Properties

Label 126.2.m.a.41.1
Level $126$
Weight $2$
Character 126.41
Analytic conductor $1.006$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 6 x^{14} + 9 x^{12} + 54 x^{10} - 288 x^{8} + 486 x^{6} + 729 x^{4} - 4374 x^{2} + 6561\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 41.1
Root \(1.62181 - 0.608059i\) of defining polynomial
Character \(\chi\) \(=\) 126.41
Dual form 126.2.m.a.83.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(-1.62181 + 0.608059i) q^{3} +(0.500000 - 0.866025i) q^{4} +(1.94556 - 3.36980i) q^{5} +(1.10050 - 1.33750i) q^{6} +(0.343982 + 2.62329i) q^{7} +1.00000i q^{8} +(2.26053 - 1.97231i) q^{9} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(-1.62181 + 0.608059i) q^{3} +(0.500000 - 0.866025i) q^{4} +(1.94556 - 3.36980i) q^{5} +(1.10050 - 1.33750i) q^{6} +(0.343982 + 2.62329i) q^{7} +1.00000i q^{8} +(2.26053 - 1.97231i) q^{9} +3.89111i q^{10} +(3.41614 - 1.97231i) q^{11} +(-0.284310 + 1.70856i) q^{12} +(2.46687 + 1.42425i) q^{13} +(-1.60954 - 2.09985i) q^{14} +(-1.10628 + 6.64819i) q^{15} +(-0.500000 - 0.866025i) q^{16} +0.742117 q^{17} +(-0.971521 + 2.83834i) q^{18} -1.78474i q^{19} +(-1.94556 - 3.36980i) q^{20} +(-2.15299 - 4.04532i) q^{21} +(-1.97231 + 3.41614i) q^{22} +(-5.41535 - 3.12656i) q^{23} +(-0.608059 - 1.62181i) q^{24} +(-5.07039 - 8.78217i) q^{25} -2.84849 q^{26} +(-2.46687 + 4.57324i) q^{27} +(2.44383 + 1.01375i) q^{28} +(-2.50079 + 1.44383i) q^{29} +(-2.36603 - 6.31064i) q^{30} +(3.04125 + 1.75587i) q^{31} +(0.866025 + 0.500000i) q^{32} +(-4.34105 + 5.27592i) q^{33} +(-0.642692 + 0.371058i) q^{34} +(9.50923 + 3.94462i) q^{35} +(-0.577806 - 2.94383i) q^{36} +3.00158 q^{37} +(0.892369 + 1.54563i) q^{38} +(-4.86681 - 0.809856i) q^{39} +(3.36980 + 1.94556i) q^{40} +(-5.24705 + 9.08816i) q^{41} +(3.88721 + 2.42686i) q^{42} +(0.471521 + 0.816699i) q^{43} -3.94462i q^{44} +(-2.24831 - 11.4548i) q^{45} +6.25311 q^{46} +(1.09263 + 1.89248i) q^{47} +(1.33750 + 1.10050i) q^{48} +(-6.76335 + 1.80473i) q^{49} +(8.78217 + 5.07039i) q^{50} +(-1.20357 + 0.451251i) q^{51} +(2.46687 - 1.42425i) q^{52} +(-0.150252 - 5.19398i) q^{54} -15.3490i q^{55} +(-2.62329 + 0.343982i) q^{56} +(1.08523 + 2.89450i) q^{57} +(1.44383 - 2.50079i) q^{58} +(0.0105673 - 0.0183031i) q^{59} +(5.20436 + 4.28217i) q^{60} +(-2.13832 + 1.23456i) q^{61} -3.51174 q^{62} +(5.95153 + 5.25160i) q^{63} -1.00000 q^{64} +(9.59886 - 5.54191i) q^{65} +(1.12150 - 