Properties

Label 2646.2.l.b.1097.8
Level $2646$
Weight $2$
Character 2646.1097
Analytic conductor $21.128$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(521,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-16,0,0,0,0,0,0,-12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6x^{14} + 9x^{12} + 54x^{10} - 288x^{8} + 486x^{6} + 729x^{4} - 4374x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1097.8
Root \(1.62181 - 0.608059i\) of defining polynomial
Character \(\chi\) \(=\) 2646.1097
Dual form 2646.2.l.b.521.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +(1.94556 + 3.36980i) q^{5} -1.00000i q^{8} +(-3.36980 + 1.94556i) q^{10} +(3.41614 + 1.97231i) q^{11} +(-2.46687 - 1.42425i) q^{13} +1.00000 q^{16} +(-0.371058 - 0.642692i) q^{17} +(-1.54563 - 0.892369i) q^{19} +(-1.94556 - 3.36980i) q^{20} +(-1.97231 + 3.41614i) q^{22} +(-5.41535 + 3.12656i) q^{23} +(-5.07039 + 8.78217i) q^{25} +(1.42425 - 2.46687i) q^{26} +(2.50079 - 1.44383i) q^{29} +3.51174i q^{31} +1.00000i q^{32} +(0.642692 - 0.371058i) q^{34} +(-1.50079 + 2.59944i) q^{37} +(0.892369 - 1.54563i) q^{38} +(3.36980 - 1.94556i) q^{40} +(-5.24705 + 9.08816i) q^{41} +(0.471521 + 0.816699i) q^{43} +(-3.41614 - 1.97231i) q^{44} +(-3.12656 - 5.41535i) q^{46} -2.18525 q^{47} +(-8.78217 - 5.07039i) q^{50} +(2.46687 + 1.42425i) q^{52} +15.3490i q^{55} +(1.44383 + 2.50079i) q^{58} -0.0211346 q^{59} +2.46911i q^{61} -3.51174 q^{62} -1.00000 q^{64} -11.0838i q^{65} +13.4493 q^{67} +(0.371058 + 0.642692i) q^{68} +1.94304i q^{71} +(-4.20443 + 2.42743i) q^{73} +(-2.59944 - 1.50079i) q^{74} +(1.54563 + 0.892369i) q^{76} +3.63613 q^{79} +(1.94556 + 3.36980i) q^{80} +(-9.08816 - 5.24705i) q^{82} +(-4.02998 - 6.98012i) q^{83} +(1.44383 - 2.50079i) q^{85} +(-0.816699 + 0.471521i) q^{86} +(1.97231 - 3.41614i) q^{88} +(4.63323 - 8.02499i) q^{89} +(5.41535 - 3.12656i) q^{92} -2.18525i q^{94} -6.94462i q^{95} +(-16.2983 + 9.40980i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} - 12 q^{11} + 16 q^{16} - 48 q^{23} - 8 q^{25} + 12 q^{29} + 4 q^{37} + 4 q^{43} + 12 q^{44} - 12 q^{46} - 60 q^{50} - 12 q^{58} - 16 q^{64} + 56 q^{67} + 36 q^{74} + 8 q^{79} - 12 q^{85}+ \cdots + 48 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.94556 + 3.36980i 0.870080 + 1.50702i 0.861913 + 0.507056i \(0.169266\pi\)
0.00816625 + 0.999967i \(0.497401\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −3.36980 + 1.94556i −1.06563 + 0.615239i
\(11\) 3.41614 + 1.97231i 1.03001 + 0.594674i 0.916986 0.398919i \(-0.130615\pi\)
0.113019 + 0.993593i \(0.463948\pi\)
\(12\) 0 0
\(13\) −2.46687 1.42425i −0.684186 0.395015i 0.117244 0.993103i \(-0.462594\pi\)
−0.801430 + 0.598088i \(0.795927\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −0.371058 0.642692i −0.0899949 0.155876i 0.817514 0.575909i \(-0.195352\pi\)
−0.907509 + 0.420033i \(0.862018\pi\)
\(18\) 0 0
\(19\) −1.54563 0.892369i −0.354591 0.204723i 0.312114 0.950045i \(-0.398963\pi\)
−0.666706 + 0.745321i \(0.732296\pi\)
\(20\) −1.94556 3.36980i −0.435040 0.753511i
\(21\) 0 0
\(22\) −1.97231 + 3.41614i −0.420498 + 0.728324i
\(23\) −5.41535 + 3.12656i −1.12918 + 0.651932i −0.943728 0.330722i \(-0.892708\pi\)
−0.185451 + 0.982654i \(0.559374\pi\)
\(24\) 0 0
\(25\) −5.07039 + 8.78217i −1.01408 + 1.75643i
\(26\) 1.42425 2.46687i 0.279318 0.483793i
\(27\) 0 0
\(28\) 0 0
\(29\) 2.50079 1.44383i 0.464385 0.268113i −0.249501 0.968374i \(-0.580267\pi\)
0.713886 + 0.700262i \(0.246933\pi\)
\(30\) 0 0
\(31\) 3.51174i 0.630726i 0.948971 + 0.315363i \(0.102126\pi\)
−0.948971 + 0.315363i \(0.897874\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 0.642692 0.371058i 0.110221 0.0636360i
\(35\) 0 0
\(36\) 0 0
\(37\) −1.50079 + 2.59944i −0.246728 + 0.427346i −0.962616 0.270870i \(-0.912689\pi\)
0.715888 + 0.698215i \(0.246022\pi\)
\(38\) 0.892369 1.54563i 0.144761 0.250734i
\(39\) 0 0
\(40\) 3.36980 1.94556i 0.532813 0.307620i
\(41\) −5.24705 + 9.08816i −0.819452 + 1.41933i 0.0866345 + 0.996240i \(0.472389\pi\)
−0.906087 + 0.423092i \(0.860945\pi\)
\(42\) 0 0
\(43\) 0.471521 + 0.816699i 0.0719063 + 0.124545i 0.899737 0.436433i \(-0.143758\pi\)
−0.827830 + 0.560978i \(0.810425\pi\)
\(44\) −3.41614 1.97231i −0.515003 0.297337i
\(45\) 0 0
\(46\) −3.12656 5.41535i −0.460985 0.798450i
\(47\) −2.18525 −0.318752 −0.159376 0.987218i \(-0.550948\pi\)
−0.159376 + 0.987218i \(0.550948\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −8.78217 5.07039i −1.24199 0.717061i
\(51\) 0 0
\(52\) 2.46687 + 1.42425i 0.342093 + 0.197507i
\(53\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(54\) 0 0
\(55\) 15.3490i 2.06965i
\(56\) 0 0
\(57\) 0 0
\(58\) 1.44383 + 2.50079i 0.189584 + 0.328370i
\(59\) −0.0211346 −0.00275149 −0.00137575 0.999999i \(-0.500438\pi\)
−0.00137575 + 0.999999i \(0.500438\pi\)
\(60\) 0 0
\(61\) 2.46911i 0.316138i 0.987428 + 0.158069i \(0.0505268\pi\)
−0.987428 + 0.158069i \(0.949473\pi\)
\(62\) −3.51174 −0.445991
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 11.0838i 1.37478i
\(66\) 0 0
\(67\) 13.4493 1.64309 0.821544 0.570144i \(-0.193113\pi\)
0.821544 + 0.570144i \(0.193113\pi\)
\(68\) 0.371058 + 0.642692i 0.0449974 + 0.0779379i
\(69\) 0 0
\(70\) 0 0
\(71\) 1.94304i 0.230597i 0.993331 + 0.115298i \(0.0367824\pi\)
−0.993331 + 0.115298i \(0.963218\pi\)
\(72\) 0 0
\(73\) −4.20443 + 2.42743i −0.492092 + 0.284109i −0.725442 0.688284i \(-0.758364\pi\)
0.233350 + 0.972393i \(0.425031\pi\)
\(74\) −2.59944 1.50079i −0.302179 0.174463i
\(75\) 0 0
\(76\) 1.54563 + 0.892369i 0.177296 + 0.102362i
\(77\) 0 0
\(78\) 0 0
\(79\) 3.63613 0.409096 0.204548 0.978856i \(-0.434427\pi\)
0.204548 + 0.978856i \(0.434427\pi\)
