Properties

Label 2667.2.a.k.1.10
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $1$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [11,-2,11,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(1\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 2 x^{10} - 15 x^{9} + 25 x^{8} + 88 x^{7} - 112 x^{6} - 247 x^{5} + 215 x^{4} + 313 x^{3} + \cdots + 57 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-1.81808\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.81808 q^{2} +1.00000 q^{3} +1.30541 q^{4} -1.39765 q^{5} +1.81808 q^{6} -1.00000 q^{7} -1.26282 q^{8} +1.00000 q^{9} -2.54104 q^{10} +0.0844564 q^{11} +1.30541 q^{12} -3.52450 q^{13} -1.81808 q^{14} -1.39765 q^{15} -4.90673 q^{16} +4.93727 q^{17} +1.81808 q^{18} -3.17772 q^{19} -1.82451 q^{20} -1.00000 q^{21} +0.153548 q^{22} -3.91903 q^{23} -1.26282 q^{24} -3.04657 q^{25} -6.40782 q^{26} +1.00000 q^{27} -1.30541 q^{28} -7.80555 q^{29} -2.54104 q^{30} -6.27152 q^{31} -6.39517 q^{32} +0.0844564 q^{33} +8.97635 q^{34} +1.39765 q^{35} +1.30541 q^{36} +3.42797 q^{37} -5.77734 q^{38} -3.52450 q^{39} +1.76499 q^{40} -9.78445 q^{41} -1.81808 q^{42} +10.6350 q^{43} +0.110250 q^{44} -1.39765 q^{45} -7.12509 q^{46} +4.50967 q^{47} -4.90673 q^{48} +1.00000 q^{49} -5.53890 q^{50} +4.93727 q^{51} -4.60091 q^{52} -0.234825 q^{53} +1.81808 q^{54} -0.118041 q^{55} +1.26282 q^{56} -3.17772 q^{57} -14.1911 q^{58} -2.23465 q^{59} -1.82451 q^{60} +8.26515 q^{61} -11.4021 q^{62} -1.00000 q^{63} -1.81346 q^{64} +4.92602 q^{65} +0.153548 q^{66} -3.74734 q^{67} +6.44515 q^{68} -3.91903 q^{69} +2.54104 q^{70} -5.09148 q^{71} -1.26282 q^{72} +15.8865 q^{73} +6.23232 q^{74} -3.04657 q^{75} -4.14822 q^{76} -0.0844564 q^{77} -6.40782 q^{78} -10.3600 q^{79} +6.85789 q^{80} +1.00000 q^{81} -17.7889 q^{82} -5.52767 q^{83} -1.30541 q^{84} -6.90059 q^{85} +19.3353 q^{86} -7.80555 q^{87} -0.106653 q^{88} -15.0241 q^{89} -2.54104 q^{90} +3.52450 q^{91} -5.11593 q^{92} -6.27152 q^{93} +8.19894 q^{94} +4.44134 q^{95} -6.39517 q^{96} -9.13128 q^{97} +1.81808 q^{98} +0.0844564 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q - 2 q^{2} + 11 q^{3} + 12 q^{4} + q^{5} - 2 q^{6} - 11 q^{7} - 15 q^{8} + 11 q^{9} - 12 q^{10} - 7 q^{11} + 12 q^{12} - 24 q^{13} + 2 q^{14} + q^{15} - 6 q^{16} - 15 q^{17} - 2 q^{18} - 19 q^{19}+ \cdots - 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.81808 1.28558 0.642788 0.766044i \(-0.277778\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(3\) 1.00000 0.577350
\(4\) 1.30541 0.652704
\(5\) −1.39765 −0.625049 −0.312524 0.949910i \(-0.601175\pi\)
−0.312524 + 0.949910i \(0.601175\pi\)
\(6\) 1.81808 0.742227
\(7\) −1.00000 −0.377964
\(8\) −1.26282 −0.446475
\(9\) 1.00000 0.333333
\(10\) −2.54104 −0.803547
\(11\) 0.0844564 0.0254646 0.0127323 0.999919i \(-0.495947\pi\)
0.0127323 + 0.999919i \(0.495947\pi\)
\(12\) 1.30541 0.376839
\(13\) −3.52450 −0.977520 −0.488760 0.872418i \(-0.662551\pi\)
−0.488760 + 0.872418i \(0.662551\pi\)
\(14\) −1.81808 −0.485902
\(15\) −1.39765 −0.360872
\(16\) −4.90673 −1.22668
\(17\) 4.93727 1.19746 0.598732 0.800949i \(-0.295671\pi\)
0.598732 + 0.800949i \(0.295671\pi\)
\(18\) 1.81808 0.428525
\(19\) −3.17772 −0.729018 −0.364509 0.931200i \(-0.618763\pi\)
−0.364509 + 0.931200i \(0.618763\pi\)
\(20\) −1.82451 −0.407972
\(21\) −1.00000 −0.218218
\(22\) 0.153548 0.0327366
\(23\) −3.91903 −0.817173 −0.408587 0.912720i \(-0.633978\pi\)
−0.408587 + 0.912720i \(0.633978\pi\)
\(24\) −1.26282 −0.257773
\(25\) −3.04657 −0.609314
\(26\) −6.40782 −1.25668
\(27\) 1.00000 0.192450
\(28\) −1.30541 −0.246699
\(29\) −7.80555 −1.44945 −0.724727 0.689036i \(-0.758034\pi\)
−0.724727 + 0.689036i \(0.758034\pi\)
\(30\) −2.54104 −0.463928
\(31\) −6.27152 −1.12640 −0.563199 0.826321i \(-0.690430\pi\)
−0.563199 + 0.826321i \(0.690430\pi\)
\(32\) −6.39517 −1.13052
\(33\) 0.0844564 0.0147020
\(34\) 8.97635 1.53943
\(35\) 1.39765 0.236246
\(36\) 1.30541 0.217568
\(37\) 3.42797 0.563555 0.281778 0.959480i \(-0.409076\pi\)
0.281778 + 0.959480i \(0.409076\pi\)
\(38\) −5.77734 −0.937208
\(39\) −3.52450 −0.564372
\(40\) 1.76499 0.279069
\(41\) −9.78445 −1.52807 −0.764037 0.645172i \(-0.776786\pi\)
−0.764037 + 0.645172i \(0.776786\pi\)
\(42\) −1.81808 −0.280536
\(43\) 10.6350 1.62183 0.810913 0.585167i \(-0.198971\pi\)
0.810913 + 0.585167i \(0.198971\pi\)
\(44\) 0.110250 0.0166208
\(45\) −1.39765 −0.208350
\(46\) −7.12509 −1.05054
\(47\) 4.50967 0.657803 0.328902 0.944364i \(-0.393322\pi\)
0.328902 + 0.944364i \(0.393322\pi\)
\(48\) −4.90673 −0.708225
\(49\) 1.00000 0.142857
\(50\) −5.53890 −0.783319
\(51\) 4.93727 0.691356
\(52\) −4.60091 −0.638031
\(53\) −0.234825 −0.0322557 −0.0161279 0.999870i \(-0.505134\pi\)
−0.0161279 + 0.999870i \(0.505134\pi\)
\(54\) 1.81808 0.247409
\(55\) −0.118041 −0.0159166
\(56\) 1.26282 0.168752
\(57\) −3.17772 −0.420899
\(58\) −14.1911 −1.86338
\(59\) −2.23465 −0.290927 −0.145463 0.989364i \(-0.546467\pi\)
−0.145463 + 0.989364i \(0.546467\pi\)
\(60\) −1.82451 −0.235543
\(61\) 8.26515 1.05824 0.529122 0.848546i \(-0.322521\pi\)
0.529122 + 0.848546i \(0.322521\pi\)
\(62\) −11.4021 −1.44807
\(63\) −1.00000 −0.125988
