i \(0.367474\pi\)
\(230\) 0.414698 0.0273444
\(231\) 5.49757 0.361714
\(232\) 6.41976 0.421478
\(233\) 20.6821 1.35493 0.677465 0.735555i \(-0.263079\pi\)
0.677465 + 0.735555i \(0.263079\pi\)
\(234\) −1.78966 −0.116994
\(235\) 0.700599 0.0457020
\(236\) −19.2834 −1.25524
\(237\) 0.396745 0.0257713
\(238\) −0.351941 −0.0228130
\(239\) 19.8538 1.28424 0.642119 0.766605i \(-0.278056\pi\)
0.642119 + 0.766605i \(0.278056\pi\)
\(240\) 0.953221 0.0615301
\(241\) 3.39756 0.218856 0.109428 0.993995i \(-0.465098\pi\)
0.109428 + 0.993995i \(0.465098\pi\)
\(242\) −5.87676 −0.377773
\(243\) −1.00000 −0.0641500
\(244\) −12.1271 −0.776356
\(245\) −0.276458 −0.0176622
\(246\) 0.536368 0.0341976
\(247\) −35.7465 −2.27450
\(248\) −11.0239 −0.700019
\(249\) 2.27133 0.143940
\(250\) −0.838702 −0.0530442
\(251\) 16.9646 1.07080 0.535398 0.844600i \(-0.320161\pi\)
0.535398 + 0.844600i \(0.320161\pi\)
\(252\) −1.90654 −0.120101
\(253\) −26.9751 −1.69591
\(254\) 0.305711 0.0191820
\(255\) 0.318264 0.0199305
\(256\) 9.03599 0.564749
\(257\) −9.88570 −0.616653 −0.308327 0.951281i \(-0.599769\pi\)
−0.308327 + 0.951281i \(0.599769\pi\)
\(258\) −3.27044 −0.203609
\(259\) 3.98305 0.247495
\(260\) 3.08557 0.191359
\(261\) 5.37546 0.332733
\(262\) −3.64637 −0.225274
\(263\) 15.4492 0.952640 0.476320 0.879272i \(-0.341970\pi\)
0.476320 + 0.879272i \(0.341970\pi\)
\(264\) 6.56559 0.404084
\(265\) 1.86669 0.114670
\(266\) 1.86674 0.114457
\(267\) 6.61497 0.404829
\(268\) −7.13664 −0.435940
\(269\) −20.0563 −1.22285 −0.611427 0.791301i \(-0.709404\pi\)
−0.611427 + 0.791301i \(0.709404\pi\)
\(270\) −0.0845162 −0.00514349
\(271\) 1.52170 0.0924367 0.0462183 0.998931i \(-0.485283\pi\)
0.0462183 + 0.998931i \(0.485283\pi\)
\(272\) 3.96939 0.240680
\(273\) −5.85411 −0.354307
\(274\) −2.50509 −0.151338
\(275\) 27.0677 1.63224
\(276\) 9.35489 0.563098
\(277\) −2.88589 −0.173396 −0.0866981 0.996235i \(-0.527632\pi\)
−0.0866981 + 0.996235i \(0.527632\pi\)
\(278\) 4.14170 0.248403
\(279\) −9.23065 −0.552625
\(280\) −0.330166 −0.0197312
\(281\) −1.40750 −0.0839643 −0.0419822 0.999118i \(-0.513367\pi\)
−0.0419822 + 0.999118i \(0.513367\pi\)
\(282\) −0.774732 −0.0461346
\(283\) 18.7659 1.11552 0.557759 0.830003i \(-0.311661\pi\)
0.557759 + 0.830003i \(0.311661\pi\)
\(284\) −19.5359 −1.15924
\(285\) −1.68811 −0.0999953
\(286\) 9.83881 0.581781
\(287\) 1.75449 0.103564
\(288\) −3.44263 −0.202859
\(289\) −15.6747 −0.922040
\(290\) 0.454313 0.0266782
\(291\) −6.50324 −0.381227
\(292\) −1.46658 −0.0858250
\(293\) 12.6713 0.740266 0.370133 0.928979i \(-0.379312\pi\)
0.370133 + 0.928979i \(0.379312\pi\)
\(294\) 0.305711 0.0178294
\(295\) −2.79619 −0.162800
\(296\) 4.75685 0.276486
\(297\) 5.49757 0.319001
\(298\) −1.52471 −0.0883240
\(299\) 28.7246 1.66118
\(300\) −9.38699 −0.541958
\(301\) −10.6978 −0.616612
\(302\) −1.27653 −0.0734560
\(303\) −6.45399 −0.370772
\(304\) −21.0542 −1.20754
\(305\) −1.75848 −0.100690
\(306\) −0.351941 −0.0201191
\(307\) −8.37854 −0.478189 −0.239094 0.970996i \(-0.576851\pi\)
−0.239094 + 0.970996i \(0.576851\pi\)
\(308\) 10.4813 0.597230
\(309\) 7.17745 0.408311
\(310\) −0.780139 −0.0443089
\(311\) 26.6946 1.51371 0.756856 0.653581i \(-0.226734\pi\)
0.756856 + 0.653581i \(0.226734\pi\)
\(312\) −6.99140 −0.395810
\(313\) −4.74932 −0.268447 −0.134224 0.990951i \(-0.542854\pi\)
−0.134224 + 0.990951i \(0.542854\pi\)
\(314\) −1.63561 −0.0923028
\(315\) −0.276458 −0.0155766
\(316\) 0.756410 0.0425514
\(317\) −12.7833 −0.717979 −0.358990 0.933342i \(-0.616879\pi\)
−0.358990 + 0.933342i \(0.616879\pi\)
\(318\) −2.06421 −0.115755
\(319\) −29.5520 −1.65459
\(320\) 1.61548 0.0903083
\(321\) −2.58615 −0.144345
\(322\) −1.50004 −0.0835941