\(80\) 1.94556 + 3.36980i 0.217520 + 0.376756i
\(81\) 0 0
\(82\) −9.08816 5.24705i −1.00362 0.579440i
\(83\) −4.02998 6.98012i −0.442347 0.766168i 0.555516 0.831506i \(-0.312521\pi\)
−0.997863 + 0.0653378i \(0.979188\pi\)
\(84\) 0 0
\(85\) 1.44383 2.50079i 0.156605 0.271249i
\(86\) −0.816699 + 0.471521i −0.0880669 + 0.0508454i
\(87\) 0 0
\(88\) 1.97231 3.41614i 0.210249 0.364162i
\(89\) 4.63323 8.02499i 0.491122 0.850647i −0.508826 0.860869i \(-0.669920\pi\)
0.999948 + 0.0102218i \(0.00325375\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 5.41535 3.12656i 0.564589 0.325966i
\(93\) 0 0
\(94\) 2.18525i 0.225392i
\(95\) 6.94462i 0.712503i
\(96\) 0 0
\(97\) −16.2983 + 9.40980i −1.65484 + 0.955421i −0.679794 + 0.733403i \(0.737931\pi\)
−0.975043 + 0.222018i \(0.928736\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 5.07039 8.78217i 0.507039 0.878217i
\(101\) 4.14079 7.17206i 0.412024 0.713647i −0.583087 0.812410i \(-0.698155\pi\)
0.995111 + 0.0987631i \(0.0314886\pi\)
\(102\) 0 0
\(103\) −14.7646 + 8.52435i −1.45480 + 0.839929i −0.998748 0.0500247i \(-0.984070\pi\)
−0.456051 + 0.889953i \(0.650737\pi\)
\(104\) −1.42425 + 2.46687i −0.139659 + 0.241896i
\(105\) 0 0
\(106\) 0 0
\(107\) 12.4161 + 7.16846i 1.20031 + 0.693001i 0.960625 0.277848i \(-0.0896213\pi\)
0.239689 + 0.970850i \(0.422955\pi\)
\(108\) 0 0
\(109\) −5.63998 9.76874i −0.540212 0.935675i −0.998891 0.0470733i \(-0.985011\pi\)
0.458679 0.888602i \(-0.348323\pi\)
\(110\) −15.3490 −1.46347
\(111\) 0 0
\(112\) 0 0
\(113\) 8.51501 + 4.91614i 0.801024 + 0.462472i 0.843829 0.536612i \(-0.180296\pi\)
−0.0428049 + 0.999083i \(0.513629\pi\)
\(114\) 0 0
\(115\) −21.0718 12.1658i −1.96495 1.13447i
\(116\) −2.50079 + 1.44383i −0.232192 + 0.134056i
\(117\) 0 0
\(118\) 0.0211346i 0.00194560i
\(119\) 0 0
\(120\) 0 0
\(121\) 2.28001 + 3.94910i 0.207274 + 0.359009i
\(122\) −2.46911 −0.223543
\(123\) 0 0
\(124\) 3.51174i 0.315363i
\(125\) −20.0033 −1.78915
\(126\) 0 0
\(127\) 2.94462 0.261293 0.130646 0.991429i \(-0.458295\pi\)
0.130646 + 0.991429i \(0.458295\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 11.0838 0.972115
\(131\) 7.53255 + 13.0468i 0.658122 + 1.13990i 0.981101 + 0.193495i \(0.0619823\pi\)
−0.322979 + 0.946406i \(0.604684\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 13.4493i 1.16184i
\(135\) 0 0
\(136\) −0.642692 + 0.371058i −0.0551104 + 0.0318180i
\(137\) −13.6139 7.85997i −1.16311 0.671523i −0.211064 0.977472i \(-0.567693\pi\)
−0.952048 + 0.305950i \(0.901026\pi\)
\(138\) 0 0
\(139\) −2.86373 1.65337i −0.242898 0.140237i 0.373610 0.927586i \(-0.378120\pi\)
−0.616508 + 0.787349i \(0.711453\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.94304 −0.163056
\(143\) −5.61811 9.73085i −0.469810 0.813735i
\(144\) 0 0
\(145\) 9.73085 + 5.61811i 0.808103 + 0.466559i
\(146\) −2.42743 4.20443i −0.200896 0.347961i
\(147\) 0 0
\(148\) 1.50079 2.59944i 0.123364 0.213673i
\(149\) 9.52765 5.50079i 0.780535 0.450642i −0.0560848 0.998426i \(-0.517862\pi\)
0.836620 + 0.547784i \(0.184528\pi\)
\(150\) 0 0
\(151\) 0.719988 1.24706i 0.0585918 0.101484i −0.835242 0.549883i \(-0.814672\pi\)
0.893834 + 0.448399i \(0.148006\pi\)
\(152\) −0.892369 + 1.54563i −0.0723807 + 0.125367i
\(153\) 0 0
\(154\) 0 0
\(155\) −11.8339 + 6.83228i −0.950518 + 0.548782i
\(156\) 0 0
\(157\) 16.6071i 1.32539i 0.748890 + 0.662695i \(0.230587\pi\)
−0.748890 + 0.662695i \(0.769413\pi\)
\(158\) 3.63613i 0.289275i
\(159\) 0 0
\(160\) −3.36980 + 1.94556i −0.266406 + 0.153810i
\(161\) 0 0
\(162\) 0 0
\(163\) 6.19773 10.7348i 0.485444 0.840813i −0.514416 0.857541i \(-0.671991\pi\)
0.999860 + 0.0167274i \(0.00532476\pi\)
\(164\) 5.24705 9.08816i 0.409726 0.709666i
\(165\) 0 0
\(166\) 6.98012 4.02998i 0.541763 0.312787i
\(167\) −5.86087 + 10.1513i −0.453528 + 0.785534i −0.998602 0.0528541i \(-0.983168\pi\)
0.545074 + 0.838388i \(0.316502\pi\)
\(168\) 0 0
\(169\) −2.44304 4.23147i −0.187926 0.325498i
\(170\) 2.50079 + 1.44383i 0.191802 + 0.110737i
\(171\) 0 0
\(172\) −0.471521 0.816699i −0.0359532 0.0622727i
\(173\) 16.7710 1.27507 0.637536 0.770420i \(-0.279954\pi\)
0.637536 + 0.770420i \(0.279954\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.41614 + 1.97231i 0.257501 + 0.148668i
\(177\) 0 0
\(178\) 8.02499 + 4.63323i 0.601499 + 0.347275i
\(179\) 5.00158 2.88766i 0.373835 0.215834i −0.301297 0.953530i \(-0.597420\pi\)
0.675133 + 0.737696i \(0.264086\pi\)
\(180\) 0 0
\(181\) 5.53310i 0.411272i −0.978629 0.205636i \(-0.934074\pi\)
0.978629 0.205636i \(-0.0659263\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 3.12656 + 5.41535i 0.230493 + 0.399225i
\(185\) −11.6795 −0.858692
\(186\) 0 0
\(187\) 2.92737i 0.214070i
\(188\) 2.18525 0.159376
\(189\) 0 0
\(190\) 6.94462 0.503816
\(191\) 6.21372i 0.449609i 0.974404 + 0.224805i \(0.0721744\pi\)
−0.974404 + 0.224805i \(0.927826\pi\)
\(192\) 0 0
\(193\) −7.80542 −0.561847 −0.280923 0.959730i \(-0.590641\pi\)
−0.280923 + 0.959730i \(0.590641\pi\)
\(194\) −9.40980 16.2983i −0.675584 1.17015i
\(195\) 0 0
\(196\) 0 0
\(197\) 12.7737i 0.910092i −0.890468 0.455046i \(-0.849623\pi\)
0.890468 0.455046i \(-0.150377\pi\)
\(198\) 0 0
\(199\) −1.56925 + 0.906005i −0.111241 + 0.0642250i −0.554588 0.832125i \(-0.687124\pi\)
0.443347 + 0.896350i \(0.353791\pi\)
\(200\) 8.78217 + 5.07039i 0.620993 + 0.358530i
\(201\) 0 0
\(202\) 7.17206 + 4.14079i 0.504624 + 0.291345i
\(203\) 0 0
\(204\) 0 0
\(205\) −40.8338 −2.85195
\(206\) −8.52435 14.7646i −0.593919 1.02870i
\(207\) 0 0
\(208\) −2.46687 1.42425i −0.171047 0.0987537i
\(209\) −3.52006 6.09692i −0.243487 0.421732i
\(210\) 0 0
\(211\) −1.88766 + 3.26953i −0.129952 + 0.225083i −0.923658 0.383218i \(-0.874816\pi\)