\(64\) −1.81346 −0.226682
\(65\) 4.92602 0.610998
\(66\) 0.153548 0.0189005
\(67\) −3.74734 −0.457810 −0.228905 0.973449i \(-0.573515\pi\)
−0.228905 + 0.973449i \(0.573515\pi\)
\(68\) 6.44515 0.781590
\(69\) −3.91903 −0.471795
\(70\) 2.54104 0.303712
\(71\) −5.09148 −0.604248 −0.302124 0.953269i \(-0.597696\pi\)
−0.302124 + 0.953269i \(0.597696\pi\)
\(72\) −1.26282 −0.148825
\(73\) 15.8865 1.85937 0.929686 0.368353i \(-0.120078\pi\)
0.929686 + 0.368353i \(0.120078\pi\)
\(74\) 6.23232 0.724493
\(75\) −3.04657 −0.351788
\(76\) −4.14822 −0.475833
\(77\) −0.0844564 −0.00962470
\(78\) −6.40782 −0.725542
\(79\) −10.3600 −1.16560 −0.582798 0.812617i \(-0.698042\pi\)
−0.582798 + 0.812617i \(0.698042\pi\)
\(80\) 6.85789 0.766736
\(81\) 1.00000 0.111111
\(82\) −17.7889 −1.96446
\(83\) −5.52767 −0.606741 −0.303370 0.952873i \(-0.598112\pi\)
−0.303370 + 0.952873i \(0.598112\pi\)
\(84\) −1.30541 −0.142432
\(85\) −6.90059 −0.748474
\(86\) 19.3353 2.08498
\(87\) −7.80555 −0.836842
\(88\) −0.106653 −0.0113693
\(89\) −15.0241 −1.59255 −0.796276 0.604934i \(-0.793199\pi\)
−0.796276 + 0.604934i \(0.793199\pi\)
\(90\) −2.54104 −0.267849
\(91\) 3.52450 0.369468
\(92\) −5.11593 −0.533372
\(93\) −6.27152 −0.650326
\(94\) 8.19894 0.845656
\(95\) 4.44134 0.455672
\(96\) −6.39517 −0.652704
\(97\) −9.13128 −0.927141 −0.463571 0.886060i \(-0.653432\pi\)
−0.463571 + 0.886060i \(0.653432\pi\)
\(98\) 1.81808 0.183654
\(99\) 0.0844564 0.00848819
\(100\) −3.97702 −0.397702
\(101\) 12.1017 1.20417 0.602084 0.798433i \(-0.294337\pi\)
0.602084 + 0.798433i \(0.294337\pi\)
\(102\) 8.97635 0.888791
\(103\) −5.80333 −0.571819 −0.285909 0.958257i \(-0.592296\pi\)
−0.285909 + 0.958257i \(0.592296\pi\)
\(104\) 4.45082 0.436439
\(105\) 1.39765 0.136397
\(106\) −0.426931 −0.0414672
\(107\) −0.365904 −0.0353732 −0.0176866 0.999844i \(-0.505630\pi\)
−0.0176866 + 0.999844i \(0.505630\pi\)
\(108\) 1.30541 0.125613
\(109\) −14.5385 −1.39253 −0.696266 0.717784i \(-0.745156\pi\)
−0.696266 + 0.717784i \(0.745156\pi\)
\(110\) −0.214607 −0.0204620
\(111\) 3.42797 0.325369
\(112\) 4.90673 0.463642
\(113\) −7.14306 −0.671963 −0.335981 0.941869i \(-0.609068\pi\)
−0.335981 + 0.941869i \(0.609068\pi\)
\(114\) −5.77734 −0.541097
\(115\) 5.47743 0.510773
\(116\) −10.1894 −0.946064
\(117\) −3.52450 −0.325840
\(118\) −4.06277 −0.374008
\(119\) −4.93727 −0.452599
\(120\) 1.76499 0.161121
\(121\) −10.9929 −0.999352
\(122\) 15.0267 1.36045
\(123\) −9.78445 −0.882234
\(124\) −8.18689 −0.735205
\(125\) 11.2463 1.00590
\(126\) −1.81808 −0.161967
\(127\) 1.00000 0.0887357
\(128\) 9.49332 0.839099
\(129\) 10.6350 0.936361
\(130\) 8.95590 0.785484
\(131\) 21.8579 1.90973 0.954866 0.297037i \(-0.0959983\pi\)
0.954866 + 0.297037i \(0.0959983\pi\)
\(132\) 0.110250 0.00959604
\(133\) 3.17772 0.275543
\(134\) −6.81295 −0.588550
\(135\) −1.39765 −0.120291
\(136\) −6.23490 −0.534638
\(137\) 10.8301 0.925281 0.462641 0.886546i \(-0.346902\pi\)
0.462641 + 0.886546i \(0.346902\pi\)
\(138\) −7.12509 −0.606528
\(139\) −14.1968 −1.20416 −0.602078 0.798437i \(-0.705660\pi\)
−0.602078 + 0.798437i \(0.705660\pi\)
\(140\) 1.82451 0.154199
\(141\) 4.50967 0.379783
\(142\) −9.25671 −0.776806
\(143\) −0.297667 −0.0248921
\(144\) −4.90673 −0.408894
\(145\) 10.9094 0.905979
\(146\) 28.8829 2.39036
\(147\) 1.00000 0.0824786
\(148\) 4.47490 0.367835
\(149\) −19.7609 −1.61887 −0.809437 0.587207i \(-0.800227\pi\)
−0.809437 + 0.587207i \(0.800227\pi\)
\(150\) −5.53890 −0.452249
\(151\) 7.89570 0.642543 0.321272 0.946987i \(-0.395890\pi\)
0.321272 + 0.946987i \(0.395890\pi\)
\(152\) 4.01289 0.325489
\(153\) 4.93727 0.399155
\(154\) −0.153548 −0.0123733
\(155\) 8.76540 0.704054
\(156\) −4.60091 −0.368368
\(157\) 18.3445 1.46405 0.732024 0.681279i \(-0.238576\pi\)
0.732024 + 0.681279i \(0.238576\pi\)
\(158\) −18.8354 −1.49846
\(159\) −0.234825 −0.0186229
\(160\) 8.93821 0.706628
\(161\) 3.91903 0.308862
\(162\) 1.81808 0.142842
\(163\) 20.4515 1.60189 0.800944 0.598739i \(-0.204331\pi\)
0.800944 + 0.598739i \(0.204331\pi\)
\(164\) −12.7727 −0.997380
\(165\) −0.118041 −0.00918945
\(166\) −10.0497 −0.780011
\(167\) 22.4305 1.73572 0.867861 0.496807i \(-0.165494\pi\)
0.867861 + 0.496807i \(0.165494\pi\)
\(168\) 1.26282 0.0974289
\(169\) −0.577899 −0.0444538
\(170\) −12.5458 −0.962219
\(171\) −3.17772 −0.243006
\(172\) 13.8830 1.05857
\(173\) 23.4089 1.77975 0.889873 0.456208i \(-0.150793\pi\)
0.889873 + 0.456208i \(0.150793\pi\)
\(174\) −14.1911 −1.07582
\(175\) 3.04657 0.230299
\(176\) −0.414405 −0.0312369
\(177\) −2.23465 −0.167967
\(178\) −27.3150 −2.04734
\(179\) −12.0263 −0.898887 −0.449443 0.893309i \(-0.648378\pi\)
−0.449443 + 0.893309i \(0.648378\pi\)
\(180\) −1.82451 −0.135991
\(181\) −14.7462 −1.09607 −0.548037 0.836454i \(-0.684625\pi\)
−0.548037 + 0.836454i \(0.684625\pi\)
\(182\) 6.40782 0.474979
\(183\) 8.26515 0.610977
\(184\) 4.94904 0.364848
\(185\) −4.79111 −0.352250
\(186\) −11.4021 −0.836044
\(187\) 0.416984 0.0304929
\(188\) 5.88696 0.429351
\(189\) −1.00000 −0.0727393
\(190\) 8.07471 0.585801
\(191\) −15.1077 −1.09315 −0.546577 0.837409i \(-0.684069\pi\)
−0.546577 + 0.837409i \(0.684069\pi\)