\(323\) −7.02963 −0.391139
\(324\) −1.90654 −0.105919
\(325\) −28.8231 −1.59882
\(326\) 2.39169 0.132463
\(327\) −16.7781 −0.927829
\(328\) 2.09534 0.115696
\(329\) −2.53420 −0.139715
\(330\) 0.464633 0.0255772
\(331\) 30.0111 1.64956 0.824780 0.565454i \(-0.191299\pi\)
0.824780 + 0.565454i \(0.191299\pi\)
\(332\) 4.33039 0.237661
\(333\) 3.98305 0.218270
\(334\) −2.55475 −0.139790
\(335\) −1.03485 −0.0565398
\(336\) −3.44798 −0.188103
\(337\) −33.6687 −1.83405 −0.917026 0.398827i \(-0.869418\pi\)
−0.917026 + 0.398827i \(0.869418\pi\)
\(338\) −6.50265 −0.353698
\(339\) −10.3192 −0.560460
\(340\) 0.606784 0.0329075
\(341\) 50.7462 2.74806
\(342\) 1.86674 0.100942
\(343\) 1.00000 0.0539949
\(344\) −12.7761 −0.688842
\(345\) 1.35651 0.0730318
\(346\) −2.14232 −0.115172
\(347\) 10.1973 0.547418 0.273709 0.961813i \(-0.411749\pi\)
0.273709 + 0.961813i \(0.411749\pi\)
\(348\) 10.2485 0.549379
\(349\) −21.7938 −1.16660 −0.583299 0.812258i \(-0.698238\pi\)
−0.583299 + 0.812258i \(0.698238\pi\)
\(350\) 1.50519 0.0804558
\(351\) −5.85411 −0.312469
\(352\) 18.9261 1.00876
\(353\) 10.8660 0.578340 0.289170 0.957278i \(-0.406621\pi\)
0.289170 + 0.957278i \(0.406621\pi\)
\(354\) 3.09207 0.164341
\(355\) −2.83281 −0.150350
\(356\) 12.6117 0.668419
\(357\) −1.15122 −0.0609292
\(358\) −7.70099 −0.407010
\(359\) −32.9974 −1.74153 −0.870767 0.491696i \(-0.836377\pi\)
−0.870767 + 0.491696i \(0.836377\pi\)
\(360\) −0.330166 −0.0174013
\(361\) 18.2861 0.962424
\(362\) −5.16703 −0.271573
\(363\) −19.2233 −1.00896
\(364\) −11.1611 −0.585000
\(365\) −0.212661 −0.0111312
\(366\) 1.94456 0.101644
\(367\) −11.0294 −0.575732 −0.287866 0.957671i \(-0.592946\pi\)
−0.287866 + 0.957671i \(0.592946\pi\)
\(368\) 16.9183 0.881929
\(369\) 1.75449 0.0913353
\(370\) 0.336632 0.0175007
\(371\) −6.75216 −0.350555
\(372\) −17.5986 −0.912446
\(373\) −33.0143 −1.70942 −0.854708 0.519109i \(-0.826264\pi\)
−0.854708 + 0.519109i \(0.826264\pi\)
\(374\) 1.93482 0.100047
\(375\) −2.74345 −0.141671
\(376\) −3.02652 −0.156081
\(377\) 31.4685 1.62071
\(378\) 0.305711 0.0157241
\(379\) −5.90961 −0.303556 −0.151778 0.988415i \(-0.548500\pi\)
−0.151778 + 0.988415i \(0.548500\pi\)
\(380\) −3.21846 −0.165104
\(381\) 1.00000 0.0512316
\(382\) 6.66956 0.341245
\(383\) 24.2106 1.23710 0.618551 0.785745i \(-0.287720\pi\)
0.618551 + 0.785745i \(0.287720\pi\)
\(384\) −8.67168 −0.442525
\(385\) 1.51985 0.0774585
\(386\) 5.41054 0.275389
\(387\) −10.6978 −0.543801
\(388\) −12.3987 −0.629448
\(389\) −32.5969 −1.65273 −0.826363 0.563137i \(-0.809594\pi\)
−0.826363 + 0.563137i \(0.809594\pi\)
\(390\) −0.494767 −0.0250535
\(391\) 5.64875 0.285669
\(392\) 1.19427 0.0603199
\(393\) −11.9275 −0.601664
\(394\) −2.78598 −0.140356
\(395\) 0.109683 0.00551876
\(396\) 10.4813 0.526707
\(397\) 12.9830 0.651597 0.325799 0.945439i \(-0.394367\pi\)
0.325799 + 0.945439i \(0.394367\pi\)
\(398\) 0.00691498 0.000346617 0
\(399\) 6.10623 0.305694
\(400\) −16.9764 −0.848819
\(401\) −36.1973 −1.80760 −0.903802 0.427950i \(-0.859236\pi\)
−0.903802 + 0.427950i \(0.859236\pi\)
\(402\) 1.14435 0.0570750
\(403\) −54.0372 −2.69179
\(404\) −12.3048 −0.612186
\(405\) −0.276458 −0.0137373
\(406\) −1.64334 −0.0815574
\(407\) −21.8971 −1.08540
\(408\) −1.37487 −0.0680664
\(409\) −9.96969 −0.492969 −0.246485 0.969147i \(-0.579276\pi\)
−0.246485 + 0.969147i \(0.579276\pi\)
\(410\) 0.148283 0.00732318
\(411\) −8.19429 −0.404195
\(412\) 13.6841 0.674167
\(413\) 10.1143 0.497694
\(414\) −1.50004 −0.0737231
\(415\) 0.627928 0.0308237
\(416\) −20.1535 −0.988108
\(417\) 13.5478 0.663437
\(418\) −10.2625 −0.501957
\(419\) 5.11772 0.250017 0.125008 0.992156i \(-0.460104\pi\)