0.793706 + 0.608302i \(0.208149\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −7.16846 + 12.4161i −0.490026 + 0.848750i
\(215\) −1.83474 + 3.17787i −0.125128 + 0.216729i
\(216\) 0 0
\(217\) 0 0
\(218\) 9.76874 5.63998i 0.661622 0.381988i
\(219\) 0 0
\(220\) 15.3490i 1.03483i
\(221\) 2.11392i 0.142197i
\(222\) 0 0
\(223\) −11.0662 + 6.38910i −0.741051 + 0.427846i −0.822451 0.568836i \(-0.807394\pi\)
0.0814006 + 0.996681i \(0.474061\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −4.91614 + 8.51501i −0.327017 + 0.566410i
\(227\) −9.99110 + 17.3051i −0.663133 + 1.14858i 0.316655 + 0.948541i \(0.397440\pi\)
−0.979788 + 0.200039i \(0.935893\pi\)
\(228\) 0 0
\(229\) 8.77402 5.06568i 0.579804 0.334750i −0.181252 0.983437i \(-0.558015\pi\)
0.761055 + 0.648687i \(0.224682\pi\)
\(230\) 12.1658 21.0718i 0.802188 1.38943i
\(231\) 0 0
\(232\) −1.44383 2.50079i −0.0947921 0.164185i
\(233\) 6.33070 + 3.65503i 0.414738 + 0.239449i 0.692824 0.721107i \(-0.256366\pi\)
−0.278085 + 0.960556i \(0.589700\pi\)
\(234\) 0 0
\(235\) −4.25153 7.36387i −0.277339 0.480366i
\(236\) 0.0211346 0.00137575
\(237\) 0 0
\(238\) 0 0
\(239\) −7.28317 4.20494i −0.471109 0.271995i 0.245595 0.969373i \(-0.421017\pi\)
−0.716704 + 0.697378i \(0.754350\pi\)
\(240\) 0 0
\(241\) −7.75277 4.47607i −0.499400 0.288329i 0.229066 0.973411i \(-0.426433\pi\)
−0.728466 + 0.685082i \(0.759766\pi\)
\(242\) −3.94910 + 2.28001i −0.253858 + 0.146565i
\(243\) 0 0
\(244\) 2.46911i 0.158069i
\(245\) 0 0
\(246\) 0 0
\(247\) 2.54191 + 4.40271i 0.161738 + 0.280138i
\(248\) 3.51174 0.222995
\(249\) 0 0
\(250\) 20.0033i 1.26512i
\(251\) 12.6432 0.798033 0.399017 0.916944i \(-0.369352\pi\)
0.399017 + 0.916944i \(0.369352\pi\)
\(252\) 0 0
\(253\) −24.6661 −1.55075
\(254\) 2.94462i 0.184762i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −8.15329 14.1219i −0.508588 0.880900i −0.999951 0.00994523i \(-0.996834\pi\)
0.491362 0.870955i \(-0.336499\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 11.0838i 0.687389i
\(261\) 0 0
\(262\) −13.0468 + 7.53255i −0.806032 + 0.465363i
\(263\) 20.5434 + 11.8608i 1.26676 + 0.731366i 0.974374 0.224934i \(-0.0722166\pi\)
0.292389 + 0.956300i \(0.405550\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −13.4493 −0.821544
\(269\) −3.64144 6.30716i −0.222022 0.384554i 0.733400 0.679798i \(-0.237932\pi\)
−0.955422 + 0.295244i \(0.904599\pi\)
\(270\) 0 0
\(271\) 19.6483 + 11.3440i 1.19355 + 0.689097i 0.959110 0.283033i \(-0.0913407\pi\)
0.234441 + 0.972130i \(0.424674\pi\)
\(272\) −0.371058 0.642692i −0.0224987 0.0389689i
\(273\) 0 0
\(274\) 7.85997 13.6139i 0.474838 0.822444i
\(275\) −34.6423 + 20.0007i −2.08901 + 1.20609i
\(276\) 0 0
\(277\) −12.0838 + 20.9298i −0.726046 + 1.25755i 0.232496 + 0.972597i \(0.425311\pi\)
−0.958542 + 0.284951i \(0.908023\pi\)
\(278\) 1.65337 2.86373i 0.0991628 0.171755i
\(279\) 0 0
\(280\) 0 0
\(281\) 4.11229 2.37423i 0.245319 0.141635i −0.372300 0.928112i \(-0.621431\pi\)
0.617619 + 0.786478i \(0.288097\pi\)
\(282\) 0 0
\(283\) 29.3853i 1.74677i −0.487027 0.873387i \(-0.661919\pi\)
0.487027 0.873387i \(-0.338081\pi\)
\(284\) 1.94304i 0.115298i
\(285\) 0 0
\(286\) 9.73085 5.61811i 0.575398 0.332206i
\(287\) 0 0
\(288\) 0 0
\(289\) 8.22463 14.2455i 0.483802 0.837969i
\(290\) −5.61811 + 9.73085i −0.329907 + 0.571415i
\(291\) 0 0
\(292\) 4.20443 2.42743i 0.246046 0.142055i
\(293\) 3.31206 5.73666i 0.193493 0.335139i −0.752913 0.658121i \(-0.771352\pi\)
0.946405 + 0.322981i \(0.104685\pi\)
\(294\) 0 0
\(295\) −0.0411186 0.0712195i −0.00239402 0.00414656i
\(296\) 2.59944 + 1.50079i 0.151090 + 0.0872316i
\(297\) 0 0
\(298\) 5.50079 + 9.52765i 0.318652 + 0.551922i
\(299\) 17.8119 1.03009
\(300\) 0 0
\(301\) 0 0
\(302\) 1.24706 + 0.719988i 0.0717600 + 0.0414307i
\(303\) 0 0
\(304\) −1.54563 0.892369i −0.0886479 0.0511809i
\(305\) −8.32043 + 4.80380i −0.476426 + 0.275065i
\(306\) 0 0
\(307\) 21.7242i 1.23987i 0.784655 + 0.619933i \(0.212840\pi\)
−0.784655 + 0.619933i \(0.787160\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −6.83228 11.8339i −0.388048 0.672118i
\(311\) −6.29800 −0.357127 −0.178563 0.983928i \(-0.557145\pi\)
−0.178563 + 0.983928i \(0.557145\pi\)
\(312\) 0 0
\(313\) 22.2191i 1.25590i 0.778256 + 0.627948i \(0.216105\pi\)
−0.778256 + 0.627948i \(0.783895\pi\)
\(314\) −16.6071 −0.937192
\(315\) 0 0
\(316\) −3.63613 −0.204548
\(317\) 15.6614i 0.879632i −0.898088 0.439816i \(-0.855044\pi\)
0.898088 0.439816i \(-0.144956\pi\)
\(318\) 0 0
\(319\) 11.3907 0.637758
\(320\) −1.94556 3.36980i −0.108760 0.188378i
\(321\) 0 0
\(322\) 0 0
\(323\) 1.32448i 0.0736963i
\(324\) 0 0
\(325\) 25.0159 14.4430i 1.38763 0.801151i
\(326\) 10.7348 + 6.19773i 0.594545 + 0.343260i
\(327\) 0 0
\(328\) 9.08816 + 5.24705i 0.501810 + 0.289720i
\(329\) 0 0
\(330\) 0 0
\(331\) 1.27226 0.0699296 0.0349648 0.999389i \(-0.488868\pi\)
0.0349648 + 0.999389i \(0.488868\pi\)
\(332\) 4.02998 + 6.98012i 0.221174 + 0.383084i
\(333\) 0 0
\(334\) −10.1513 5.86087i −0.555456 0.320693i
\(335\) 26.1663 + 45.3214i 1.42962 + 2.47617i
\(336\) 0 0
\(337\) −3.78001 + 6.54717i −0.205910 + 0.356647i −0.950422 0.310962i \(-0.899349\pi\)
0.744512 + 0.667609i \(0.232682\pi\)
\(338\) 4.23147 2.44304i 0.230162 0.132884i
\(339\) 0 0
\(340\) −1.44383 + 2.50079i −0.0783027 + 0.135624i
\(341\) −6.92623 + 11.9966i −0.375076 + 0.649651i
\(342\) 0 0
\(343\) 0 0
\(344\) 0.816699 0.471521i 0.0440334 0.0254227i
\(345\) 0 0
\(346\) 16.7710i 0.901613i
\(347\) 22.1091i 1.18688i 0.804879 + 0.593439i \(0.202230\pi\)
−0.804879 + 0.593439i \(0.797770\pi\)
\(348\) 0 0
\(349\) 12.7682 7.37173i 0.683467 0.394600i −0.117693 0.993050i \(-0.537550\pi\)