6.73961i) q^{66} +(-6.72463 + 11.6474i) q^{67} +(0.371058 - 0.642692i) q^{68} +(10.6838 + 1.77782i) q^{69} +(-10.2075 + 1.33847i) q^{70} -1.94304i q^{71} +(1.97231 + 2.26053i) q^{72} +4.85486i q^{73} +(-2.59944 + 1.50079i) q^{74} +(13.5633 + 11.1599i) q^{75} +(-1.54563 - 0.892369i) q^{76} +(6.34904 + 8.28311i) q^{77} +(4.61971 - 1.73205i) q^{78} +(-1.81806 - 3.14898i) q^{79} -3.89111 q^{80} +(1.21999 - 8.91693i) q^{81} -10.4941i q^{82} +(-4.02998 - 6.98012i) q^{83} +(-4.57985 - 0.158118i) q^{84} +(1.44383 - 2.50079i) q^{85} +(-0.816699 - 0.471521i) q^{86} +(3.17787 - 3.86224i) q^{87} +(1.97231 + 3.41614i) q^{88} -9.26646 q^{89} +(7.67448 + 8.79598i) q^{90} +(-2.88766 + 6.96124i) q^{91} +(-5.41535 + 3.12656i) q^{92} +(-6.00000 - 0.998423i) q^{93} +(-1.89248 - 1.09263i) q^{94} +(-6.01422 - 3.47231i) q^{95} +(-1.70856 - 0.284310i) q^{96} +(16.2983 - 9.40980i) q^{97} +(4.95487 - 4.94462i) q^{98} +(3.83228 - 11.1962i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 8q^{4} + 2q^{7} + 12q^{9} + O(q^{10}) \) \( 16q + 8q^{4} + 2q^{7} + 12q^{9} - 12q^{11} - 6q^{14} - 8q^{16} - 12q^{18} + 18q^{21} - 48q^{23} - 8q^{25} + 4q^{28} - 12q^{29} - 24q^{30} + 12q^{36} - 8q^{37} - 36q^{39} - 12q^{42} + 4q^{43} + 24q^{46} - 8q^{49} + 60q^{50} + 12q^{51} - 6q^{56} + 48q^{57} - 12q^{58} + 24q^{60} + 24q^{63} - 16q^{64} + 84q^{65} - 28q^{67} + 36q^{74} + 78q^{77} - 24q^{78} - 4q^{79} + 36q^{81} + 18q^{84} - 12q^{85} - 24q^{86} + 24q^{91} - 48q^{92} - 96q^{93} + 12q^{95} - 72q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) −1.62181 + 0.608059i −0.936352 + 0.351063i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.94556 3.36980i 0.870080 1.50702i 0.00816625 0.999967i \(-0.497401\pi\)
0.861913 0.507056i \(-0.169266\pi\)
\(6\) 1.10050 1.33750i 0.449277 0.546032i
\(7\) 0.343982 + 2.62329i 0.130013 + 0.991512i
\(8\) 1.00000i 0.353553i
\(9\) 2.26053 1.97231i 0.753510 0.657437i
\(10\) 3.89111i 1.23048i
\(11\) 3.41614 1.97231i 1.03001 0.594674i 0.113019 0.993593i \(-0.463948\pi\)
0.916986 + 0.398919i \(0.130615\pi\)
\(12\) −0.284310 + 1.70856i −0.0820733 + 0.493218i
\(13\) 2.46687 + 1.42425i 0.684186 + 0.395015i 0.801430 0.598088i \(-0.204073\pi\)
−0.117244 + 0.993103i \(0.537406\pi\)
\(14\) −1.60954 2.09985i −0.430169 0.561208i
\(15\) −1.10628 + 6.64819i −0.285641 + 1.71656i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.742117 0.179990 0.0899949 0.995942i \(-0.471315\pi\)
0.0899949 + 0.995942i \(0.471315\pi\)