0.125008 + 0.992156i \(0.460104\pi\)
\(420\) −0.527078 −0.0257188
\(421\) −32.5904 −1.58836 −0.794179 0.607684i \(-0.792099\pi\)
−0.794179 + 0.607684i \(0.792099\pi\)
\(422\) −3.99397 −0.194423
\(423\) −2.53420 −0.123217
\(424\) −8.06392 −0.391619
\(425\) −5.66813 −0.274945
\(426\) 3.13256 0.151773
\(427\) 6.36077 0.307819
\(428\) −4.93060 −0.238329
\(429\) 32.1834 1.55383
\(430\) −0.904139 −0.0436014
\(431\) −5.40245 −0.260227 −0.130113 0.991499i \(-0.541534\pi\)
−0.130113 + 0.991499i \(0.541534\pi\)
\(432\) −3.44798 −0.165891
\(433\) −15.1606 −0.728572 −0.364286 0.931287i \(-0.618687\pi\)
−0.364286 + 0.931287i \(0.618687\pi\)
\(434\) 2.82191 0.135456
\(435\) 1.48609 0.0712525
\(436\) −31.9881 −1.53195
\(437\) −29.9617 −1.43326
\(438\) 0.235164 0.0112365
\(439\) 25.7263 1.22785 0.613925 0.789364i \(-0.289590\pi\)
0.613925 + 0.789364i \(0.289590\pi\)
\(440\) 1.81511 0.0865319
\(441\) 1.00000 0.0476190
\(442\) −2.06030 −0.0979986
\(443\) 28.5560 1.35674 0.678368 0.734722i \(-0.262688\pi\)
0.678368 + 0.734722i \(0.262688\pi\)
\(444\) 7.59385 0.360388
\(445\) 1.82876 0.0866915
\(446\) −4.41896 −0.209244
\(447\) −4.98742 −0.235897
\(448\) −5.84351 −0.276080
\(449\) −33.0302 −1.55879 −0.779396 0.626532i \(-0.784474\pi\)
−0.779396 + 0.626532i \(0.784474\pi\)
\(450\) 1.50519 0.0709553
\(451\) −9.64545 −0.454186
\(452\) −19.6739 −0.925382
\(453\) −4.17561 −0.196187
\(454\) −1.63449 −0.0767106
\(455\) −1.61841 −0.0758724
\(456\) 7.29250 0.341503
\(457\) 26.3102 1.23074 0.615370 0.788239i \(-0.289007\pi\)
0.615370 + 0.788239i \(0.289007\pi\)
\(458\) −3.74189 −0.174847
\(459\) −1.15122 −0.0537345
\(460\) 2.58623 0.120584
\(461\) 16.9634 0.790064 0.395032 0.918667i \(-0.370733\pi\)
0.395032 + 0.918667i \(0.370733\pi\)
\(462\) −1.68067 −0.0781917
\(463\) 23.7165 1.10220 0.551099 0.834440i \(-0.314209\pi\)
0.551099 + 0.834440i \(0.314209\pi\)
\(464\) 18.5345 0.860441
\(465\) −2.55189 −0.118341
\(466\) −6.32275 −0.292896
\(467\) −34.2579 −1.58526 −0.792632 0.609700i \(-0.791290\pi\)
−0.792632 + 0.609700i \(0.791290\pi\)
\(468\) −11.1611 −0.515922
\(469\) 3.74324 0.172847
\(470\) −0.214181 −0.00987942
\(471\) −5.35019 −0.246524
\(472\) 12.0793 0.555994
\(473\) 58.8120 2.70418
\(474\) −0.121289 −0.00557099
\(475\) 30.0645 1.37945
\(476\) −2.19485 −0.100601
\(477\) −6.75216 −0.309160
\(478\) −6.06953 −0.277614
\(479\) 23.5026 1.07386 0.536932 0.843626i \(-0.319583\pi\)
0.536932 + 0.843626i \(0.319583\pi\)
\(480\) −0.951742 −0.0434409
\(481\) 23.3172 1.06317
\(482\) −1.03867 −0.0473102
\(483\) −4.90674 −0.223264
\(484\) −36.6499 −1.66591
\(485\) −1.79787 −0.0816371
\(486\) 0.305711 0.0138673
\(487\) −0.487332 −0.0220831 −0.0110416 0.999939i \(-0.503515\pi\)
−0.0110416 + 0.999939i \(0.503515\pi\)
\(488\) 7.59649 0.343877
\(489\) 7.82336 0.353785
\(490\) 0.0845162 0.00381805
\(491\) 15.3844 0.694290 0.347145 0.937811i \(-0.387151\pi\)
0.347145 + 0.937811i \(0.387151\pi\)
\(492\) 3.34501 0.150805
\(493\) 6.18835 0.278709
\(494\) 10.9281 0.491679
\(495\) 1.51985 0.0683120
\(496\) −31.8271 −1.42908
\(497\) 10.2468 0.459632
\(498\) −0.694371 −0.0311155
\(499\) −3.97860 −0.178107 −0.0890533 0.996027i \(-0.528384\pi\)
−0.0890533 + 0.996027i \(0.528384\pi\)
\(500\) −5.23050 −0.233915
\(501\) −8.35675 −0.373352
\(502\) −5.18627 −0.231474
\(503\) −39.1786 −1.74689 −0.873445 0.486924i \(-0.838119\pi\)
−0.873445 + 0.486924i \(0.838119\pi\)
\(504\) 1.19427 0.0531971
\(505\) −1.78426 −0.0793983
\(506\) 8.24659 0.366606
\(507\) −21.2706 −0.944660
\(508\) 1.90654 0.0845891
\(509\) 28.7484 1.27425 0.637126 0.770760i \(-0.280123\pi\)
0.637126 + 0.770760i \(0.280123\pi\)
\(510\) −0.0972969 −0.00430838
\(511\) 0.769235 0.0340290