0.801160 + 0.598450i \(0.204217\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.97231 + 3.41614i −0.105124 + 0.182081i
\(353\) 8.63881 14.9629i 0.459798 0.796393i −0.539152 0.842208i \(-0.681255\pi\)
0.998950 + 0.0458154i \(0.0145886\pi\)
\(354\) 0 0
\(355\) −6.54767 + 3.78030i −0.347514 + 0.200638i
\(356\) −4.63323 + 8.02499i −0.245561 + 0.425324i
\(357\) 0 0
\(358\) 2.88766 + 5.00158i 0.152618 + 0.264342i
\(359\) 9.45088 + 5.45647i 0.498799 + 0.287982i 0.728217 0.685346i \(-0.240349\pi\)
−0.229419 + 0.973328i \(0.573682\pi\)
\(360\) 0 0
\(361\) −7.90736 13.6959i −0.416177 0.720839i
\(362\) 5.53310 0.290813
\(363\) 0 0
\(364\) 0 0
\(365\) −16.3599 9.44541i −0.856318 0.494395i
\(366\) 0 0
\(367\) 30.9407 + 17.8636i 1.61509 + 0.932472i 0.988166 + 0.153391i \(0.0490194\pi\)
0.626923 + 0.779081i \(0.284314\pi\)
\(368\) −5.41535 + 3.12656i −0.282295 + 0.162983i
\(369\) 0 0
\(370\) 11.6795i 0.607187i
\(371\) 0 0
\(372\) 0 0
\(373\) 16.0300 + 27.7648i 0.830003 + 1.43761i 0.898035 + 0.439923i \(0.144994\pi\)
−0.0680328 + 0.997683i \(0.521672\pi\)
\(374\) 2.92737 0.151371
\(375\) 0 0
\(376\) 2.18525i 0.112696i
\(377\) −8.22549 −0.423634
\(378\) 0 0
\(379\) 34.8891 1.79214 0.896068 0.443918i \(-0.146412\pi\)
0.896068 + 0.443918i \(0.146412\pi\)
\(380\) 6.94462i 0.356251i
\(381\) 0 0
\(382\) −6.21372 −0.317922
\(383\) −8.76711 15.1851i −0.447978 0.775921i 0.550276 0.834983i \(-0.314523\pi\)
−0.998254 + 0.0590616i \(0.981189\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 7.80542i 0.397286i
\(387\) 0 0
\(388\) 16.2983 9.40980i 0.827418 0.477710i
\(389\) −6.60060 3.81086i −0.334664 0.193218i 0.323246 0.946315i \(-0.395226\pi\)
−0.657910 + 0.753097i \(0.728559\pi\)
\(390\) 0 0
\(391\) 4.01882 + 2.32027i 0.203241 + 0.117341i
\(392\) 0 0
\(393\) 0 0
\(394\) 12.7737 0.643532
\(395\) 7.07430 + 12.2530i 0.355947 + 0.616517i
\(396\) 0 0
\(397\) −32.6032 18.8234i −1.63631 0.944722i −0.982090 0.188414i \(-0.939665\pi\)
−0.654216 0.756307i \(-0.727001\pi\)
\(398\) −0.906005 1.56925i −0.0454139 0.0786592i
\(399\) 0 0
\(400\) −5.07039 + 8.78217i −0.253519 + 0.439108i
\(401\) 18.5689 10.7207i 0.927284 0.535368i 0.0413326 0.999145i \(-0.486840\pi\)
0.885952 + 0.463778i \(0.153506\pi\)
\(402\) 0 0
\(403\) 5.00158 8.66299i 0.249146 0.431534i
\(404\) −4.14079 + 7.17206i −0.206012 + 0.356823i
\(405\) 0 0
\(406\) 0 0
\(407\) −10.2538 + 5.92004i −0.508262 + 0.293445i
\(408\) 0 0
\(409\) 29.5703i 1.46216i −0.682293 0.731079i \(-0.739017\pi\)
0.682293 0.731079i \(-0.260983\pi\)
\(410\) 40.8338i 2.01664i
\(411\) 0 0
\(412\) 14.7646 8.52435i 0.727400 0.419964i
\(413\) 0 0
\(414\) 0 0
\(415\) 15.6811 27.1605i 0.769755 1.33325i
\(416\) 1.42425 2.46687i 0.0698294 0.120948i
\(417\) 0 0
\(418\) 6.09692 3.52006i 0.298210 0.172172i
\(419\) 3.56481 6.17443i 0.174152 0.301641i −0.765715 0.643180i \(-0.777615\pi\)
0.939868 + 0.341539i \(0.110948\pi\)
\(420\) 0 0
\(421\) −2.31007 4.00115i −0.112586 0.195004i 0.804226 0.594323i \(-0.202580\pi\)
−0.916812 + 0.399319i \(0.869247\pi\)
\(422\) −3.26953 1.88766i −0.159158 0.0918899i
\(423\) 0 0
\(424\) 0 0
\(425\) 7.52564 0.365047
\(426\) 0 0
\(427\) 0 0
\(428\) −12.4161 7.16846i −0.600157 0.346501i
\(429\) 0 0
\(430\) −3.17787 1.83474i −0.153250 0.0884792i
\(431\) 3.47078 2.00385i 0.167181 0.0965223i −0.414075 0.910243i \(-0.635895\pi\)
0.581256 + 0.813721i \(0.302561\pi\)
\(432\) 0 0
\(433\) 29.4125i 1.41348i −0.707475 0.706738i \(-0.750166\pi\)
0.707475 0.706738i \(-0.249834\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 5.63998 + 9.76874i 0.270106 + 0.467838i
\(437\) 11.1602 0.533863
\(438\) 0 0
\(439\) 21.3769i 1.02027i −0.860096 0.510133i \(-0.829596\pi\)
0.860096 0.510133i \(-0.170404\pi\)
\(440\) 15.3490 0.731733
\(441\) 0 0
\(442\) −2.11392 −0.100549
\(443\) 5.83386i 0.277175i −0.990350 0.138587i \(-0.955744\pi\)
0.990350 0.138587i \(-0.0442562\pi\)
\(444\) 0 0
\(445\) 36.0569 1.70926
\(446\) −6.38910 11.0662i −0.302533 0.524002i
\(447\) 0 0
\(448\) 0 0
\(449\) 22.5823i 1.06573i 0.846202 + 0.532863i \(0.178884\pi\)
−0.846202 + 0.532863i \(0.821116\pi\)
\(450\) 0 0
\(451\) −35.8493 + 20.6976i −1.68808 + 0.974613i
\(452\) −8.51501 4.91614i −0.400512 0.231236i
\(453\) 0 0
\(454\) −17.3051 9.99110i −0.812168 0.468906i
\(455\) 0 0
\(456\) 0 0
\(457\) 39.8623 1.86468 0.932340 0.361584i \(-0.117764\pi\)
0.932340 + 0.361584i \(0.117764\pi\)
\(458\) 5.06568 + 8.77402i 0.236704 + 0.409983i
\(459\) 0 0
\(460\) 21.0718 + 12.1658i 0.982476 + 0.567233i
\(461\) 3.68254 + 6.37834i 0.171513 + 0.297069i 0.938949 0.344056i \(-0.111801\pi\)
−0.767436 + 0.641125i \(0.778468\pi\)
\(462\) 0 0
\(463\) −14.3457 + 24.8475i −0.666702 + 1.15476i 0.312119 + 0.950043i \(0.398961\pi\)
−0.978821 + 0.204718i \(0.934372\pi\)
\(464\) 2.50079 1.44383i 0.116096 0.0670282i
\(465\) 0 0
\(466\) −3.65503 + 6.33070i −0.169316 + 0.293264i
\(467\) −6.83519 + 11.8389i −0.316295 + 0.547839i −0.979712 0.200411i \(-0.935772\pi\)
0.663417 + 0.748250i \(0.269106\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 7.36387 4.25153i 0.339670 0.196109i
\(471\) 0 0
\(472\) 0.0211346i 0.000972799i
\(473\) 3.71994i 0.171043i
\(474\) 0 0
\(475\) 15.6739 9.04931i 0.719166 0.415211i
\(476\) 0 0
\(477\) 0 0
\(478\) 4.20494 7.28317i 0.192329 0.333124i
\(479\) −5.20537 + 9.01596i −0.237839 + 0.411950i −0.960094 0.279677i \(-0.909773\pi\)
0.722255 + 0.691627i \(0.243106\pi\)
\(480\) 0 0
\(481\) 7.40449 4.27499i 0.337616 0.194923i
\(482\) 4.47607 7.75277i 0.203879 0.353129i
\(483\) 0 0
\(484\) −2.28001 3.94910i −0.103637 0.179504i
\(485\) −63.4184 36.6146i −2.87968 1.66258i
\(486\) 0 0
\(487\) −1.16925 2.02520i −0.0529838 0.0917707i 0.838317 0.545183i \(-0.183540\pi\)
−0.891301 + 0.453412i \(0.850207\pi\)