\(192\) −1.81346 −0.130875
\(193\) −4.11572 −0.296256 −0.148128 0.988968i \(-0.547325\pi\)
−0.148128 + 0.988968i \(0.547325\pi\)
\(194\) −16.6014 −1.19191
\(195\) 4.92602 0.352760
\(196\) 1.30541 0.0932434
\(197\) −8.76996 −0.624834 −0.312417 0.949945i \(-0.601139\pi\)
−0.312417 + 0.949945i \(0.601139\pi\)
\(198\) 0.153548 0.0109122
\(199\) −19.9853 −1.41672 −0.708360 0.705851i \(-0.750565\pi\)
−0.708360 + 0.705851i \(0.750565\pi\)
\(200\) 3.84728 0.272044
\(201\) −3.74734 −0.264317
\(202\) 22.0019 1.54805
\(203\) 7.80555 0.547842
\(204\) 6.44515 0.451251
\(205\) 13.6753 0.955122
\(206\) −10.5509 −0.735116
\(207\) −3.91903 −0.272391
\(208\) 17.2938 1.19911
\(209\) −0.268379 −0.0185641
\(210\) 2.54104 0.175348
\(211\) 6.14263 0.422876 0.211438 0.977391i \(-0.432185\pi\)
0.211438 + 0.977391i \(0.432185\pi\)
\(212\) −0.306543 −0.0210534
\(213\) −5.09148 −0.348863
\(214\) −0.665241 −0.0454750
\(215\) −14.8641 −1.01372
\(216\) −1.26282 −0.0859242
\(217\) 6.27152 0.425739
\(218\) −26.4320 −1.79020
\(219\) 15.8865 1.07351
\(220\) −0.154091 −0.0103888
\(221\) −17.4014 −1.17055
\(222\) 6.23232 0.418286
\(223\) −6.16516 −0.412850 −0.206425 0.978462i \(-0.566183\pi\)
−0.206425 + 0.978462i \(0.566183\pi\)
\(224\) 6.39517 0.427295
\(225\) −3.04657 −0.203105
\(226\) −12.9866 −0.863858
\(227\) 24.5032 1.62633 0.813167 0.582030i \(-0.197742\pi\)
0.813167 + 0.582030i \(0.197742\pi\)
\(228\) −4.14822 −0.274722
\(229\) −1.24111 −0.0820148 −0.0410074 0.999159i \(-0.513057\pi\)
−0.0410074 + 0.999159i \(0.513057\pi\)
\(230\) 9.95840 0.656638
\(231\) −0.0844564 −0.00555682
\(232\) 9.85702 0.647145
\(233\) 24.8114 1.62545 0.812723 0.582650i \(-0.197984\pi\)
0.812723 + 0.582650i \(0.197984\pi\)
\(234\) −6.40782 −0.418892
\(235\) −6.30295 −0.411159
\(236\) −2.91713 −0.189889
\(237\) −10.3600 −0.672957
\(238\) −8.97635 −0.581850
\(239\) 19.9316 1.28927 0.644633 0.764492i \(-0.277010\pi\)
0.644633 + 0.764492i \(0.277010\pi\)
\(240\) 6.85789 0.442675
\(241\) 1.78751 0.115144 0.0575718 0.998341i \(-0.481664\pi\)
0.0575718 + 0.998341i \(0.481664\pi\)
\(242\) −19.9859 −1.28474
\(243\) 1.00000 0.0641500
\(244\) 10.7894 0.690720
\(245\) −1.39765 −0.0892927
\(246\) −17.7889 −1.13418
\(247\) 11.1999 0.712630
\(248\) 7.91982 0.502909
\(249\) −5.52767 −0.350302
\(250\) 20.4467 1.29316
\(251\) 19.0011 1.19934 0.599671 0.800247i \(-0.295298\pi\)
0.599671 + 0.800247i \(0.295298\pi\)
\(252\) −1.30541 −0.0822330
\(253\) −0.330987 −0.0208090
\(254\) 1.81808 0.114076
\(255\) −6.90059 −0.432132
\(256\) 20.8865 1.30541
\(257\) −5.27896 −0.329293 −0.164646 0.986353i \(-0.552648\pi\)
−0.164646 + 0.986353i \(0.552648\pi\)
\(258\) 19.3353 1.20376
\(259\) −3.42797 −0.213004
\(260\) 6.43047 0.398801
\(261\) −7.80555 −0.483151
\(262\) 39.7393 2.45510
\(263\) −22.2560 −1.37236 −0.686181 0.727431i \(-0.740714\pi\)
−0.686181 + 0.727431i \(0.740714\pi\)
\(264\) −0.106653 −0.00656407
\(265\) 0.328204 0.0201614
\(266\) 5.77734 0.354231
\(267\) −15.0241 −0.919460
\(268\) −4.89181 −0.298815
\(269\) 8.70678 0.530862 0.265431 0.964130i \(-0.414486\pi\)
0.265431 + 0.964130i \(0.414486\pi\)
\(270\) −2.54104 −0.154643
\(271\) 10.9473 0.665002 0.332501 0.943103i \(-0.392107\pi\)
0.332501 + 0.943103i \(0.392107\pi\)
\(272\) −24.2258 −1.46891
\(273\) 3.52450 0.213312
\(274\) 19.6900 1.18952
\(275\) −0.257302 −0.0155159
\(276\) −5.11593 −0.307943
\(277\) −21.4950 −1.29151 −0.645756 0.763544i \(-0.723458\pi\)
−0.645756 + 0.763544i \(0.723458\pi\)
\(278\) −25.8109 −1.54803
\(279\) −6.27152 −0.375466
\(280\) −1.76499 −0.105478
\(281\) 16.9237 1.00958 0.504790 0.863242i \(-0.331570\pi\)
0.504790 + 0.863242i \(0.331570\pi\)
\(282\) 8.19894 0.488240
\(283\) −11.0667 −0.657850 −0.328925 0.944356i \(-0.606686\pi\)
−0.328925 + 0.944356i \(0.606686\pi\)
\(284\) −6.64646 −0.394395
\(285\) 4.44134 0.263082
\(286\) −0.541181 −0.0320007
\(287\) 9.78445 0.577558
\(288\) −6.39517 −0.376839
\(289\) 7.37666 0.433921
\(290\) 19.8342 1.16470
\(291\) −9.13128 −0.535285
\(292\) 20.7383 1.21362
\(293\) −24.7793 −1.44762 −0.723811 0.689999i \(-0.757611\pi\)
−0.723811 + 0.689999i \(0.757611\pi\)
\(294\) 1.81808 0.106032
\(295\) 3.12326 0.181843
\(296\) −4.32892 −0.251614
\(297\) 0.0844564 0.00490066
\(298\) −35.9268 −2.08118
\(299\) 13.8126 0.798804
\(300\) −3.97702 −0.229613
\(301\) −10.6350 −0.612992
\(302\) 14.3550 0.826038
\(303\) 12.1017 0.695226
\(304\) 15.5922 0.894273
\(305\) −11.5518 −0.661454
\(306\) 8.97635 0.513144
\(307\) 22.2886 1.27208 0.636038 0.771658i \(-0.280572\pi\)
0.636038 + 0.771658i \(0.280572\pi\)
\(308\) −0.110250 −0.00628208
\(309\) −5.80333 −0.330140
\(310\) 15.9362 0.905115
\(311\) 9.48282 0.537721 0.268861 0.963179i \(-0.413353\pi\)
0.268861 + 0.963179i \(0.413353\pi\)
\(312\) 4.45082 0.251978
\(313\) 5.82224 0.329092 0.164546 0.986369i \(-0.447384\pi\)
0.164546 + 0.986369i \(0.447384\pi\)
\(314\) 33.3517 1.88214
\(315\) 1.39765 0.0787488
\(316\) −13.5241 −0.760789
\(317\) 28.5643 1.60433 0.802166 0.597100i \(-0.203681\pi\)
0.802166 + 0.597100i \(0.203681\pi\)
\(318\) −0.426931 −0.0239411
\(319\) −0.659228 −0.0369097
\(320\) 2.53458 0.141687