\(512\) −20.1058 −0.888558
\(513\) 6.10623 0.269597
\(514\) 3.02217 0.133302
\(515\) 1.98426 0.0874370
\(516\) −20.3958 −0.897876
\(517\) 13.9319 0.612726
\(518\) −1.21766 −0.0535010
\(519\) −7.00766 −0.307602
\(520\) −1.93283 −0.0847600
\(521\) 28.5996 1.25297 0.626487 0.779432i \(-0.284492\pi\)
0.626487 + 0.779432i \(0.284492\pi\)
\(522\) −1.64334 −0.0719269
\(523\) 41.7036 1.82357 0.911785 0.410667i \(-0.134704\pi\)
0.911785 + 0.410667i \(0.134704\pi\)
\(524\) −22.7403 −0.993415
\(525\) 4.92357 0.214882
\(526\) −4.72300 −0.205933
\(527\) −10.6265 −0.462899
\(528\) 18.9555 0.824933
\(529\) 1.07606 0.0467851
\(530\) −0.570667 −0.0247882
\(531\) 10.1143 0.438925
\(532\) 11.6418 0.504735
\(533\) 10.2710 0.444886
\(534\) −2.02227 −0.0875121
\(535\) −0.714961 −0.0309104
\(536\) 4.47045 0.193094
\(537\) −25.1904 −1.08705
\(538\) 6.13142 0.264344
\(539\) −5.49757 −0.236797
\(540\) −0.527078 −0.0226818
\(541\) 16.8941 0.726333 0.363166 0.931724i \(-0.381696\pi\)
0.363166 + 0.931724i \(0.381696\pi\)
\(542\) −0.465200 −0.0199821
\(543\) −16.9017 −0.725321
\(544\) −3.96323 −0.169922
\(545\) −4.63843 −0.198688
\(546\) 1.78966 0.0765906
\(547\) −12.9628 −0.554250 −0.277125 0.960834i \(-0.589382\pi\)
−0.277125 + 0.960834i \(0.589382\pi\)
\(548\) −15.6228 −0.667371
\(549\) 6.36077 0.271471
\(550\) −8.27488 −0.352842
\(551\) −32.8238 −1.39834
\(552\) −5.85998 −0.249417
\(553\) −0.396745 −0.0168713
\(554\) 0.882248 0.0374831
\(555\) 1.10115 0.0467410
\(556\) 25.8294 1.09541
\(557\) −32.8548 −1.39210 −0.696052 0.717992i \(-0.745062\pi\)
−0.696052 + 0.717992i \(0.745062\pi\)
\(558\) 2.82191 0.119461
\(559\) −62.6262 −2.64881
\(560\) −0.953221 −0.0402809
\(561\) 6.32893 0.267208
\(562\) 0.430288 0.0181506
\(563\) 37.3311 1.57332 0.786660 0.617386i \(-0.211808\pi\)
0.786660 + 0.617386i \(0.211808\pi\)
\(564\) −4.83155 −0.203445
\(565\) −2.85281 −0.120019
\(566\) −5.73694 −0.241142
\(567\) 1.00000 0.0419961
\(568\) 12.2375 0.513473
\(569\) −20.1928 −0.846526 −0.423263 0.906007i \(-0.639115\pi\)
−0.423263 + 0.906007i \(0.639115\pi\)
\(570\) 0.516075 0.0216160
\(571\) 22.1763 0.928048 0.464024 0.885823i \(-0.346405\pi\)
0.464024 + 0.885823i \(0.346405\pi\)
\(572\) 61.3589 2.56554
\(573\) 21.8166 0.911400
\(574\) −0.536368 −0.0223876
\(575\) −24.1587 −1.00749
\(576\) −5.84351 −0.243480
\(577\) 35.6411 1.48376 0.741878 0.670535i \(-0.233935\pi\)
0.741878 + 0.670535i \(0.233935\pi\)
\(578\) 4.79192 0.199318
\(579\) 17.6982 0.735513
\(580\) 2.83329 0.117646
\(581\) −2.27133 −0.0942308
\(582\) 1.98811 0.0824099
\(583\) 37.1205 1.53737
\(584\) 0.918676 0.0380151
\(585\) −1.61841 −0.0669132
\(586\) −3.87376 −0.160023
\(587\) 3.23639 0.133580 0.0667900 0.997767i \(-0.478724\pi\)
0.0667900 + 0.997767i \(0.478724\pi\)
\(588\) 1.90654 0.0786244
\(589\) 56.3645 2.32246
\(590\) 0.854825 0.0351926
\(591\) −9.11313 −0.374864
\(592\) 13.7335 0.564443
\(593\) 18.1133 0.743825 0.371912 0.928268i \(-0.378702\pi\)
0.371912 + 0.928268i \(0.378702\pi\)
\(594\) −1.68067 −0.0689586
\(595\) −0.318264 −0.0130476
\(596\) −9.50872 −0.389492
\(597\) 0.0226194 0.000925749 0
\(598\) −8.78141 −0.359099
\(599\) −22.2405 −0.908721 −0.454361 0.890818i \(-0.650132\pi\)
−0.454361 + 0.890818i \(0.650132\pi\)
\(600\) 5.88008 0.240053
\(601\) 34.6167 1.41205 0.706023 0.708189i \(-0.250488\pi\)
0.706023 + 0.708189i \(0.250488\pi\)
\(602\) 3.27044 0.133293
\(603\) 3.74324 0.152437
\(604\) −7.96097 −0.323927
\(605\) −5.31442 −0.216062
\(606\) 1.97306 0.0801499
\(607\) −39.8677 −1.61818 −0.809089 0.587686i \(-0.800039\pi\)
−0.809089 + 0.587686i \(0.800039\pi\)
\(608\) 21.0215 0.852534
\(609\) −5.37546 −0.217825
\(610\) 0.537588 0.0217663
\(611\) −14.8355 −0.600179