\(488\) 2.46911 0.111772
\(489\) 0 0
\(490\) 0 0
\(491\) 29.3448 + 16.9422i 1.32431 + 0.764591i 0.984413 0.175871i \(-0.0562742\pi\)
0.339898 + 0.940462i \(0.389608\pi\)
\(492\) 0 0
\(493\) −1.85588 1.07149i −0.0835845 0.0482575i
\(494\) −4.40271 + 2.54191i −0.198087 + 0.114366i
\(495\) 0 0
\(496\) 3.51174i 0.157682i
\(497\) 0 0
\(498\) 0 0
\(499\) 8.30223 + 14.3799i 0.371659 + 0.643732i 0.989821 0.142319i \(-0.0454558\pi\)
−0.618162 + 0.786051i \(0.712123\pi\)
\(500\) 20.0033 0.894576
\(501\) 0 0
\(502\) 12.6432i 0.564295i
\(503\) 35.3661 1.57690 0.788449 0.615100i \(-0.210885\pi\)
0.788449 + 0.615100i \(0.210885\pi\)
\(504\) 0 0
\(505\) 32.2246 1.43398
\(506\) 24.6661i 1.09654i
\(507\) 0 0
\(508\) −2.94462 −0.130646
\(509\) 18.5291 + 32.0933i 0.821287 + 1.42251i 0.904724 + 0.425998i \(0.140077\pi\)
−0.0834371 + 0.996513i \(0.526590\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 14.1219 8.15329i 0.622891 0.359626i
\(515\) −57.4507 33.1692i −2.53158 1.46161i
\(516\) 0 0
\(517\) −7.46513 4.30999i −0.328316 0.189553i
\(518\) 0 0
\(519\) 0 0
\(520\) −11.0838 −0.486057
\(521\) 0.891547 + 1.54420i 0.0390594 + 0.0676528i 0.884894 0.465792i \(-0.154231\pi\)
−0.845835 + 0.533445i \(0.820897\pi\)
\(522\) 0 0
\(523\) 20.8312 + 12.0269i 0.910886 + 0.525901i 0.880716 0.473644i \(-0.157062\pi\)
0.0301702 + 0.999545i \(0.490395\pi\)
\(524\) −7.53255 13.0468i −0.329061 0.569950i
\(525\) 0 0
\(526\) −11.8608 + 20.5434i −0.517154 + 0.895737i
\(527\) 2.25696 1.30306i 0.0983149 0.0567621i
\(528\) 0 0
\(529\) 8.05069 13.9442i 0.350030 0.606270i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 25.8876 14.9462i 1.12132 0.647392i
\(534\) 0 0
\(535\) 55.7866i 2.41187i
\(536\) 13.4493i 0.580920i
\(537\) 0 0
\(538\) 6.30716 3.64144i 0.271921 0.156994i
\(539\) 0 0
\(540\) 0 0
\(541\) −15.0016 + 25.9835i −0.644968 + 1.11712i 0.339341 + 0.940664i \(0.389796\pi\)
−0.984309 + 0.176454i \(0.943537\pi\)
\(542\) −11.3440 + 19.6483i −0.487265 + 0.843968i
\(543\) 0 0
\(544\) 0.642692 0.371058i 0.0275552 0.0159090i
\(545\) 21.9458 38.0113i 0.940056 1.62822i
\(546\) 0 0
\(547\) −10.7816 18.6743i −0.460987 0.798454i 0.538023 0.842930i \(-0.319171\pi\)
−0.999010 + 0.0444765i \(0.985838\pi\)
\(548\) 13.6139 + 7.85997i 0.581556 + 0.335761i
\(549\) 0 0
\(550\) −20.0007 34.6423i −0.852835 1.47715i
\(551\) −5.15372 −0.219556
\(552\) 0 0
\(553\) 0 0
\(554\) −20.9298 12.0838i −0.889221 0.513392i
\(555\) 0 0
\(556\) 2.86373 + 1.65337i 0.121449 + 0.0701187i
\(557\) 31.9976 18.4738i 1.35578 0.782762i 0.366731 0.930327i \(-0.380477\pi\)
0.989052 + 0.147565i \(0.0471436\pi\)
\(558\) 0 0
\(559\) 2.68625i 0.113616i
\(560\) 0 0
\(561\) 0 0
\(562\) 2.37423 + 4.11229i 0.100151 + 0.173467i
\(563\) 15.1684 0.639273 0.319637 0.947540i \(-0.396439\pi\)
0.319637 + 0.947540i \(0.396439\pi\)
\(564\) 0 0
\(565\) 38.2585i 1.60955i
\(566\) 29.3853 1.23516
\(567\) 0 0
\(568\) 1.94304 0.0815282
\(569\) 36.7292i 1.53977i 0.638183 + 0.769885i \(0.279686\pi\)
−0.638183 + 0.769885i \(0.720314\pi\)
\(570\) 0 0
\(571\) 11.2277 0.469866 0.234933 0.972012i \(-0.424513\pi\)
0.234933 + 0.972012i \(0.424513\pi\)
\(572\) 5.61811 + 9.73085i 0.234905 + 0.406867i
\(573\) 0 0
\(574\) 0 0
\(575\) 63.4114i 2.64444i
\(576\) 0 0
\(577\) 31.6545 18.2757i 1.31780 0.760829i 0.334422 0.942424i \(-0.391459\pi\)
0.983374 + 0.181594i \(0.0581257\pi\)
\(578\) 14.2455 + 8.22463i 0.592534 + 0.342100i
\(579\) 0 0
\(580\) −9.73085 5.61811i −0.404052 0.233279i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 2.42743 + 4.20443i 0.100448 + 0.173981i
\(585\) 0 0
\(586\) 5.73666 + 3.31206i 0.236979 + 0.136820i
\(587\) −4.99738 8.65571i −0.206264 0.357259i 0.744271 0.667878i \(-0.232797\pi\)
−0.950535 + 0.310619i \(0.899464\pi\)
\(588\) 0 0
\(589\) 3.13376 5.42784i 0.129124 0.223650i
\(590\) 0.0712195 0.0411186i 0.00293206 0.00169283i
\(591\) 0 0
\(592\) −1.50079 + 2.59944i −0.0616820 + 0.106836i
\(593\) 3.89111 6.73961i 0.159789 0.276763i −0.775004 0.631957i \(-0.782252\pi\)
0.934792 + 0.355194i \(0.115585\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −9.52765 + 5.50079i −0.390268 + 0.225321i
\(597\) 0 0
\(598\) 17.8119i 0.728385i
\(599\) 25.0124i 1.02198i 0.859586 + 0.510990i \(0.170721\pi\)
−0.859586 + 0.510990i \(0.829279\pi\)
\(600\) 0 0
\(601\) 25.9925 15.0068i 1.06026 0.612139i 0.134753 0.990879i \(-0.456976\pi\)
0.925503 + 0.378740i \(0.123643\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −0.719988 + 1.24706i −0.0292959 + 0.0507420i
\(605\) −8.87179 + 15.3664i −0.360689 + 0.624732i
\(606\) 0 0
\(607\) −3.96882 + 2.29140i −0.161089 + 0.0930050i −0.578378 0.815769i \(-0.696314\pi\)
0.417288 + 0.908774i \(0.362981\pi\)
\(608\) 0.892369 1.54563i 0.0361903 0.0626835i
\(609\) 0 0
\(610\) −4.80380 8.32043i −0.194500 0.336884i
\(611\) 5.39073 + 3.11234i 0.218085 + 0.125912i
\(612\) 0 0
\(613\) −15.2761 26.4590i −0.616996 1.06867i −0.990031 0.140852i \(-0.955016\pi\)
0.373034 0.927818i \(-0.378317\pi\)
\(614\) −21.7242 −0.876717
\(615\) 0 0
\(616\) 0 0
\(617\) 28.2484 + 16.3092i 1.13724 + 0.656585i 0.945745 0.324909i \(-0.105334\pi\)
0.191493 + 0.981494i \(0.438667\pi\)
\(618\) 0 0
\(619\) 17.3244 + 10.0023i 0.696327 + 0.402024i 0.805978 0.591946i \(-0.201640\pi\)
−0.109651 + 0.993970i \(0.534973\pi\)
\(620\) 11.8339 6.83228i 0.475259 0.274391i
\(621\) 0 0
\(622\) 6.29800i 0.252527i
\(623\) 0 0
\(624\) 0 0
\(625\) −13.5657 23.4965i −0.542628 0.939859i
\(626\) −22.2191 −0.888052
\(627\) 0 0
\(628\) 16.6071i 0.662695i
\(629\) 2.22752 0.0888171
\(630\) 0 0
\(631\) 6.09634 0.242692 0.121346 0.992610i \(-0.461279\pi\)
0.121346 + 0.992610i \(0.461279\pi\)
\(632\) 3.63613i 0.144637i
\(633\) 0 0