\(321\) −0.365904 −0.0204227
\(322\) 7.12509 0.397066
\(323\) −15.6893 −0.872973
\(324\) 1.30541 0.0725227
\(325\) 10.7376 0.595617
\(326\) 37.1825 2.05935
\(327\) −14.5385 −0.803978
\(328\) 12.3560 0.682248
\(329\) −4.50967 −0.248626
\(330\) −0.214607 −0.0118137
\(331\) −27.6246 −1.51839 −0.759193 0.650866i \(-0.774406\pi\)
−0.759193 + 0.650866i \(0.774406\pi\)
\(332\) −7.21586 −0.396022
\(333\) 3.42797 0.187852
\(334\) 40.7803 2.23140
\(335\) 5.23748 0.286154
\(336\) 4.90673 0.267684
\(337\) 12.0879 0.658467 0.329234 0.944248i \(-0.393210\pi\)
0.329234 + 0.944248i \(0.393210\pi\)
\(338\) −1.05067 −0.0571487
\(339\) −7.14306 −0.387958
\(340\) −9.00808 −0.488532
\(341\) −0.529670 −0.0286833
\(342\) −5.77734 −0.312403
\(343\) −1.00000 −0.0539949
\(344\) −13.4301 −0.724105
\(345\) 5.47743 0.294895
\(346\) 42.5592 2.28800
\(347\) −11.5304 −0.618985 −0.309492 0.950902i \(-0.600159\pi\)
−0.309492 + 0.950902i \(0.600159\pi\)
\(348\) −10.1894 −0.546210
\(349\) −32.9671 −1.76469 −0.882345 0.470603i \(-0.844036\pi\)
−0.882345 + 0.470603i \(0.844036\pi\)
\(350\) 5.53890 0.296067
\(351\) −3.52450 −0.188124
\(352\) −0.540113 −0.0287881
\(353\) 12.8554 0.684222 0.342111 0.939660i \(-0.388858\pi\)
0.342111 + 0.939660i \(0.388858\pi\)
\(354\) −4.06277 −0.215934
\(355\) 7.11612 0.377684
\(356\) −19.6126 −1.03946
\(357\) −4.93727 −0.261308
\(358\) −21.8647 −1.15559
\(359\) 21.9370 1.15779 0.578896 0.815402i \(-0.303484\pi\)
0.578896 + 0.815402i \(0.303484\pi\)
\(360\) 1.76499 0.0930230
\(361\) −8.90212 −0.468532
\(362\) −26.8097 −1.40909
\(363\) −10.9929 −0.576976
\(364\) 4.60091 0.241153
\(365\) −22.2038 −1.16220
\(366\) 15.0267 0.785457
\(367\) −16.7528 −0.874487 −0.437244 0.899343i \(-0.644045\pi\)
−0.437244 + 0.899343i \(0.644045\pi\)
\(368\) 19.2296 1.00241
\(369\) −9.78445 −0.509358
\(370\) −8.71062 −0.452843
\(371\) 0.234825 0.0121915
\(372\) −8.18689 −0.424471
\(373\) −14.6000 −0.755961 −0.377980 0.925814i \(-0.623381\pi\)
−0.377980 + 0.925814i \(0.623381\pi\)
\(374\) 0.758110 0.0392009
\(375\) 11.2463 0.580757
\(376\) −5.69492 −0.293693
\(377\) 27.5106 1.41687
\(378\) −1.81808 −0.0935118
\(379\) 1.91231 0.0982286 0.0491143 0.998793i \(-0.484360\pi\)
0.0491143 + 0.998793i \(0.484360\pi\)
\(380\) 5.79776 0.297419
\(381\) 1.00000 0.0512316
\(382\) −27.4669 −1.40533
\(383\) −14.6000 −0.746025 −0.373012 0.927826i \(-0.621675\pi\)
−0.373012 + 0.927826i \(0.621675\pi\)
\(384\) 9.49332 0.484454
\(385\) 0.118041 0.00601591
\(386\) −7.48270 −0.380859
\(387\) 10.6350 0.540608
\(388\) −11.9200 −0.605149
\(389\) −1.62130 −0.0822033 −0.0411017 0.999155i \(-0.513087\pi\)
−0.0411017 + 0.999155i \(0.513087\pi\)
\(390\) 8.95590 0.453499
\(391\) −19.3493 −0.978536
\(392\) −1.26282 −0.0637822
\(393\) 21.8579 1.10258
\(394\) −15.9445 −0.803271
\(395\) 14.4797 0.728554
\(396\) 0.110250 0.00554027
\(397\) −38.7222 −1.94341 −0.971705 0.236197i \(-0.924099\pi\)
−0.971705 + 0.236197i \(0.924099\pi\)
\(398\) −36.3348 −1.82130
\(399\) 3.17772 0.159085
\(400\) 14.9487 0.747434
\(401\) −12.5099 −0.624716 −0.312358 0.949964i \(-0.601119\pi\)
−0.312358 + 0.949964i \(0.601119\pi\)
\(402\) −6.81295 −0.339799
\(403\) 22.1040 1.10108
\(404\) 15.7977 0.785965
\(405\) −1.39765 −0.0694499
\(406\) 14.1911 0.704292
\(407\) 0.289514 0.0143507
\(408\) −6.23490 −0.308674
\(409\) −1.09186 −0.0539888 −0.0269944 0.999636i \(-0.508594\pi\)
−0.0269944 + 0.999636i \(0.508594\pi\)
\(410\) 24.8627 1.22788
\(411\) 10.8301 0.534211
\(412\) −7.57571 −0.373228
\(413\) 2.23465 0.109960
\(414\) −7.12509 −0.350179
\(415\) 7.72576 0.379243
\(416\) 22.5398 1.10510
\(417\) −14.1968 −0.695220
\(418\) −0.487933 −0.0238656
\(419\) 25.5953 1.25041 0.625207 0.780459i \(-0.285015\pi\)
0.625207 + 0.780459i \(0.285015\pi\)
\(420\) 1.82451 0.0890268
\(421\) 26.7270 1.30260 0.651298 0.758822i \(-0.274225\pi\)
0.651298 + 0.758822i \(0.274225\pi\)
\(422\) 11.1678 0.543639
\(423\) 4.50967 0.219268
\(424\) 0.296543 0.0144014
\(425\) −15.0417 −0.729632
\(426\) −9.25671 −0.448489
\(427\) −8.26515 −0.399979
\(428\) −0.477653 −0.0230883
\(429\) −0.297667 −0.0143715
\(430\) −27.0240 −1.30321
\(431\) −20.1905 −0.972544 −0.486272 0.873808i \(-0.661644\pi\)
−0.486272 + 0.873808i \(0.661644\pi\)
\(432\) −4.90673 −0.236075
\(433\) 21.9651 1.05557 0.527787 0.849377i \(-0.323022\pi\)
0.527787 + 0.849377i \(0.323022\pi\)
\(434\) 11.4021 0.547319
\(435\) 10.9094 0.523067
\(436\) −18.9786 −0.908911
\(437\) 12.4536 0.595734
\(438\) 28.8829 1.38008
\(439\) 12.8006 0.610939 0.305470 0.952202i \(-0.401187\pi\)
0.305470 + 0.952202i \(0.401187\pi\)
\(440\) 0.149064 0.00710637
\(441\) 1.00000 0.0476190
\(442\) −31.6371 −1.50482
\(443\) −35.3169 −1.67795 −0.838977 0.544166i \(-0.816846\pi\)
−0.838977 + 0.544166i \(0.816846\pi\)
\(444\) 4.47490 0.212370
\(445\) 20.9985 0.995422
\(446\) −11.2087 −0.530749
\(447\) −19.7609 −0.934657
\(448\) 1.81346 0.0856778
\(449\) −9.48179 −0.447473 −0.223737 0.974650i \(-0.571826\pi\)
−0.223737 + 0.974650i \(0.571826\pi\)
\(450\) −5.53890 −0.261106
\(451\) −0.826360 −0.0389118
\(452\) −9.32461 −0.438593
\(453\) 7.89570 0.370973
\(454\) 44.5487 2.09077
\(455\) −4.92602 −0.230936