\(612\) −2.19485 −0.0887217
\(613\) −15.6926 −0.633818 −0.316909 0.948456i \(-0.602645\pi\)
−0.316909 + 0.948456i \(0.602645\pi\)
\(614\) 2.56141 0.103370
\(615\) 0.485043 0.0195588
\(616\) −6.56559 −0.264535
\(617\) 26.1395 1.05234 0.526169 0.850380i \(-0.323628\pi\)
0.526169 + 0.850380i \(0.323628\pi\)
\(618\) −2.19423 −0.0882647
\(619\) 4.72169 0.189781 0.0948904 0.995488i \(-0.469750\pi\)
0.0948904 + 0.995488i \(0.469750\pi\)
\(620\) −4.86527 −0.195394
\(621\) −4.90674 −0.196901
\(622\) −8.16084 −0.327220
\(623\) −6.61497 −0.265023
\(624\) −20.1848 −0.808041
\(625\) 23.8594 0.954376
\(626\) 1.45192 0.0580303
\(627\) −33.5694 −1.34063
\(628\) −10.2003 −0.407038
\(629\) 4.58538 0.182831
\(630\) 0.0845162 0.00336720
\(631\) −8.69806 −0.346264 −0.173132 0.984899i \(-0.555389\pi\)
−0.173132 + 0.984899i \(0.555389\pi\)
\(632\) −0.473821 −0.0188476
\(633\) −13.0645 −0.519269
\(634\) 3.90798 0.155206
\(635\) 0.276458 0.0109709
\(636\) −12.8733 −0.510458
\(637\) 5.85411 0.231948
\(638\) 9.03436 0.357674
\(639\) 10.2468 0.405357
\(640\) −2.39735 −0.0947637
\(641\) −0.289431 −0.0114318 −0.00571592 0.999984i \(-0.501819\pi\)
−0.00571592 + 0.999984i \(0.501819\pi\)
\(642\) 0.790614 0.0312030
\(643\) 25.5065 1.00588 0.502939 0.864322i \(-0.332252\pi\)
0.502939 + 0.864322i \(0.332252\pi\)
\(644\) −9.35489 −0.368634
\(645\) −2.95750 −0.116451
\(646\) 2.14904 0.0845527
\(647\) −7.05434 −0.277335 −0.138667 0.990339i \(-0.544282\pi\)
−0.138667 + 0.990339i \(0.544282\pi\)
\(648\) 1.19427 0.0469154
\(649\) −55.6043 −2.18266
\(650\) 8.81154 0.345617
\(651\) 9.23065 0.361778
\(652\) 14.9156 0.584138
\(653\) 29.0397 1.13641 0.568206 0.822886i \(-0.307638\pi\)
0.568206 + 0.822886i \(0.307638\pi\)
\(654\) 5.12924 0.200569
\(655\) −3.29746 −0.128842
\(656\) 6.04946 0.236192
\(657\) 0.769235 0.0300107
\(658\) 0.774732 0.0302022
\(659\) 5.95542 0.231990 0.115995 0.993250i \(-0.462994\pi\)
0.115995 + 0.993250i \(0.462994\pi\)
\(660\) 2.89765 0.112791
\(661\) 18.6354 0.724832 0.362416 0.932016i \(-0.381952\pi\)
0.362416 + 0.932016i \(0.381952\pi\)
\(662\) −9.17473 −0.356586
\(663\) −6.73938 −0.261736
\(664\) −2.71259 −0.105269
\(665\) 1.68811 0.0654623
\(666\) −1.21766 −0.0471835
\(667\) 26.3760 1.02128
\(668\) −15.9325 −0.616446
\(669\) −14.4547 −0.558851
\(670\) 0.316364 0.0122222
\(671\) −34.9688 −1.34995
\(672\) 3.44263 0.132802
\(673\) 21.1789 0.816387 0.408193 0.912896i \(-0.366159\pi\)
0.408193 + 0.912896i \(0.366159\pi\)
\(674\) 10.2929 0.396468
\(675\) 4.92357 0.189508
\(676\) −40.5532 −1.55974
\(677\) 21.4495 0.824370 0.412185 0.911100i \(-0.364766\pi\)
0.412185 + 0.911100i \(0.364766\pi\)
\(678\) 3.15468 0.121155
\(679\) 6.50324 0.249571
\(680\) −0.380094 −0.0145760
\(681\) −5.34653 −0.204880
\(682\) −15.5137 −0.594048
\(683\) 42.3011 1.61861 0.809303 0.587391i \(-0.199845\pi\)
0.809303 + 0.587391i \(0.199845\pi\)
\(684\) 11.6418 0.445135
\(685\) −2.26538 −0.0865556
\(686\) −0.305711 −0.0116721
\(687\) −12.2399 −0.466983
\(688\) −36.8859 −1.40626
\(689\) −39.5279 −1.50589
\(690\) −0.414698 −0.0157873
\(691\) −13.9263 −0.529782 −0.264891 0.964278i \(-0.585336\pi\)
−0.264891 + 0.964278i \(0.585336\pi\)
\(692\) −13.3604 −0.507886
\(693\) −5.49757 −0.208835
\(694\) −3.11742 −0.118336
\(695\) 3.74538 0.142071
\(696\) −6.41976 −0.243340
\(697\) 2.01981 0.0765059
\(698\) 6.66261 0.252184
\(699\) −20.6821 −0.782269
\(700\) 9.38699 0.354795
\(701\) −34.0403 −1.28568 −0.642842 0.765999i \(-0.722245\pi\)
−0.642842 + 0.765999i \(0.722245\pi\)
\(702\) 1.78966 0.0675465
\(703\) −24.3214 −0.917300
\(704\) 32.1251 1.21076
\(705\) −0.700599 −0.0263861
\(706\) −3.32186 −0.125020
\(707\) 6.45399 0.242727
\(708\) 19.2834 0.724715