\(634\) 15.6614 0.621994
\(635\) 5.72893 + 9.92279i 0.227345 + 0.393774i
\(636\) 0 0
\(637\) 0 0
\(638\) 11.3907i 0.450963i
\(639\) 0 0
\(640\) 3.36980 1.94556i 0.133203 0.0769049i
\(641\) 28.9612 + 16.7207i 1.14390 + 0.660429i 0.947393 0.320074i \(-0.103708\pi\)
0.196504 + 0.980503i \(0.437041\pi\)
\(642\) 0 0
\(643\) −16.6022 9.58527i −0.654726 0.378006i 0.135539 0.990772i \(-0.456724\pi\)
−0.790264 + 0.612766i \(0.790057\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.32448 −0.0521111
\(647\) 22.3025 + 38.6290i 0.876800 + 1.51866i 0.854832 + 0.518904i \(0.173660\pi\)
0.0219681 + 0.999759i \(0.493007\pi\)
\(648\) 0 0
\(649\) −0.0721988 0.0416840i −0.00283405 0.00163624i
\(650\) 14.4430 + 25.0159i 0.566500 + 0.981206i
\(651\) 0 0
\(652\) −6.19773 + 10.7348i −0.242722 + 0.420407i
\(653\) −0.564755 + 0.326061i −0.0221006 + 0.0127598i −0.511010 0.859575i \(-0.670728\pi\)
0.488909 + 0.872335i \(0.337395\pi\)
\(654\) 0 0
\(655\) −29.3100 + 50.7664i −1.14524 + 1.98361i
\(656\) −5.24705 + 9.08816i −0.204863 + 0.354833i
\(657\) 0 0
\(658\) 0 0
\(659\) −26.2738 + 15.1692i −1.02348 + 0.590908i −0.915111 0.403202i \(-0.867897\pi\)
−0.108372 + 0.994110i \(0.534564\pi\)
\(660\) 0 0
\(661\) 12.8176i 0.498548i −0.968433 0.249274i \(-0.919808\pi\)
0.968433 0.249274i \(-0.0801919\pi\)
\(662\) 1.27226i 0.0494477i
\(663\) 0 0
\(664\) −6.98012 + 4.02998i −0.270881 + 0.156393i
\(665\) 0 0
\(666\) 0 0
\(667\) −9.02843 + 15.6377i −0.349582 + 0.605494i
\(668\) 5.86087 10.1513i 0.226764 0.392767i
\(669\) 0 0
\(670\) −45.3214 + 26.1663i −1.75092 + 1.01089i
\(671\) −4.86986 + 8.43484i −0.187999 + 0.325623i
\(672\) 0 0
\(673\) 11.2246 + 19.4416i 0.432678 + 0.749420i 0.997103 0.0760644i \(-0.0242355\pi\)
−0.564425 + 0.825484i \(0.690902\pi\)
\(674\) −6.54717 3.78001i −0.252188 0.145601i
\(675\) 0 0
\(676\) 2.44304 + 4.23147i 0.0939632 + 0.162749i
\(677\) −51.1807 −1.96703 −0.983516 0.180820i \(-0.942125\pi\)
−0.983516 + 0.180820i \(0.942125\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −2.50079 1.44383i −0.0959009 0.0553684i
\(681\) 0 0
\(682\) −11.9966 6.92623i −0.459373 0.265219i
\(683\) 12.6107 7.28080i 0.482536 0.278592i −0.238937 0.971035i \(-0.576799\pi\)
0.721473 + 0.692443i \(0.243466\pi\)
\(684\) 0 0
\(685\) 61.1681i 2.33711i
\(686\) 0 0
\(687\) 0 0
\(688\) 0.471521 + 0.816699i 0.0179766 + 0.0311363i
\(689\) 0 0
\(690\) 0 0
\(691\) 24.4515i 0.930180i 0.885263 + 0.465090i \(0.153978\pi\)
−0.885263 + 0.465090i \(0.846022\pi\)
\(692\) −16.7710 −0.637536
\(693\) 0 0
\(694\) −22.1091 −0.839250
\(695\) 12.8669i 0.488071i
\(696\) 0 0
\(697\) 7.78785 0.294986
\(698\) 7.37173 + 12.7682i 0.279024 + 0.483284i
\(699\) 0 0
\(700\) 0 0
\(701\) 2.21697i 0.0837337i 0.999123 + 0.0418669i \(0.0133305\pi\)
−0.999123 + 0.0418669i \(0.986669\pi\)
\(702\) 0 0
\(703\) 4.63932 2.67851i 0.174975 0.101022i
\(704\) −3.41614 1.97231i −0.128751 0.0743342i
\(705\) 0 0
\(706\) 14.9629 + 8.63881i 0.563135 + 0.325126i
\(707\) 0 0
\(708\) 0 0
\(709\) −24.3923 −0.916072 −0.458036 0.888934i \(-0.651447\pi\)
−0.458036 + 0.888934i \(0.651447\pi\)
\(710\) −3.78030 6.54767i −0.141872 0.245730i
\(711\) 0 0
\(712\) −8.02499 4.63323i −0.300749 0.173638i
\(713\) −10.9796 19.0173i −0.411190 0.712203i
\(714\) 0 0
\(715\) 21.8607 37.8639i 0.817544 1.41603i
\(716\) −5.00158 + 2.88766i −0.186918 + 0.107917i
\(717\) 0 0
\(718\) −5.45647 + 9.45088i −0.203634 + 0.352704i
\(719\) 1.11376 1.92909i 0.0415363 0.0719429i −0.844510 0.535540i \(-0.820108\pi\)
0.886046 + 0.463597i \(0.153441\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 13.6959 7.90736i 0.509710 0.294281i
\(723\) 0 0
\(724\) 5.53310i 0.205636i
\(725\) 29.2831i 1.08755i
\(726\) 0 0
\(727\) −10.4880 + 6.05523i −0.388977 + 0.224576i −0.681717 0.731616i \(-0.738766\pi\)
0.292740 + 0.956192i \(0.405433\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 9.44541 16.3599i 0.349590 0.605508i
\(731\) 0.349924 0.606086i 0.0129424 0.0224169i
\(732\) 0 0
\(733\) 13.5673 7.83306i 0.501118 0.289321i −0.228057 0.973648i \(-0.573237\pi\)
0.729175 + 0.684327i \(0.239904\pi\)
\(734\) −17.8636 + 30.9407i −0.659357 + 1.14204i
\(735\) 0 0
\(736\) −3.12656 5.41535i −0.115246 0.199613i
\(737\) 45.9446 + 26.5261i 1.69239 + 0.977102i
\(738\) 0 0
\(739\) 4.05227 + 7.01874i 0.149065 + 0.258188i 0.930882 0.365319i \(-0.119040\pi\)
−0.781817 + 0.623508i \(0.785707\pi\)
\(740\) 11.6795 0.429346
\(741\) 0 0
\(742\) 0 0
\(743\) 10.5429 + 6.08697i 0.386783 + 0.223309i 0.680765 0.732502i \(-0.261647\pi\)
−0.293982 + 0.955811i \(0.594981\pi\)
\(744\) 0 0
\(745\) 37.0732 + 21.4042i 1.35826 + 0.784189i
\(746\) −27.7648 + 16.0300i −1.01654 + 0.586900i
\(747\) 0 0
\(748\) 2.92737i 0.107035i
\(749\) 0 0
\(750\) 0 0
\(751\) −17.3062 29.9752i −0.631511 1.09381i −0.987243 0.159221i \(-0.949102\pi\)
0.355732 0.934588i \(-0.384232\pi\)
\(752\) −2.18525 −0.0796879
\(753\) 0 0
\(754\) 8.22549i 0.299555i
\(755\) 5.60311 0.203918
\(756\) 0 0
\(757\) −39.0553 −1.41949 −0.709744 0.704459i \(-0.751190\pi\)
−0.709744 + 0.704459i \(0.751190\pi\)
\(758\) 34.8891i 1.26723i
\(759\) 0 0
\(760\) −6.94462 −0.251908
\(761\) 5.11262 + 8.85532i 0.185332 + 0.321005i 0.943688 0.330835i \(-0.107330\pi\)
−0.758356 + 0.651840i \(0.773997\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 6.21372i 0.224805i
\(765\) 0 0
\(766\) 15.1851 8.76711i 0.548659 0.316769i
\(767\) 0.0521363 + 0.0301009i 0.00188253 + 0.00108688i
\(768\) 0 0
\(769\) 26.6746 + 15.4006i 0.961910 + 0.555359i 0.896760 0.442517i \(-0.145914\pi\)
0.0651494 + 0.997876i \(0.479248\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 7.80542 0.280923
\(773\) 17.8916 + 30.9892i 0.643518 + 1.11461i 0.984642 + 0.174587i \(0.0558590\pi\)