\(456\) 4.01289 0.187921
\(457\) 14.4625 0.676528 0.338264 0.941051i \(-0.390160\pi\)
0.338264 + 0.941051i \(0.390160\pi\)
\(458\) −2.25643 −0.105436
\(459\) 4.93727 0.230452
\(460\) 7.15028 0.333384
\(461\) −16.5198 −0.769404 −0.384702 0.923041i \(-0.625696\pi\)
−0.384702 + 0.923041i \(0.625696\pi\)
\(462\) −0.153548 −0.00714372
\(463\) −21.0251 −0.977120 −0.488560 0.872530i \(-0.662478\pi\)
−0.488560 + 0.872530i \(0.662478\pi\)
\(464\) 38.2997 1.77802
\(465\) 8.76540 0.406486
\(466\) 45.1090 2.08963
\(467\) −3.24697 −0.150252 −0.0751260 0.997174i \(-0.523936\pi\)
−0.0751260 + 0.997174i \(0.523936\pi\)
\(468\) −4.60091 −0.212677
\(469\) 3.74734 0.173036
\(470\) −11.4593 −0.528576
\(471\) 18.3445 0.845268
\(472\) 2.82197 0.129892
\(473\) 0.898196 0.0412991
\(474\) −18.8354 −0.865137
\(475\) 9.68113 0.444201
\(476\) −6.44515 −0.295413
\(477\) −0.234825 −0.0107519
\(478\) 36.2372 1.65745
\(479\) −37.5282 −1.71471 −0.857353 0.514729i \(-0.827892\pi\)
−0.857353 + 0.514729i \(0.827892\pi\)
\(480\) 8.93821 0.407972
\(481\) −12.0819 −0.550887
\(482\) 3.24983 0.148026
\(483\) 3.91903 0.178322
\(484\) −14.3502 −0.652281
\(485\) 12.7624 0.579509
\(486\) 1.81808 0.0824697
\(487\) −40.2962 −1.82600 −0.912998 0.407964i \(-0.866239\pi\)
−0.912998 + 0.407964i \(0.866239\pi\)
\(488\) −10.4374 −0.472480
\(489\) 20.4515 0.924851
\(490\) −2.54104 −0.114792
\(491\) −23.9030 −1.07873 −0.539364 0.842072i \(-0.681335\pi\)
−0.539364 + 0.842072i \(0.681335\pi\)
\(492\) −12.7727 −0.575838
\(493\) −38.5381 −1.73567
\(494\) 20.3622 0.916140
\(495\) −0.118041 −0.00530553
\(496\) 30.7726 1.38173
\(497\) 5.09148 0.228384
\(498\) −10.0497 −0.450339
\(499\) 4.38382 0.196247 0.0981233 0.995174i \(-0.468716\pi\)
0.0981233 + 0.995174i \(0.468716\pi\)
\(500\) 14.6810 0.656555
\(501\) 22.4305 1.00212
\(502\) 34.5456 1.54184
\(503\) 26.1847 1.16752 0.583758 0.811927i \(-0.301582\pi\)
0.583758 + 0.811927i \(0.301582\pi\)
\(504\) 1.26282 0.0562506
\(505\) −16.9140 −0.752663
\(506\) −0.601760 −0.0267515
\(507\) −0.577899 −0.0256654
\(508\) 1.30541 0.0579181
\(509\) 3.82171 0.169394 0.0846972 0.996407i \(-0.473008\pi\)
0.0846972 + 0.996407i \(0.473008\pi\)
\(510\) −12.5458 −0.555538
\(511\) −15.8865 −0.702777
\(512\) 18.9867 0.839100
\(513\) −3.17772 −0.140300
\(514\) −9.59757 −0.423331
\(515\) 8.11103 0.357415
\(516\) 13.8830 0.611167
\(517\) 0.380871 0.0167507
\(518\) −6.23232 −0.273833
\(519\) 23.4089 1.02754
\(520\) −6.22070 −0.272796
\(521\) 15.3809 0.673850 0.336925 0.941531i \(-0.390613\pi\)
0.336925 + 0.941531i \(0.390613\pi\)
\(522\) −14.1911 −0.621127
\(523\) 10.9314 0.477998 0.238999 0.971020i \(-0.423181\pi\)
0.238999 + 0.971020i \(0.423181\pi\)
\(524\) 28.5335 1.24649
\(525\) 3.04657 0.132963
\(526\) −40.4631 −1.76427
\(527\) −30.9642 −1.34882
\(528\) −0.414405 −0.0180346
\(529\) −7.64124 −0.332228
\(530\) 0.596701 0.0259190
\(531\) −2.23465 −0.0969755
\(532\) 4.14822 0.179848
\(533\) 34.4853 1.49372
\(534\) −27.3150 −1.18203
\(535\) 0.511406 0.0221100
\(536\) 4.73223 0.204401
\(537\) −12.0263 −0.518973
\(538\) 15.8296 0.682463
\(539\) 0.0844564 0.00363780
\(540\) −1.82451 −0.0785142
\(541\) −40.3414 −1.73441 −0.867206 0.497949i \(-0.834087\pi\)
−0.867206 + 0.497949i \(0.834087\pi\)
\(542\) 19.9031 0.854910
\(543\) −14.7462 −0.632819
\(544\) −31.5747 −1.35375
\(545\) 20.3197 0.870400
\(546\) 6.40782 0.274229
\(547\) −38.2345 −1.63479 −0.817396 0.576077i \(-0.804583\pi\)
−0.817396 + 0.576077i \(0.804583\pi\)
\(548\) 14.1377 0.603935
\(549\) 8.26515 0.352748
\(550\) −0.467796 −0.0199469
\(551\) 24.8038 1.05668
\(552\) 4.94904 0.210645
\(553\) 10.3600 0.440554
\(554\) −39.0797 −1.66034
\(555\) −4.79111 −0.203371
\(556\) −18.5326 −0.785957
\(557\) 24.3805 1.03304 0.516518 0.856276i \(-0.327228\pi\)
0.516518 + 0.856276i \(0.327228\pi\)
\(558\) −11.4021 −0.482690
\(559\) −37.4831 −1.58537
\(560\) −6.85789 −0.289799
\(561\) 0.416984 0.0176051
\(562\) 30.7685 1.29789
\(563\) −11.0319 −0.464938 −0.232469 0.972604i \(-0.574680\pi\)
−0.232469 + 0.972604i \(0.574680\pi\)
\(564\) 5.88696 0.247886
\(565\) 9.98351 0.420009
\(566\) −20.1202 −0.845716
\(567\) −1.00000 −0.0419961
\(568\) 6.42964 0.269782
\(569\) 41.4077 1.73590 0.867950 0.496651i \(-0.165437\pi\)
0.867950 + 0.496651i \(0.165437\pi\)
\(570\) 8.07471 0.338212
\(571\) −20.0004 −0.836991 −0.418495 0.908219i \(-0.637442\pi\)
−0.418495 + 0.908219i \(0.637442\pi\)
\(572\) −0.388576 −0.0162472
\(573\) −15.1077 −0.631132
\(574\) 17.7889 0.742494
\(575\) 11.9396 0.497915
\(576\) −1.81346 −0.0755607
\(577\) 29.2882 1.21928 0.609642 0.792677i \(-0.291313\pi\)
0.609642 + 0.792677i \(0.291313\pi\)
\(578\) 13.4113 0.557838
\(579\) −4.11572 −0.171043
\(580\) 14.2413 0.591336
\(581\) 5.52767 0.229326
\(582\) −16.6014 −0.688149
\(583\) −0.0198325 −0.000821378 0
\(584\) −20.0618 −0.830164
\(585\) 4.92602 0.203666
\(586\) −45.0507 −1.86103
\(587\) 21.2041 0.875187 0.437593 0.899173i \(-0.355831\pi\)
0.437593 + 0.899173i \(0.355831\pi\)
\(588\) 1.30541 0.0538341
\(589\) 19.9291 0.821165
\(590\) 5.67834 0.233773
\(591\) −8.76996 −0.360748
\(592\) −16.8201 −0.691303
\(593\) −37.6147 −1.54465 −0.772325 0.635227i \(-0.780906\pi\)