\(709\) −34.3771 −1.29106 −0.645529 0.763736i \(-0.723363\pi\)
−0.645529 + 0.763736i \(0.723363\pi\)
\(710\) 0.866020 0.0325012
\(711\) −0.396745 −0.0148791
\(712\) −7.90007 −0.296068
\(713\) −45.2924 −1.69621
\(714\) 0.351941 0.0131711
\(715\) 8.89734 0.332742
\(716\) −48.0266 −1.79484
\(717\) −19.8538 −0.741455
\(718\) 10.0877 0.376468
\(719\) −40.4073 −1.50694 −0.753469 0.657484i \(-0.771621\pi\)
−0.753469 + 0.657484i \(0.771621\pi\)
\(720\) −0.953221 −0.0355244
\(721\) −7.17745 −0.267302
\(722\) −5.59025 −0.208047
\(723\) −3.39756 −0.126357
\(724\) −32.2238 −1.19759
\(725\) −26.4665 −0.982940
\(726\) 5.87676 0.218107
\(727\) 3.23987 0.120160 0.0600800 0.998194i \(-0.480864\pi\)
0.0600800 + 0.998194i \(0.480864\pi\)
\(728\) 6.99140 0.259118
\(729\) 1.00000 0.0370370
\(730\) 0.0650128 0.00240623
\(731\) −12.3156 −0.455508
\(732\) 12.1271 0.448229
\(733\) 8.50412 0.314107 0.157053 0.987590i \(-0.449801\pi\)
0.157053 + 0.987590i \(0.449801\pi\)
\(734\) 3.37182 0.124456
\(735\) 0.276458 0.0101973
\(736\) −16.8921 −0.622650
\(737\) −20.5787 −0.758027
\(738\) −0.536368 −0.0197440
\(739\) −17.5860 −0.646913 −0.323456 0.946243i \(-0.604845\pi\)
−0.323456 + 0.946243i \(0.604845\pi\)
\(740\) 2.09938 0.0771747
\(741\) 35.7465 1.31318
\(742\) 2.06421 0.0757795
\(743\) −26.7552 −0.981551 −0.490776 0.871286i \(-0.663287\pi\)
−0.490776 + 0.871286i \(0.663287\pi\)
\(744\) 11.0239 0.404156
\(745\) −1.37881 −0.0505157
\(746\) 10.0928 0.369525
\(747\) −2.27133 −0.0831037
\(748\) 12.0664 0.441190
\(749\) 2.58615 0.0944958
\(750\) 0.838702 0.0306251
\(751\) −26.4154 −0.963910 −0.481955 0.876196i \(-0.660073\pi\)
−0.481955 + 0.876196i \(0.660073\pi\)
\(752\) −8.73786 −0.318637
\(753\) −16.9646 −0.618225
\(754\) −9.62027 −0.350350
\(755\) −1.15438 −0.0420122
\(756\) 1.90654 0.0693402
\(757\) −46.7851 −1.70043 −0.850217 0.526433i \(-0.823529\pi\)
−0.850217 + 0.526433i \(0.823529\pi\)
\(758\) 1.80663 0.0656199
\(759\) 26.9751 0.979135
\(760\) 2.01607 0.0731305
\(761\) −27.0165 −0.979349 −0.489674 0.871905i \(-0.662884\pi\)
−0.489674 + 0.871905i \(0.662884\pi\)
\(762\) −0.305711 −0.0110747
\(763\) 16.7781 0.607407
\(764\) 41.5942 1.50482
\(765\) −0.318264 −0.0115069
\(766\) −7.40143 −0.267425
\(767\) 59.2105 2.13797
\(768\) −9.03599 −0.326058
\(769\) 8.57917 0.309373 0.154686 0.987964i \(-0.450563\pi\)
0.154686 + 0.987964i \(0.450563\pi\)
\(770\) −0.464633 −0.0167442
\(771\) 9.88570 0.356025
\(772\) 33.7424 1.21441
\(773\) 37.9118 1.36359 0.681796 0.731542i \(-0.261199\pi\)
0.681796 + 0.731542i \(0.261199\pi\)
\(774\) 3.27044 0.117554
\(775\) 45.4478 1.63253
\(776\) 7.76664 0.278806
\(777\) −3.98305 −0.142891
\(778\) 9.96522 0.357270
\(779\) −10.7133 −0.383845
\(780\) −3.08557 −0.110481
\(781\) −56.3325 −2.01573
\(782\) −1.72688 −0.0617532
\(783\) −5.37546 −0.192103
\(784\) 3.44798 0.123142
\(785\) −1.47910 −0.0527913
\(786\) 3.64637 0.130062
\(787\) −40.7590 −1.45290 −0.726450 0.687219i \(-0.758831\pi\)
−0.726450 + 0.687219i \(0.758831\pi\)
\(788\) −17.3746 −0.618943
\(789\) −15.4492 −0.550007
\(790\) −0.0335313 −0.00119299
\(791\) 10.3192 0.366907
\(792\) −6.56559 −0.233298
\(793\) 37.2366 1.32231
\(794\) −3.96904 −0.140856
\(795\) −1.86669 −0.0662046
\(796\) 0.0431247 0.00152852
\(797\) −5.07686 −0.179831 −0.0899157 0.995949i \(-0.528660\pi\)
−0.0899157 + 0.995949i \(0.528660\pi\)
\(798\) −1.86674 −0.0660819
\(799\) −2.91743 −0.103211
\(800\) 16.9500 0.599274
\(801\) −6.61497 −0.233728
\(802\) 11.0659 0.390750
\(803\) −4.22892 −0.149235
\(804\) 7.13664 0.251690
\(805\) −1.35651 −0.0478105
\(806\) 16.5198 0.581884
\(807\) 20.0563 0.706015
\(808\) 7.70782 0.271160
\(809\) 50.5158 1.77604 0.888021 0.459803i \(-0.152080\pi\)