−0.341124 + 0.940018i \(0.610808\pi\)
\(774\) 0 0
\(775\) −30.8406 17.8059i −1.10783 0.639605i
\(776\) 9.40980 + 16.2983i 0.337792 + 0.585073i
\(777\) 0 0
\(778\) 3.81086 6.60060i 0.136626 0.236643i
\(779\) 16.2200 9.36461i 0.581141 0.335522i
\(780\) 0 0
\(781\) −3.83228 + 6.63771i −0.137130 + 0.237516i
\(782\) −2.32027 + 4.01882i −0.0829727 + 0.143713i
\(783\) 0 0
\(784\) 0 0
\(785\) −55.9626 + 32.3100i −1.99739 + 1.15319i
\(786\) 0 0
\(787\) 15.3413i 0.546857i 0.961892 + 0.273429i \(0.0881578\pi\)
−0.961892 + 0.273429i \(0.911842\pi\)
\(788\) 12.7737i 0.455046i
\(789\) 0 0
\(790\) −12.2530 + 7.07430i −0.435944 + 0.251692i
\(791\) 0 0
\(792\) 0 0
\(793\) 3.51663 6.09098i 0.124879 0.216297i
\(794\) 18.8234 32.6032i 0.668019 1.15704i
\(795\) 0 0
\(796\) 1.56925 0.906005i 0.0556205 0.0321125i
\(797\) −17.5200 + 30.3455i −0.620590 + 1.07489i 0.368786 + 0.929514i \(0.379774\pi\)
−0.989376 + 0.145379i \(0.953560\pi\)
\(798\) 0 0
\(799\) 0.810856 + 1.40444i 0.0286860 + 0.0496857i
\(800\) −8.78217 5.07039i −0.310496 0.179265i
\(801\) 0 0
\(802\) 10.7207 + 18.5689i 0.378562 + 0.655689i
\(803\) −19.1506 −0.675809
\(804\) 0 0
\(805\) 0 0
\(806\) 8.66299 + 5.00158i 0.305141 + 0.176173i
\(807\) 0 0
\(808\) −7.17206 4.14079i −0.252312 0.145673i
\(809\) −23.6360 + 13.6462i −0.830997 + 0.479777i −0.854194 0.519954i \(-0.825949\pi\)
0.0231967 + 0.999731i \(0.492616\pi\)
\(810\) 0 0
\(811\) 27.7628i 0.974883i 0.873156 + 0.487442i \(0.162070\pi\)
−0.873156 + 0.487442i \(0.837930\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −5.92004 10.2538i −0.207497 0.359396i
\(815\) 48.2322 1.68950
\(816\) 0 0
\(817\) 1.68308i 0.0588836i
\(818\) 29.5703 1.03390
\(819\) 0 0
\(820\) 40.8338 1.42598
\(821\) 44.4523i 1.55140i 0.631104 + 0.775698i \(0.282602\pi\)
−0.631104 + 0.775698i \(0.717398\pi\)
\(822\) 0 0
\(823\) −51.1153 −1.78177 −0.890884 0.454231i \(-0.849914\pi\)
−0.890884 + 0.454231i \(0.849914\pi\)
\(824\) 8.52435 + 14.7646i 0.296960 + 0.514349i
\(825\) 0 0
\(826\) 0 0
\(827\) 14.5414i 0.505653i 0.967512 + 0.252826i \(0.0813601\pi\)
−0.967512 + 0.252826i \(0.918640\pi\)
\(828\) 0 0
\(829\) −24.2211 + 13.9841i −0.841234 + 0.485686i −0.857683 0.514178i \(-0.828097\pi\)
0.0164497 + 0.999865i \(0.494764\pi\)
\(830\) 27.1605 + 15.6811i 0.942754 + 0.544299i
\(831\) 0 0
\(832\) 2.46687 + 1.42425i 0.0855233 + 0.0493769i
\(833\) 0 0
\(834\) 0 0
\(835\) −45.6107 −1.57842
\(836\) 3.52006 + 6.09692i 0.121744 + 0.210866i
\(837\) 0 0
\(838\) 6.17443 + 3.56481i 0.213292 + 0.123144i
\(839\) −0.499354 0.864906i −0.0172396 0.0298599i 0.857277 0.514856i \(-0.172154\pi\)
−0.874517 + 0.484996i \(0.838821\pi\)
\(840\) 0 0
\(841\) −10.3307 + 17.8933i −0.356231 + 0.617011i
\(842\) 4.00115 2.31007i 0.137889 0.0796102i
\(843\) 0 0
\(844\) 1.88766 3.26953i 0.0649760 0.112542i
\(845\) 9.50616 16.4651i 0.327022 0.566418i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 7.52564i 0.258127i
\(851\) 18.7692i 0.643400i
\(852\) 0 0
\(853\) −8.48739 + 4.90020i −0.290603 + 0.167780i −0.638214 0.769859i \(-0.720326\pi\)
0.347611 + 0.937639i \(0.386993\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 7.16846 12.4161i 0.245013 0.424375i
\(857\) 3.85002 6.66842i 0.131514 0.227789i −0.792746 0.609552i \(-0.791349\pi\)
0.924260 + 0.381763i \(0.124683\pi\)
\(858\) 0 0
\(859\) −16.4022 + 9.46979i −0.559634 + 0.323105i −0.752999 0.658022i \(-0.771393\pi\)
0.193364 + 0.981127i \(0.438060\pi\)
\(860\) 1.83474 3.17787i 0.0625642 0.108364i
\(861\) 0 0
\(862\) 2.00385 + 3.47078i 0.0682515 + 0.118215i
\(863\) 15.1156 + 8.72700i 0.514541 + 0.297070i 0.734698 0.678394i \(-0.237324\pi\)
−0.220157 + 0.975464i \(0.570657\pi\)
\(864\) 0 0
\(865\) 32.6289 + 56.5149i 1.10942 + 1.92156i
\(866\) 29.4125 0.999479
\(867\) 0 0
\(868\) 0 0
\(869\) 12.4215 + 7.17157i 0.421371 + 0.243279i
\(870\) 0 0
\(871\) −33.1776 19.1551i −1.12418 0.649045i
\(872\) −9.76874 + 5.63998i −0.330811 + 0.190994i
\(873\) 0 0
\(874\) 11.1602i 0.377498i
\(875\) 0 0
\(876\) 0 0
\(877\) −0.196152 0.339746i −0.00662360 0.0114724i 0.862695 0.505725i \(-0.168775\pi\)
−0.869318 + 0.494253i \(0.835442\pi\)
\(878\) 21.3769 0.721436
\(879\) 0 0
\(880\) 15.3490i 0.517414i
\(881\) 37.0259 1.24744 0.623718 0.781650i \(-0.285622\pi\)
0.623718 + 0.781650i \(0.285622\pi\)
\(882\) 0 0
\(883\) −29.9586 −1.00819 −0.504094 0.863649i \(-0.668174\pi\)
−0.504094 + 0.863649i \(0.668174\pi\)
\(884\) 2.11392i 0.0710987i
\(885\) 0 0
\(886\) 5.83386 0.195992
\(887\) −14.4930 25.1026i −0.486626 0.842861i 0.513256 0.858236i \(-0.328439\pi\)
−0.999882 + 0.0153745i \(0.995106\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 36.0569i 1.20863i
\(891\) 0 0
\(892\) 11.0662 6.38910i 0.370525 0.213923i
\(893\) 3.37759 + 1.95005i 0.113027 + 0.0652560i
\(894\) 0 0
\(895\) 19.4617 + 11.2362i 0.650533 + 0.375586i
\(896\) 0 0
\(897\) 0 0
\(898\) −22.5823 −0.753582
\(899\) 5.07035 + 8.78211i 0.169106 + 0.292900i
\(900\) 0 0
\(901\) 0 0
\(902\) −20.6976 35.8493i −0.689156 1.19365i
\(903\) 0 0
\(904\) 4.91614 8.51501i 0.163508 0.283205i
\(905\) 18.6455 10.7650i 0.619796 0.357839i
\(906\) 0 0
\(907\) 1.94773 3.37357i 0.0646733 0.112017i −0.831876 0.554962i \(-0.812733\pi\)
0.896549 + 0.442945i \(0.146066\pi\)
\(908\) 9.99110 17.3051i 0.331566 0.574290i
\(909\) 0 0
\(910\) 0 0
\(911\) −1.32768 + 0.766538i −0.0439881 + 0.0253966i −0.521833 0.853048i \(-0.674752\pi\)
0.477845 + 0.878444i \(0.341418\pi\)
\(912\) 0 0
\(913\) 31.7935i 1.05221i
\(914\) 39.8623i 1.31853i
\(915\) 0 0
\(916\) −8.77402 + 5.06568i −0.289902 + 0.167375i
\(917\) 0 0
\(918\) 0 0
\(919\) −14.1266 + 24.4679i −0.465992 + 0.807122i −0.999246 0.0388335i \(-0.987636\pi\)