−0.772325 + 0.635227i \(0.780906\pi\)
\(594\) 0.153548 0.00630017
\(595\) 6.90059 0.282897
\(596\) −25.7960 −1.05664
\(597\) −19.9853 −0.817944
\(598\) 25.1124 1.02692
\(599\) −25.3004 −1.03375 −0.516873 0.856062i \(-0.672904\pi\)
−0.516873 + 0.856062i \(0.672904\pi\)
\(600\) 3.84728 0.157064
\(601\) 22.2166 0.906235 0.453118 0.891451i \(-0.350312\pi\)
0.453118 + 0.891451i \(0.350312\pi\)
\(602\) −19.3353 −0.788048
\(603\) −3.74734 −0.152603
\(604\) 10.3071 0.419390
\(605\) 15.3642 0.624644
\(606\) 22.0019 0.893766
\(607\) 26.6139 1.08023 0.540113 0.841592i \(-0.318381\pi\)
0.540113 + 0.841592i \(0.318381\pi\)
\(608\) 20.3220 0.824167
\(609\) 7.80555 0.316297
\(610\) −21.0021 −0.850349
\(611\) −15.8943 −0.643016
\(612\) 6.44515 0.260530
\(613\) −32.9527 −1.33095 −0.665474 0.746421i \(-0.731771\pi\)
−0.665474 + 0.746421i \(0.731771\pi\)
\(614\) 40.5224 1.63535
\(615\) 13.6753 0.551440
\(616\) 0.106653 0.00429719
\(617\) −42.6655 −1.71765 −0.858824 0.512271i \(-0.828804\pi\)
−0.858824 + 0.512271i \(0.828804\pi\)
\(618\) −10.5509 −0.424420
\(619\) −27.3570 −1.09957 −0.549786 0.835306i \(-0.685291\pi\)
−0.549786 + 0.835306i \(0.685291\pi\)
\(620\) 11.4424 0.459539
\(621\) −3.91903 −0.157265
\(622\) 17.2405 0.691281
\(623\) 15.0241 0.601928
\(624\) 17.2938 0.692304
\(625\) −0.485568 −0.0194227
\(626\) 10.5853 0.423073
\(627\) −0.268379 −0.0107180
\(628\) 23.9470 0.955590
\(629\) 16.9248 0.674838
\(630\) 2.54104 0.101237
\(631\) 17.0826 0.680049 0.340024 0.940417i \(-0.389565\pi\)
0.340024 + 0.940417i \(0.389565\pi\)
\(632\) 13.0829 0.520410
\(633\) 6.14263 0.244148
\(634\) 51.9322 2.06249
\(635\) −1.39765 −0.0554641
\(636\) −0.306543 −0.0121552
\(637\) −3.52450 −0.139646
\(638\) −1.19853 −0.0474502
\(639\) −5.09148 −0.201416
\(640\) −13.2684 −0.524478
\(641\) 32.1820 1.27111 0.635557 0.772054i \(-0.280770\pi\)
0.635557 + 0.772054i \(0.280770\pi\)
\(642\) −0.665241 −0.0262550
\(643\) −5.32118 −0.209847 −0.104923 0.994480i \(-0.533460\pi\)
−0.104923 + 0.994480i \(0.533460\pi\)
\(644\) 5.11593 0.201596
\(645\) −14.8641 −0.585272
\(646\) −28.5243 −1.12227
\(647\) 2.44907 0.0962827 0.0481414 0.998841i \(-0.484670\pi\)
0.0481414 + 0.998841i \(0.484670\pi\)
\(648\) −1.26282 −0.0496084
\(649\) −0.188731 −0.00740832
\(650\) 19.5219 0.765710
\(651\) 6.27152 0.245800
\(652\) 26.6976 1.04556
\(653\) −30.1572 −1.18014 −0.590070 0.807352i \(-0.700900\pi\)
−0.590070 + 0.807352i \(0.700900\pi\)
\(654\) −26.4320 −1.03357
\(655\) −30.5497 −1.19368
\(656\) 48.0096 1.87446
\(657\) 15.8865 0.619791
\(658\) −8.19894 −0.319628
\(659\) −33.1094 −1.28976 −0.644880 0.764284i \(-0.723093\pi\)
−0.644880 + 0.764284i \(0.723093\pi\)
\(660\) −0.154091 −0.00599799
\(661\) −38.7669 −1.50786 −0.753928 0.656957i \(-0.771843\pi\)
−0.753928 + 0.656957i \(0.771843\pi\)
\(662\) −50.2237 −1.95200
\(663\) −17.4014 −0.675815
\(664\) 6.98047 0.270895
\(665\) −4.44134 −0.172228
\(666\) 6.23232 0.241498
\(667\) 30.5901 1.18445
\(668\) 29.2809 1.13291
\(669\) −6.16516 −0.238359
\(670\) 9.52214 0.367872
\(671\) 0.698045 0.0269477
\(672\) 6.39517 0.246699
\(673\) −21.3247 −0.822006 −0.411003 0.911634i \(-0.634821\pi\)
−0.411003 + 0.911634i \(0.634821\pi\)
\(674\) 21.9767 0.846509
\(675\) −3.04657 −0.117263
\(676\) −0.754394 −0.0290152
\(677\) 10.7266 0.412257 0.206129 0.978525i \(-0.433913\pi\)
0.206129 + 0.978525i \(0.433913\pi\)
\(678\) −12.9866 −0.498749
\(679\) 9.13128 0.350426
\(680\) 8.71422 0.334175
\(681\) 24.5032 0.938964
\(682\) −0.962982 −0.0368745
\(683\) −14.7316 −0.563688 −0.281844 0.959460i \(-0.590946\pi\)
−0.281844 + 0.959460i \(0.590946\pi\)
\(684\) −4.14822 −0.158611
\(685\) −15.1368 −0.578346
\(686\) −1.81808 −0.0694145
\(687\) −1.24111 −0.0473513
\(688\) −52.1831 −1.98946
\(689\) 0.827642 0.0315306
\(690\) 9.95840 0.379110
\(691\) −26.0749 −0.991934 −0.495967 0.868341i \(-0.665186\pi\)
−0.495967 + 0.868341i \(0.665186\pi\)
\(692\) 30.5582 1.16165
\(693\) −0.0844564 −0.00320823
\(694\) −20.9632 −0.795751
\(695\) 19.8422 0.752656
\(696\) 9.85702 0.373629
\(697\) −48.3085 −1.82982
\(698\) −59.9368 −2.26864
\(699\) 24.8114 0.938452
\(700\) 3.97702 0.150317
\(701\) −3.42272 −0.129275 −0.0646373 0.997909i \(-0.520589\pi\)
−0.0646373 + 0.997909i \(0.520589\pi\)
\(702\) −6.40782 −0.241847
\(703\) −10.8931 −0.410842
\(704\) −0.153158 −0.00577236
\(705\) −6.30295 −0.237383
\(706\) 23.3721 0.879619
\(707\) −12.1017 −0.455132
\(708\) −2.91713 −0.109632
\(709\) 15.4309 0.579520 0.289760 0.957099i \(-0.406425\pi\)
0.289760 + 0.957099i \(0.406425\pi\)
\(710\) 12.9377 0.485542
\(711\) −10.3600 −0.388532
\(712\) 18.9728 0.711035
\(713\) 24.5783 0.920463
\(714\) −8.97635 −0.335931
\(715\) 0.416034 0.0155588
\(716\) −15.6992 −0.586707
\(717\) 19.9316 0.744358
\(718\) 39.8832 1.48843
\(719\) 0.647747 0.0241569 0.0120784 0.999927i \(-0.496155\pi\)
0.0120784 + 0.999927i \(0.496155\pi\)
\(720\) 6.85789 0.255579
\(721\) 5.80333 0.216127
\(722\) −16.1847 −0.602334
\(723\) 1.78751 0.0664782
\(724\) −19.2498 −0.715412
\(725\) 23.7801 0.883172
\(726\) −19.9859 −0.741746
\(727\) 22.4181 0.831442 0.415721 0.909492i \(-0.363529\pi\)
0.415721 + 0.909492i \(0.363529\pi\)