\(18\) −0.971521 + 2.83834i −0.228990 + 0.669002i
\(19\) 1.78474i 0.409447i −0.978820 0.204723i \(-0.934370\pi\)
0.978820 0.204723i \(-0.0656295\pi\)
\(20\) −1.94556 3.36980i −0.435040 0.753511i
\(21\) −2.15299 4.04532i −0.469821 0.882762i
\(22\) −1.97231 + 3.41614i −0.420498 + 0.728324i
\(23\) −5.41535 3.12656i −1.12918 0.651932i −0.185451 0.982654i \(-0.559374\pi\)
−0.943728 + 0.330722i \(0.892708\pi\)
\(24\) −0.608059 1.62181i −0.124119 0.331050i
\(25\) −5.07039 8.78217i −1.01408 1.75643i
\(26\) −2.84849 −0.558636
\(27\) −2.46687 + 4.57324i −0.474749 + 0.880121i
\(28\) 2.44383 + 1.01375i 0.461841 + 0.191581i
\(29\) −2.50079 + 1.44383i −0.464385 + 0.268113i −0.713886 0.700262i \(-0.753067\pi\)
0.249501 + 0.968374i \(0.419733\pi\)
\(30\) −2.36603 6.31064i −0.431975 1.15216i
\(31\) 3.04125 + 1.75587i 0.546225 + 0.315363i 0.747598 0.664152i \(-0.231207\pi\)
−0.201373 + 0.979515i \(0.564540\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) −4.34105 + 5.27592i −0.755680 + 0.918420i
\(34\) −0.642692 + 0.371058i −0.110221 + 0.0636360i
\(35\) 9.50923 + 3.94462i 1.60735 + 0.666762i
\(36\) −0.577806 2.94383i −0.0963009 0.490638i
\(37\) 3.00158 0.493456 0.246728 0.969085i \(-0.420645\pi\)
0.246728 + 0.969085i \(0.420645\pi\)
\(38\) 0.892369 + 1.54563i 0.144761 + 0.250734i
\(39\) −4.86681 0.809856i −0.779314 0.129681i
\(40\) 3.36980 + 1.94556i 0.532813 + 0.307620i
\(41\) −5.24705 + 9.08816i −0.819452 + 1.41933i 0.0866345 + 0.996240i \(0.472389\pi\)
−0.906087 + 0.423092i \(0.860945\pi\)
\(42\) 3.88721 + 2.42686i 0.599809 + 0.374472i
\(43\) 0.471521 + 0.816699i 0.0719063 + 0.124545i 0.899737 0.436433i \(-0.143758\pi\)
−0.827830 + 0.560978i \(0.810425\pi\)
\(44\) 3.94462i 0.594674i
\(45\) −2.24831 11.4548i −0.335158 1.70758i
\(46\) 6.25311 0.921971
\(47\) 1.09263 + 1.89248i 0.159376 + 0.276047i 0.934644 0.355585i \(-0.115718\pi\)
−0.775268 + 0.631633i \(0.782385\pi\)
\(48\) 1.33750 + 1.10050i 0.193051 + 0.158843i
\(49\) −6.76335 + 1.80473i −0.966193 + 0.257819i
\(50\) 8.78217 + 5.07039i 1.24199 + 0.717061i
\(51\) −1.20357 + 0.451251i −0.168534 + 0.0631877i
\(52\) 2.46687 1.42425i 0.342093 0.197507i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −0.150252 5.19398i −0.0204467 0.706811i
\(55\) 15.3490i 2.06965i
\(56\) −2.62329 + 0.343982i −0.350553 + 0.0459665i
\(57\) 1.08523 + 2.89450i 0.143742 + 0.383386i
\(58\) 1.44383 2.50079i 0.189584 0.328370i