0.533254 + 0.845955i \(0.320969\pi\)
\(920\) −12.1658 + 21.0718i −0.401094 + 0.694715i
\(921\) 0 0
\(922\) −6.37834 + 3.68254i −0.210059 + 0.121278i
\(923\) 2.76737 4.79323i 0.0910892 0.157771i
\(924\) 0 0
\(925\) −15.2192 26.3603i −0.500403 0.866723i
\(926\) −24.8475 14.3457i −0.816539 0.471429i
\(927\) 0 0
\(928\) 1.44383 + 2.50079i 0.0473961 + 0.0820924i
\(929\) −3.28726 −0.107851 −0.0539257 0.998545i \(-0.517173\pi\)
−0.0539257 + 0.998545i \(0.517173\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −6.33070 3.65503i −0.207369 0.119725i
\(933\) 0 0
\(934\) −11.8389 6.83519i −0.387380 0.223654i
\(935\) 9.86466 5.69536i 0.322609 0.186258i
\(936\) 0 0
\(937\) 35.5084i 1.16001i −0.814613 0.580005i \(-0.803051\pi\)
0.814613 0.580005i \(-0.196949\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 4.25153 + 7.36387i 0.138670 + 0.240183i
\(941\) −12.4988 −0.407450 −0.203725 0.979028i \(-0.565305\pi\)
−0.203725 + 0.979028i \(0.565305\pi\)
\(942\) 0 0
\(943\) 65.6208i 2.13691i
\(944\) −0.0211346 −0.000687873
\(945\) 0 0
\(946\) −3.71994 −0.120946
\(947\) 36.1154i 1.17359i −0.809734 0.586796i \(-0.800389\pi\)
0.809734 0.586796i \(-0.199611\pi\)
\(948\) 0 0
\(949\) 13.8290 0.448910
\(950\) 9.04931 + 15.6739i 0.293598 + 0.508527i
\(951\) 0 0
\(952\) 0 0
\(953\) 45.2925i 1.46717i −0.679599 0.733584i \(-0.737846\pi\)
0.679599 0.733584i \(-0.262154\pi\)
\(954\) 0 0
\(955\) −20.9390 + 12.0892i −0.677571 + 0.391196i
\(956\) 7.28317 + 4.20494i 0.235554 + 0.135997i
\(957\) 0 0
\(958\) −9.01596 5.20537i −0.291293 0.168178i
\(959\) 0 0
\(960\) 0 0
\(961\) 18.6677 0.602184
\(962\) 4.27499 + 7.40449i 0.137831 + 0.238730i
\(963\) 0 0
\(964\) 7.75277 + 4.47607i 0.249700 + 0.144164i
\(965\) −15.1859 26.3028i −0.488851 0.846716i
\(966\) 0 0
\(967\) 12.0000 20.7845i 0.385893 0.668385i −0.606000 0.795465i \(-0.707227\pi\)
0.991893 + 0.127079i \(0.0405602\pi\)
\(968\) 3.94910 2.28001i 0.126929 0.0732824i
\(969\) 0 0
\(970\) 36.6146 63.4184i 1.17562 2.03624i
\(971\) 16.6813 28.8928i 0.535328 0.927215i −0.463819 0.885930i \(-0.653521\pi\)
0.999147 0.0412855i \(-0.0131453\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 2.02520 1.16925i 0.0648917 0.0374652i
\(975\) 0 0
\(976\) 2.46911i 0.0790344i
\(977\) 34.5077i 1.10400i −0.833844 0.552000i \(-0.813865\pi\)
0.833844 0.552000i \(-0.186135\pi\)
\(978\) 0 0
\(979\) 31.6555 18.2763i 1.01172 0.584114i
\(980\) 0 0
\(981\) 0 0
\(982\) −16.9422 + 29.3448i −0.540648 + 0.936429i
\(983\) −1.20651 + 2.08973i −0.0384817 + 0.0666522i −0.884625 0.466304i \(-0.845585\pi\)
0.846143 + 0.532956i \(0.178919\pi\)
\(984\) 0 0
\(985\) 43.0450 24.8521i 1.37153 0.791852i
\(986\) 1.07149 1.85588i 0.0341232 0.0591032i
\(987\) 0 0
\(988\) −2.54191 4.40271i −0.0808688 0.140069i
\(989\) −5.10691 2.94847i −0.162390 0.0937560i
\(990\) 0 0
\(991\) −24.2991 42.0873i −0.771887 1.33695i −0.936528 0.350594i \(-0.885980\pi\)
0.164641 0.986354i \(-0.447353\pi\)
\(992\) −3.51174 −0.111498
\(993\) 0 0
\(994\) 0 0
\(995\) −6.10612 3.52537i −0.193577 0.111762i
\(996\) 0 0
\(997\) 38.8449 + 22.4271i 1.23023 + 0.710274i 0.967078 0.254481i \(-0.0819045\pi\)
0.263152 + 0.964754i \(0.415238\pi\)
\(998\) −14.3799 + 8.30223i −0.455187 + 0.262802i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.l.b.1097.8 16
3.2 odd 2 882.2.l.a.509.1 16
7.2 even 3 378.2.m.a.125.8 16
7.3 odd 6 2646.2.t.a.2285.4 16
7.4 even 3 2646.2.t.a.2285.1 16
7.5 odd 6 378.2.m.a.125.5 16
7.6 odd 2 inner 2646.2.l.b.1097.5 16
9.2 odd 6 2646.2.t.a.1979.4 16
9.7 even 3 882.2.t.b.803.7 16
21.2 odd 6 126.2.m.a.41.4 yes 16
21.5 even 6 126.2.m.a.41.1 16
21.11 odd 6 882.2.t.b.815.6 16
21.17 even 6 882.2.t.b.815.7 16
21.20 even 2 882.2.l.a.509.4 16
28.19 even 6 3024.2.cc.b.881.1 16
28.23 odd 6 3024.2.cc.b.881.8 16
63.2 odd 6 378.2.m.a.251.5 16
63.5 even 6 1134.2.d.a.1133.1 16
63.11 odd 6 inner 2646.2.l.b.521.1 16
63.16 even 3 126.2.m.a.83.1 yes 16
63.20 even 6 2646.2.t.a.1979.1 16
63.23 odd 6 1134.2.d.a.1133.8 16
63.25 even 3 882.2.l.a.227.8 16
63.34 odd 6 882.2.t.b.803.6 16
63.38 even 6 inner 2646.2.l.b.521.4 16
63.40 odd 6 1134.2.d.a.1133.16 16
63.47 even 6 378.2.m.a.251.8 16
63.52 odd 6 882.2.l.a.227.5 16
63.58 even 3 1134.2.d.a.1133.9 16
63.61 odd 6 126.2.m.a.83.4 yes 16
84.23 even 6 1008.2.cc.b.545.2 16
84.47 odd 6 1008.2.cc.b.545.7 16
252.47 odd 6 3024.2.cc.b.2897.8 16
252.79 odd 6 1008.2.cc.b.209.7 16
252.187 even 6 1008.2.cc.b.209.2 16
252.191 even 6 3024.2.cc.b.2897.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.m.a.41.1 16 21.5 even 6
126.2.m.a.41.4 yes 16 21.2 odd 6
126.2.m.a.83.1 yes 16 63.16 even 3
126.2.m.a.83.4 yes 16 63.61 odd 6
378.2.m.a.125.5 16 7.5 odd 6
378.2.m.a.125.8 16 7.2 even 3
378.2.m.a.251.5 16 63.2 odd 6
378.2.m.a.251.8 16 63.47 even 6
882.2.l.a.227.5 16 63.52 odd 6
882.2.l.a.227.8 16 63.25 even 3
882.2.l.a.509.1 16 3.2 odd 2
882.2.l.a.509.4 16 21.20 even 2
882.2.t.b.803.6 16 63.34 odd 6
882.2.t.b.803.7 16 9.7 even 3
882.2.t.b.815.6 16 21.11 odd 6
882.2.t.b.815.7 16 21.17 even 6
1008.2.cc.b.209.2 16 252.187 even 6
1008.2.cc.b.209.7 16 252.79 odd 6
1008.2.cc.b.545.2 16 84.23 even 6
1008.2.cc.b.545.7 16 84.47 odd 6
1134.2.d.a.1133.1 16 63.5 even 6
1134.2.d.a.1133.8 16 63.23 odd 6
1134.2.d.a.1133.9 16 63.58 even 3
1134.2.d.a.1133.16 16 63.40 odd 6
2646.2.l.b.521.1 16 63.11 odd 6 inner
2646.2.l.b.521.4 16 63.38 even 6 inner
2646.2.l.b.1097.5 16 7.6 odd 2 inner
2646.2.l.b.1097.8 16 1.1 even 1 trivial
2646.2.t.a.1979.1 16 63.20 even 6
2646.2.t.a.1979.4 16 9.2 odd 6
2646.2.t.a.2285.1 16 7.4 even 3
2646.2.t.a.2285.4 16 7.3 odd 6
3024.2.cc.b.881.1 16 28.19 even 6
3024.2.cc.b.881.8 16 28.23 odd 6
3024.2.cc.b.2897.1 16 252.191 even 6
3024.2.cc.b.2897.8 16 252.47 odd 6