\(728\) −4.45082 −0.164958
\(729\) 1.00000 0.0370370
\(730\) −40.3682 −1.49409
\(731\) 52.5080 1.94208
\(732\) 10.7894 0.398787
\(733\) −22.0750 −0.815358 −0.407679 0.913125i \(-0.633662\pi\)
−0.407679 + 0.913125i \(0.633662\pi\)
\(734\) −30.4578 −1.12422
\(735\) −1.39765 −0.0515532
\(736\) 25.0628 0.923828
\(737\) −0.316487 −0.0116579
\(738\) −17.7889 −0.654818
\(739\) −15.2742 −0.561871 −0.280936 0.959727i \(-0.590645\pi\)
−0.280936 + 0.959727i \(0.590645\pi\)
\(740\) −6.25436 −0.229915
\(741\) 11.1999 0.411437
\(742\) 0.426931 0.0156731
\(743\) −16.5688 −0.607851 −0.303925 0.952696i \(-0.598297\pi\)
−0.303925 + 0.952696i \(0.598297\pi\)
\(744\) 7.91982 0.290355
\(745\) 27.6188 1.01187
\(746\) −26.5440 −0.971845
\(747\) −5.52767 −0.202247
\(748\) 0.544335 0.0199028
\(749\) 0.365904 0.0133698
\(750\) 20.4467 0.746606
\(751\) −25.6803 −0.937089 −0.468544 0.883440i \(-0.655221\pi\)
−0.468544 + 0.883440i \(0.655221\pi\)
\(752\) −22.1277 −0.806915
\(753\) 19.0011 0.692440
\(754\) 50.0165 1.82149
\(755\) −11.0354 −0.401621
\(756\) −1.30541 −0.0474772
\(757\) 2.68605 0.0976262 0.0488131 0.998808i \(-0.484456\pi\)
0.0488131 + 0.998808i \(0.484456\pi\)
\(758\) 3.47672 0.126280
\(759\) −0.330987 −0.0120141
\(760\) −5.60863 −0.203446
\(761\) 32.2716 1.16984 0.584922 0.811090i \(-0.301125\pi\)
0.584922 + 0.811090i \(0.301125\pi\)
\(762\) 1.81808 0.0658620
\(763\) 14.5385 0.526327
\(764\) −19.7217 −0.713505
\(765\) −6.90059 −0.249491
\(766\) −26.5439 −0.959071
\(767\) 7.87602 0.284387
\(768\) 20.8865 0.753677
\(769\) 33.0914 1.19331 0.596654 0.802499i \(-0.296497\pi\)
0.596654 + 0.802499i \(0.296497\pi\)
\(770\) 0.214607 0.00773390
\(771\) −5.27896 −0.190117
\(772\) −5.37269 −0.193367
\(773\) −41.8362 −1.50474 −0.752372 0.658738i \(-0.771091\pi\)
−0.752372 + 0.658738i \(0.771091\pi\)
\(774\) 19.3353 0.694993
\(775\) 19.1066 0.686330
\(776\) 11.5312 0.413946
\(777\) −3.42797 −0.122978
\(778\) −2.94766 −0.105679
\(779\) 31.0922 1.11399
\(780\) 6.43047 0.230248
\(781\) −0.430008 −0.0153869
\(782\) −35.1785 −1.25798
\(783\) −7.80555 −0.278947
\(784\) −4.90673 −0.175240
\(785\) −25.6392 −0.915101
\(786\) 39.7393 1.41746
\(787\) −49.6735 −1.77067 −0.885335 0.464954i \(-0.846071\pi\)
−0.885335 + 0.464954i \(0.846071\pi\)
\(788\) −11.4484 −0.407831
\(789\) −22.2560 −0.792333
\(790\) 26.3253 0.936611
\(791\) 7.14306 0.253978
\(792\) −0.106653 −0.00378977
\(793\) −29.1305 −1.03445
\(794\) −70.3999 −2.49840
\(795\) 0.328204 0.0116402
\(796\) −26.0890 −0.924699
\(797\) −47.6456 −1.68769 −0.843847 0.536584i \(-0.819714\pi\)
−0.843847 + 0.536584i \(0.819714\pi\)
\(798\) 5.77734 0.204516
\(799\) 22.2655 0.787696
\(800\) 19.4833 0.688839
\(801\) −15.0241 −0.530850
\(802\) −22.7440 −0.803120
\(803\) 1.34172 0.0473481
\(804\) −4.89181 −0.172521
\(805\) −5.47743 −0.193054
\(806\) 40.1868 1.41552
\(807\) 8.70678 0.306493
\(808\) −15.2823 −0.537631
\(809\) −25.8849 −0.910064 −0.455032 0.890475i \(-0.650372\pi\)
−0.455032 + 0.890475i \(0.650372\pi\)
\(810\) −2.54104 −0.0892830
\(811\) −10.3199 −0.362382 −0.181191 0.983448i \(-0.557995\pi\)
−0.181191 + 0.983448i \(0.557995\pi\)
\(812\) 10.1894 0.357579
\(813\) 10.9473 0.383939
\(814\) 0.526360 0.0184489
\(815\) −28.5841 −1.00126
\(816\) −24.2258 −0.848074
\(817\) −33.7951 −1.18234
\(818\) −1.98508 −0.0694066
\(819\) 3.52450 0.123156
\(820\) 17.8518 0.623412
\(821\) −14.2032 −0.495696 −0.247848 0.968799i \(-0.579723\pi\)
−0.247848 + 0.968799i \(0.579723\pi\)
\(822\) 19.6900 0.686769
\(823\) 56.7644 1.97868 0.989342 0.145612i \(-0.0465152\pi\)
0.989342 + 0.145612i \(0.0465152\pi\)
\(824\) 7.32857 0.255303
\(825\) −0.257302 −0.00895812
\(826\) 4.06277 0.141362
\(827\) 19.9274 0.692944 0.346472 0.938060i \(-0.387380\pi\)
0.346472 + 0.938060i \(0.387380\pi\)
\(828\) −5.11593 −0.177791
\(829\) −9.92254 −0.344624 −0.172312 0.985042i \(-0.555124\pi\)
−0.172312 + 0.985042i \(0.555124\pi\)
\(830\) 14.0460 0.487545
\(831\) −21.4950 −0.745655
\(832\) 6.39153 0.221586
\(833\) 4.93727 0.171066
\(834\) −25.8109 −0.893757
\(835\) −31.3500 −1.08491
\(836\) −0.350343 −0.0121169
\(837\) −6.27152 −0.216775
\(838\) 46.5343 1.60750
\(839\) 51.1367 1.76543 0.882717 0.469904i \(-0.155712\pi\)
0.882717 + 0.469904i \(0.155712\pi\)
\(840\) −1.76499 −0.0608978
\(841\) 31.9265 1.10092
\(842\) 48.5918 1.67459
\(843\) 16.9237 0.582882
\(844\) 8.01864 0.276013
\(845\) 0.807702 0.0277858
\(846\) 8.19894 0.281885
\(847\) 10.9929 0.377719
\(848\) 1.15222 0.0395675
\(849\) −11.0667 −0.379810
\(850\) −27.3471 −0.937997
\(851\) −13.4343 −0.460522
\(852\) −6.64646 −0.227704
\(853\) −37.5651 −1.28620 −0.643102 0.765781i \(-0.722353\pi\)
−0.643102 + 0.765781i \(0.722353\pi\)
\(854\) −15.0267 −0.514203
\(855\) 4.44134 0.151891
\(856\) 0.462071 0.0157933
\(857\) −21.4442 −0.732521 −0.366261 0.930512i \(-0.619362\pi\)
−0.366261 + 0.930512i \(0.619362\pi\)
\(858\) −0.541181 −0.0184756
\(859\) −3.57663 −0.122033 −0.0610166 0.998137i \(-0.519434\pi\)
−0.0610166 + 0.998137i \(0.519434\pi\)
\(860\) −19.4037 −0.661659
\(861\) 9.78445 0.333453
\(862\) −36.7080 −1.25028
\(863\) 2.03377 0.0692303 0.0346151 0.999401i \(-0.488979\pi\)