0.888021 + 0.459803i \(0.152080\pi\)
\(810\) 0.0845162 0.00296960
\(811\) −16.8436 −0.591458 −0.295729 0.955272i \(-0.595563\pi\)
−0.295729 + 0.955272i \(0.595563\pi\)
\(812\) −10.2485 −0.359653
\(813\) −1.52170 −0.0533683
\(814\) 6.69418 0.234631
\(815\) 2.16283 0.0757606
\(816\) −3.96939 −0.138957
\(817\) 65.3234 2.28537
\(818\) 3.04784 0.106565
\(819\) 5.85411 0.204559
\(820\) 0.924755 0.0322938
\(821\) −15.9626 −0.557100 −0.278550 0.960422i \(-0.589854\pi\)
−0.278550 + 0.960422i \(0.589854\pi\)
\(822\) 2.50509 0.0873749
\(823\) 35.8972 1.25130 0.625650 0.780104i \(-0.284834\pi\)
0.625650 + 0.780104i \(0.284834\pi\)
\(824\) −8.57183 −0.298614
\(825\) −27.0677 −0.942375
\(826\) −3.09207 −0.107587
\(827\) −20.2205 −0.703137 −0.351568 0.936162i \(-0.614352\pi\)
−0.351568 + 0.936162i \(0.614352\pi\)
\(828\) −9.35489 −0.325105
\(829\) −30.6787 −1.06552 −0.532758 0.846268i \(-0.678844\pi\)
−0.532758 + 0.846268i \(0.678844\pi\)
\(830\) −0.191964 −0.00666318
\(831\) 2.88589 0.100110
\(832\) −34.2085 −1.18597
\(833\) 1.15122 0.0398875
\(834\) −4.14170 −0.143415
\(835\) −2.31029 −0.0799508
\(836\) −64.0015 −2.21354
\(837\) 9.23065 0.319058
\(838\) −1.56454 −0.0540462
\(839\) 32.8827 1.13524 0.567618 0.823292i \(-0.307865\pi\)
0.567618 + 0.823292i \(0.307865\pi\)
\(840\) 0.330166 0.0113918
\(841\) −0.104428 −0.00360097
\(842\) 9.96323 0.343356
\(843\) 1.40750 0.0484768
\(844\) −24.9081 −0.857371
\(845\) −5.88042 −0.202293
\(846\) 0.774732 0.0266358
\(847\) 19.2233 0.660519
\(848\) −23.2813 −0.799484
\(849\) −18.7659 −0.644044
\(850\) 1.73281 0.0594348
\(851\) 19.5438 0.669952
\(852\) 19.5359 0.669290
\(853\) 8.11977 0.278016 0.139008 0.990291i \(-0.455609\pi\)
0.139008 + 0.990291i \(0.455609\pi\)
\(854\) −1.94456 −0.0665413
\(855\) 1.68811 0.0577323
\(856\) 3.08856 0.105565
\(857\) −39.4412 −1.34729 −0.673644 0.739056i \(-0.735272\pi\)
−0.673644 + 0.739056i \(0.735272\pi\)
\(858\) −9.83881 −0.335891
\(859\) 50.5091 1.72335 0.861675 0.507461i \(-0.169416\pi\)
0.861675 + 0.507461i \(0.169416\pi\)
\(860\) −5.63859 −0.192274
\(861\) −1.75449 −0.0597930
\(862\) 1.65159 0.0562533
\(863\) 18.8260 0.640844 0.320422 0.947275i \(-0.396175\pi\)
0.320422 + 0.947275i \(0.396175\pi\)
\(864\) 3.44263 0.117121
\(865\) −1.93732 −0.0658710
\(866\) 4.63476 0.157496
\(867\) 15.6747 0.532340
\(868\) 17.5986 0.597336
\(869\) 2.18113 0.0739898
\(870\) −0.454313 −0.0154027
\(871\) 21.9133 0.742505
\(872\) 20.0376 0.678558
\(873\) 6.50324 0.220101
\(874\) 9.15961 0.309828
\(875\) 2.74345 0.0927455
\(876\) 1.46658 0.0495511
\(877\) 51.8551 1.75102 0.875511 0.483197i \(-0.160525\pi\)
0.875511 + 0.483197i \(0.160525\pi\)
\(878\) −7.86482 −0.265425
\(879\) −12.6713 −0.427393
\(880\) 5.24040 0.176654
\(881\) 18.0437 0.607907 0.303953 0.952687i \(-0.401693\pi\)
0.303953 + 0.952687i \(0.401693\pi\)
\(882\) −0.305711 −0.0102938
\(883\) −38.3129 −1.28933 −0.644665 0.764465i \(-0.723003\pi\)
−0.644665 + 0.764465i \(0.723003\pi\)
\(884\) −12.8489 −0.432156
\(885\) 2.79619 0.0939929
\(886\) −8.72988 −0.293286
\(887\) −39.8828 −1.33913 −0.669567 0.742751i \(-0.733520\pi\)
−0.669567 + 0.742751i \(0.733520\pi\)
\(888\) −4.75685 −0.159629
\(889\) −1.00000 −0.0335389
\(890\) −0.559072 −0.0187401
\(891\) −5.49757 −0.184176
\(892\) −27.5585 −0.922726
\(893\) 15.4744 0.517831
\(894\) 1.52471 0.0509939
\(895\) −6.96409 −0.232784
\(896\) 8.67168 0.289701
\(897\) −28.7246 −0.959085
\(898\) 10.0977 0.336965
\(899\) −49.6190 −1.65489
\(900\) 9.38699 0.312900
\(901\) −7.77324 −0.258964
\(902\) 2.94872 0.0981816
\(903\) 10.6978 0.356001
\(904\) 12.3239 0.409886
\(905\) −4.67261 −0.155323
\(906\) 1.27653 0.0424098