\(59\) 0.0105673 0.0183031i 0.00137575 0.00238286i −0.865337 0.501191i \(-0.832895\pi\)
0.866712 + 0.498808i \(0.166229\pi\)
\(60\) 5.20436 + 4.28217i 0.671880 + 0.552825i
\(61\) −2.13832 + 1.23456i −0.273783 + 0.158069i −0.630606 0.776103i \(-0.717193\pi\)
0.356822 + 0.934172i \(0.383860\pi\)
\(62\) −3.51174 −0.445991
\(63\) 5.95153 + 5.25160i 0.749822 + 0.661639i
\(64\) −1.00000 −0.125000
\(65\) 9.59886 5.54191i 1.19059 0.687389i
\(66\) 1.12150 6.73961i 0.138047 0.829588i
\(67\) −6.72463 + 11.6474i −0.821544 + 1.42296i 0.0829874 + 0.996551i \(0.473554\pi\)
−0.904532 + 0.426406i \(0.859779\pi\)
\(68\) 0.371058 0.642692i 0.0449974 0.0779379i
\(69\) 10.6838 + 1.77782i 1.28618 + 0.214025i
\(70\) −10.2075 + 1.33847i −1.22003 + 0.159978i
\(71\) 1.94304i 0.230597i −0.993331 0.115298i \(-0.963218\pi\)
0.993331 0.115298i \(-0.0367824\pi\)
\(72\) 1.97231 + 2.26053i 0.232439 + 0.266406i
\(73\) 4.85486i 0.568218i 0.958792 + 0.284109i \(0.0916978\pi\)
−0.958792 + 0.284109i \(0.908302\pi\)
\(74\) −2.59944 + 1.50079i −0.302179 + 0.174463i
\(75\) 13.5633 + 11.1599i 1.56615 + 1.28863i
\(76\) −1.54563 0.892369i −0.177296 0.102362i
\(77\) 6.34904 + 8.28311i 0.723540 + 0.943948i
\(78\) 4.61971 1.73205i 0.523079 0.196116i
\(79\) −1.81806 3.14898i −0.204548 0.354288i 0.745440 0.666572i \(-0.232239\pi\)
−0.949989 + 0.312284i \(0.898906\pi\)
\(80\) −3.89111 −0.435040
\(81\) 1.21999 8.91693i 0.135554 0.990770i
\(82\) 10.4941i 1.15888i
\(83\) −4.02998 6.98012i −0.442347 0.766168i 0.555516 0.831506i \(-0.312521\pi\)
−0.997863 + 0.0653378i \(0.979188\pi\)
\(84\) −4.57985 0.158118i −0.499702 0.0172520i
\(85\) 1.44383 2.50079i 0.156605 0.271249i
\(86\) −0.816699 0.471521i −0.0880669 0.0508454i
\(87\) 3.17787 3.86224i 0.340703 0.414076i
\(88\) 1.97231 + 3.41614i 0.210249 + 0.364162i
\(89\) −9.26646 −0.982243 −0.491122 0.871091i \(-0.663413\pi\)
−0.491122 + 0.871091i \(0.663413\pi\)
\(90\) 7.67448 + 8.79598i 0.808962 + 0.927178i
\(91\) −2.88766 + 6.96124i −0.302709 + 0.729736i
\(92\) −5.41535 + 3.12656i −0.564589 + 0.325966i
\(93\) −6.00000 0.998423i −0.622171 0.103532i
\(94\) −1.89248 1.09263i −0.195195 0.112696i
\(95\) −6.01422 3.47231i −0.617046 0.356251i
\(96\) −1.70856 0.284310i −0.174379 0.0290173i
\(97\) 16.2983 9.40980i 1.65484 0.955421i 0.679794 0.733403i \(-0.262069\pi\)
0.975043 0.222018i \(-0.0712643\pi\)
\(98\) 4.95487 4.94462i 0.500517 0.499482i
\(99\) 3.83228 11.1962i 0.385159 1.12526i
\(100\) −10.1408 −1.01408