0.0346151 + 0.999401i \(0.488979\pi\)
\(864\) −6.39517 −0.217568
\(865\) −32.7175 −1.11243
\(866\) 39.9342 1.35702
\(867\) 7.37666 0.250524
\(868\) 8.18689 0.277881
\(869\) −0.874972 −0.0296814
\(870\) 19.8342 0.672443
\(871\) 13.2075 0.447519
\(872\) 18.3595 0.621731
\(873\) −9.13128 −0.309047
\(874\) 22.6415 0.765861
\(875\) −11.2463 −0.380194
\(876\) 20.7383 0.700683
\(877\) 34.8009 1.17514 0.587572 0.809172i \(-0.300084\pi\)
0.587572 + 0.809172i \(0.300084\pi\)
\(878\) 23.2725 0.785409
\(879\) −24.7793 −0.835785
\(880\) 0.579193 0.0195246
\(881\) 46.1355 1.55435 0.777173 0.629287i \(-0.216653\pi\)
0.777173 + 0.629287i \(0.216653\pi\)
\(882\) 1.81808 0.0612179
\(883\) 2.96916 0.0999203 0.0499602 0.998751i \(-0.484091\pi\)
0.0499602 + 0.998751i \(0.484091\pi\)
\(884\) −22.7159 −0.764020
\(885\) 3.12326 0.104987
\(886\) −64.2088 −2.15714
\(887\) 41.6884 1.39976 0.699880 0.714260i \(-0.253237\pi\)
0.699880 + 0.714260i \(0.253237\pi\)
\(888\) −4.32892 −0.145269
\(889\) −1.00000 −0.0335389
\(890\) 38.1768 1.27969
\(891\) 0.0844564 0.00282940
\(892\) −8.04805 −0.269469
\(893\) −14.3305 −0.479551
\(894\) −35.9268 −1.20157
\(895\) 16.8086 0.561848
\(896\) −9.49332 −0.317150
\(897\) 13.8126 0.461189
\(898\) −17.2386 −0.575261
\(899\) 48.9526 1.63266
\(900\) −3.97702 −0.132567
\(901\) −1.15940 −0.0386251
\(902\) −1.50239 −0.0500240
\(903\) −10.6350 −0.353911
\(904\) 9.02042 0.300015
\(905\) 20.6100 0.685100
\(906\) 14.3550 0.476913
\(907\) −33.2816 −1.10510 −0.552549 0.833480i \(-0.686345\pi\)
−0.552549 + 0.833480i \(0.686345\pi\)
\(908\) 31.9867 1.06151
\(909\) 12.1017 0.401389
\(910\) −8.95590 −0.296885
\(911\) 41.8018 1.38496 0.692478 0.721439i \(-0.256519\pi\)
0.692478 + 0.721439i \(0.256519\pi\)
\(912\) 15.5922 0.516309
\(913\) −0.466847 −0.0154504
\(914\) 26.2940 0.869728
\(915\) −11.5518 −0.381891
\(916\) −1.62015 −0.0535314
\(917\) −21.8579 −0.721811
\(918\) 8.97635 0.296264
\(919\) 8.93340 0.294686 0.147343 0.989085i \(-0.452928\pi\)
0.147343 + 0.989085i \(0.452928\pi\)
\(920\) −6.91703 −0.228048
\(921\) 22.2886 0.734434
\(922\) −30.0343 −0.989127
\(923\) 17.9449 0.590665
\(924\) −0.110250 −0.00362696
\(925\) −10.4436 −0.343382
\(926\) −38.2253 −1.25616
\(927\) −5.80333 −0.190606
\(928\) 49.9178 1.63863
\(929\) 43.2613 1.41936 0.709679 0.704525i \(-0.248840\pi\)
0.709679 + 0.704525i \(0.248840\pi\)
\(930\) 15.9362 0.522568
\(931\) −3.17772 −0.104145
\(932\) 32.3890 1.06094
\(933\) 9.48282 0.310454
\(934\) −5.90325 −0.193160
\(935\) −0.582799 −0.0190596
\(936\) 4.45082 0.145480
\(937\) 7.34205 0.239854 0.119927 0.992783i \(-0.461734\pi\)
0.119927 + 0.992783i \(0.461734\pi\)
\(938\) 6.81295 0.222451
\(939\) 5.82224 0.190002
\(940\) −8.22792 −0.268365
\(941\) −50.7589 −1.65469 −0.827346 0.561692i \(-0.810151\pi\)
−0.827346 + 0.561692i \(0.810151\pi\)
\(942\) 33.3517 1.08666
\(943\) 38.3455 1.24870
\(944\) 10.9648 0.356874
\(945\) 1.39765 0.0454656
\(946\) 1.63299 0.0530931
\(947\) 26.6858 0.867171 0.433585 0.901112i \(-0.357248\pi\)
0.433585 + 0.901112i \(0.357248\pi\)
\(948\) −13.5241 −0.439242
\(949\) −55.9919 −1.81757
\(950\) 17.6011 0.571054
\(951\) 28.5643 0.926262
\(952\) 6.23490 0.202074
\(953\) −6.47952 −0.209892 −0.104946 0.994478i \(-0.533467\pi\)
−0.104946 + 0.994478i \(0.533467\pi\)
\(954\) −0.426931 −0.0138224
\(955\) 21.1153 0.683274
\(956\) 26.0188 0.841509
\(957\) −0.659228 −0.0213098
\(958\) −68.2291 −2.20438
\(959\) −10.8301 −0.349723
\(960\) 2.53458 0.0818033
\(961\) 8.33198 0.268773
\(962\) −21.9658 −0.708207
\(963\) −0.365904 −0.0117911
\(964\) 2.33343 0.0751547
\(965\) 5.75234 0.185174
\(966\) 7.12509 0.229246
\(967\) 14.2378 0.457857 0.228929 0.973443i \(-0.426478\pi\)
0.228929 + 0.973443i \(0.426478\pi\)
\(968\) 13.8820 0.446186
\(969\) −15.6893 −0.504011
\(970\) 23.2030 0.745002
\(971\) −19.2850 −0.618885 −0.309442 0.950918i \(-0.600142\pi\)
−0.309442 + 0.950918i \(0.600142\pi\)
\(972\) 1.30541 0.0418710
\(973\) 14.1968 0.455128
\(974\) −73.2617 −2.34746
\(975\) 10.7376 0.343880
\(976\) −40.5548 −1.29813
\(977\) 3.08393 0.0986638 0.0493319 0.998782i \(-0.484291\pi\)
0.0493319 + 0.998782i \(0.484291\pi\)
\(978\) 37.1825 1.18897
\(979\) −1.26888 −0.0405536
\(980\) −1.82451 −0.0582817
\(981\) −14.5385 −0.464177
\(982\) −43.4576 −1.38679
\(983\) 25.0025 0.797454 0.398727 0.917070i \(-0.369452\pi\)
0.398727 + 0.917070i \(0.369452\pi\)
\(984\) 12.3560 0.393896
\(985\) 12.2574 0.390552
\(986\) −70.0653 −2.23133
\(987\) −4.50967 −0.143544
\(988\) 14.6204 0.465137
\(989\) −41.6789 −1.32531
\(990\) −0.214607 −0.00682066
\(991\) 8.99880 0.285856 0.142928 0.989733i \(-0.454348\pi\)
0.142928 + 0.989733i \(0.454348\pi\)
\(992\) 40.1074 1.27341
\(993\) −27.6246 −0.876640
\(994\) 9.25671 0.293605
\(995\) 27.9325 0.885519
\(996\) −7.21586 −0.228643
\(997\) −32.2384 −1.02100 −0.510501 0.859877i \(-0.670540\pi\)
−0.510501 + 0.859877i \(0.670540\pi\)
\(998\) 7.97012 0.252290
\(999\) 3.42797 0.108456
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.k.1.10 11
3.2 odd 2 8001.2.a.m.1.2 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.k.1.10 11 1.1 even 1 trivial
8001.2.a.m.1.2 11 3.2 odd 2