\(907\) 15.9249 0.528779 0.264389 0.964416i \(-0.414830\pi\)
0.264389 + 0.964416i \(0.414830\pi\)
\(908\) −10.1934 −0.338279
\(909\) 6.45399 0.214065
\(910\) 0.494767 0.0164014
\(911\) 30.4445 1.00867 0.504335 0.863508i \(-0.331738\pi\)
0.504335 + 0.863508i \(0.331738\pi\)
\(912\) 21.0542 0.697173
\(913\) 12.4868 0.413253
\(914\) −8.04332 −0.266049
\(915\) 1.75848 0.0581337
\(916\) −23.3360 −0.771042
\(917\) 11.9275 0.393881
\(918\) 0.351941 0.0116158
\(919\) −32.5351 −1.07323 −0.536617 0.843826i \(-0.680298\pi\)
−0.536617 + 0.843826i \(0.680298\pi\)
\(920\) −1.62004 −0.0534110
\(921\) 8.37854 0.276082
\(922\) −5.18590 −0.170788
\(923\) 59.9859 1.97446
\(924\) −10.4813 −0.344811
\(925\) −19.6108 −0.644800
\(926\) −7.25038 −0.238262
\(927\) −7.17745 −0.235738
\(928\) −18.5057 −0.607480
\(929\) 24.8695 0.815942 0.407971 0.912995i \(-0.366236\pi\)
0.407971 + 0.912995i \(0.366236\pi\)
\(930\) 0.780139 0.0255818
\(931\) −6.10623 −0.200124
\(932\) −39.4313 −1.29161
\(933\) −26.6946 −0.873943
\(934\) 10.4730 0.342687
\(935\) 1.74968 0.0572207
\(936\) 6.99140 0.228521
\(937\) −49.0788 −1.60333 −0.801667 0.597770i \(-0.796053\pi\)
−0.801667 + 0.597770i \(0.796053\pi\)
\(938\) −1.14435 −0.0373644
\(939\) 4.74932 0.154988
\(940\) −1.33572 −0.0435664
\(941\) 41.2182 1.34367 0.671837 0.740699i \(-0.265505\pi\)
0.671837 + 0.740699i \(0.265505\pi\)
\(942\) 1.63561 0.0532911
\(943\) 8.60884 0.280342
\(944\) 34.8740 1.13505
\(945\) 0.276458 0.00899317
\(946\) −17.9795 −0.584563
\(947\) −7.08226 −0.230143 −0.115071 0.993357i \(-0.536710\pi\)
−0.115071 + 0.993357i \(0.536710\pi\)
\(948\) −0.756410 −0.0245670
\(949\) 4.50318 0.146180
\(950\) −9.19103 −0.298197
\(951\) 12.7833 0.414525
\(952\) 1.37487 0.0445599
\(953\) 11.4314 0.370300 0.185150 0.982710i \(-0.440723\pi\)
0.185150 + 0.982710i \(0.440723\pi\)
\(954\) 2.06421 0.0668313
\(955\) 6.03136 0.195170
\(956\) −37.8522 −1.22423
\(957\) 29.5520 0.955279
\(958\) −7.18501 −0.232137
\(959\) 8.19429 0.264608
\(960\) −1.61548 −0.0521395
\(961\) 54.2049 1.74855
\(962\) −7.12833 −0.229827
\(963\) 2.58615 0.0833374
\(964\) −6.47759 −0.208629
\(965\) 4.89281 0.157505
\(966\) 1.50004 0.0482631
\(967\) 45.9374 1.47725 0.738624 0.674117i \(-0.235476\pi\)
0.738624 + 0.674117i \(0.235476\pi\)
\(968\) 22.9578 0.737892
\(969\) 7.02963 0.225824
\(970\) 0.549629 0.0176475
\(971\) 21.6154 0.693671 0.346835 0.937926i \(-0.387256\pi\)
0.346835 + 0.937926i \(0.387256\pi\)
\(972\) 1.90654 0.0611523
\(973\) −13.5478 −0.434321
\(974\) 0.148983 0.00477371
\(975\) 28.8231 0.923079
\(976\) 21.9318 0.702020
\(977\) 20.9557 0.670432 0.335216 0.942141i \(-0.391191\pi\)
0.335216 + 0.942141i \(0.391191\pi\)
\(978\) −2.39169 −0.0764777
\(979\) 36.3662 1.16227
\(980\) 0.527078 0.0168369
\(981\) 16.7781 0.535683
\(982\) −4.70319 −0.150085
\(983\) −41.0432 −1.30908 −0.654538 0.756029i \(-0.727137\pi\)
−0.654538 + 0.756029i \(0.727137\pi\)
\(984\) −2.09534 −0.0667971
\(985\) −2.51940 −0.0802746
\(986\) −1.89185 −0.0602487
\(987\) 2.53420 0.0806644
\(988\) 68.1522 2.16821
\(989\) −52.4914 −1.66913
\(990\) −0.464633 −0.0147670
\(991\) −57.2547 −1.81875 −0.909377 0.415973i \(-0.863441\pi\)
−0.909377 + 0.415973i \(0.863441\pi\)
\(992\) 31.7777 1.00894
\(993\) −30.0111 −0.952374
\(994\) −3.13256 −0.0993587
\(995\) 0.00625330 0.000198243 0
\(996\) −4.33039 −0.137214
\(997\) −6.92036 −0.219170 −0.109585 0.993977i \(-0.534952\pi\)
−0.109585 + 0.993977i \(0.534952\pi\)
\(998\) 1.21630 0.0385013
\(999\) −3.98305 −0.126018
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.l.1.6 13
3.2 odd 2 8001.2.a.o.1.8 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.l.1.6 13 1.1 even 1 trivial
8001.2.a.o.1.8 13 3.2 odd 2