\(101\) 4.14079 + 7.17206i 0.412024 + 0.713647i 0.995111 0.0987631i \(-0.0314886\pi\)
−0.583087 + 0.812410i \(0.698155\pi\)
\(102\) 0.816699 0.992580i 0.0808652 0.0982801i
\(103\) −14.7646 8.52435i −1.45480 0.839929i −0.456051 0.889953i \(-0.650737\pi\)
−0.998748 + 0.0500247i \(0.984070\pi\)
\(104\) −1.42425 + 2.46687i −0.139659 + 0.241896i
\(105\) −17.8207 0.615254i −1.73912 0.0600426i
\(106\) 0 0
\(107\) 14.3369i 1.38600i 0.720936 + 0.693001i \(0.243712\pi\)
−0.720936 + 0.693001i \(0.756288\pi\)
\(108\) 2.72711 + 4.42299i 0.262416 + 0.425603i
\(109\) 11.2800 1.08042 0.540212 0.841529i \(-0.318344\pi\)
0.540212 + 0.841529i \(0.318344\pi\)
\(110\) 7.67448 + 13.2926i 0.731733 + 1.26740i
\(111\) −4.86799 + 1.82513i −0.462049 + 0.173234i
\(112\) 2.09985 1.60954i 0.198417 0.152088i
\(113\) −8.51501 4.91614i −0.801024 0.462472i 0.0428049 0.999083i \(-0.486371\pi\)
−0.843829 + 0.536612i \(0.819704\pi\)
\(114\) −2.38708 1.96410i −0.223571 0.183955i
\(115\) −21.0718 + 12.1658i −1.96495 + 1.13447i
\(116\) 2.88766i 0.268113i
\(117\) 8.38548 1.64588i 0.775238 0.152161i
\(118\) 0.0211346i 0.00194560i
\(119\) 0.255275 + 1.94679i 0.0234010 + 0.178462i
\(120\) −6.64819 1.10628i −0.606894 0.100989i
\(121\) 2.28001 3.94910i 0.207274 0.359009i
\(122\) 1.23456 2.13832i 0.111772 0.193594i
\(123\) 2.98358 17.9298i 0.269021 1.61667i
\(124\) 3.04125 1.75587i 0.273112 0.157682i
\(125\) −20.0033 −1.78915
\(126\) −7.77998 1.57225i −0.693095 0.140067i
\(127\) 2.94462 0.261293 0.130646 0.991429i \(-0.458295\pi\)
0.130646 + 0.991429i \(0.458295\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) −1.26132 1.03782i −0.111053 0.0913747i
\(130\) −5.54191 + 9.59886i −0.486057 + 0.841876i
\(131\) 7.53255 13.0468i 0.658122 1.13990i −0.322979 0.946406i \(-0.604684\pi\)
0.981101 0.193495i \(-0.0619823\pi\)
\(132\) 2.39856 + 6.39742i 0.208768 + 0.556824i
\(133\) 4.68189 0.613917i 0.405972 0.0532334i
\(134\) 13.4493i 1.16184i
\(135\) 10.6115 + 17.2104i 0.913293 + 1.48123i
\(136\) 0.742117i 0.0636360i
\(137\) −13.6139 + 7.85997i −1.16311 + 0.671523i −0.952048 0.305950i \(-0.901026\pi\)
−0.211064 + 0.977472i \(0.567693\pi\)
\(138\) −10.1414 + 3.80226i −0.863289 + 0.323670i
\(139\) 2.86373 + 1.65337i 0.242898 + 0.140237i 0.616508 0.787349i \(-0.288547\pi\)
−0.373610 + 0.927586i \(0.621880\pi\)
\(140\) 8.17075 6.26292i 0.690555 0.529313i
\(141\) −2.92277 2.40487i −0.246142 0.202526i
\(142\) 0.971521 + 1.68272i 0.0815282 + 0.141211i
\(143\) 11.2362 0.939620
\(144\) −2.83834 0.971521i −0.236528 0.0809601i
\(145\) 11.2362i 0.933118i
\(146\) −2.42743 4.20443i −0.200896 0.347961i
\(147\) 9.87149 7.03944i 0.814186 0.580604i
\(148\) 1.50079 2.59944i 0.123364 0.213673i
\(149\) 9.52765 + 5.50079i 0.780535 + 0.450642i 0.836620 0.547784i \(-0.184528\pi\)
−0.0560848 + 0.998426i \(0.517862\pi\)
\(150\) −17.3261 2.88313i −1.41467 0.235406i
\(151\) 0.719988 + 1.24706i 0.0585918 + 0.101484i 0.893834 0.448399i \(-0.148006\pi\)
−0.835242 + 0.549883i \(0.814672\pi\)
\(152\) 1.78474 0.144761
\(153\) 1.67758 1.46368i 0.135624 0.118332i
\(154\) −9.63998 3.99886i −0.776812 0.322237i
\(155\) 11.8339 6.83228i 0.950518 0.548782i
\(156\) −3.13476 + 3.80986i −0.250982 + 0.305033i
\(157\) 14.3822 + 8.30354i 1.14782 + 0.662695i 0.948355 0.317210i \(-0.102746\pi\)
0.199465 + 0.979905i \(0.436079\pi\)
\(158\) 3.14898 + 1.81806i 0.250519 + 0.144637i
\(159\) 0 0
\(160\) 3.36980 1.94556i 0.266406 0.153810i
\(161\) 6.33909 15.2815i 0.499591 1.20435i
\(162\) 3.40192 + 8.33228i 0.267280 + 0.654646i
\(163\) −12.3955 −0.970887 −0.485444 0.874268i \(-0.661342\pi\)
−0.485444 + 0.874268i \(0.661342\pi\)
\(164\) 5.24705 + 9.08816i 0.409726 + 0.709666i
\(165\) 9.33307 + 24.8931i 0.726579 + 1.93792i
\(166\) 6.98012 + 4.02998i 0.541763 + 0.312787i
\(167\) −5.86087 + 10.1513i −0.453528 + 0.785534i −0.998602 0.0528541i \(-0.983168\pi\)
0.545074 + 0.838388i \(0.316502\pi\)
\(168\) 4.04532 2.15299i 0.312103 0.166107i
\(169\) −2.44304 4.23147i −0.187926 0.325498i
\(170\) 2.88766i 0.221474i
\(171\) −3.52006 4.03445i −0.269185 0.308522i
\(172\) 0.943042 0.0719063
\(173\) −8.38548 14.5241i −0.637536 1.10425i −0.985972 0.166913i \(-0.946620\pi\)
0.348435 0.937333i \(-0.386713\pi\)
\(174\) −0.820992 + 4.93374i −0.0622393 + 0.374026i
\(175\) 21.2941 16.3220i 1.60968 1.23383i
\(176\) −3.41614 1.97231i −0.257501 0.148668i
\(177\) −0.00600879 + 0.0361097i −0.000451648 + 0.00271417i
\(178\) 8.02499 4.63323i 0.601499 0.347275i
\(179\) 5.77532i 0.431668i −0.976430 0.215834i \(-0.930753\pi\)
0.976430 0.215834i \(-0.0692470\pi\)
\(180\) −11.0443 3.78030i −0.823193 0.281767i
\(181\) 5.53310i 0.411272i 0.978629 + 0.205636i \(0.0659263\pi\)
−0.978629 + 0.205636i \(0.934074\pi\)
\(182\) −0.979830 7.47244i −0.0726298 0.553894i
\(183\) 2.71726 3.30244i 0.200865 0.244123i
\(184\) 3.12656 5.41535i 0.230493 0.399225i
\(185\) 5.83974 10.1147i 0.429346 0.743649i
\(186\) 5.69536 2.13534i 0.417604 0.156571i
\(187\) 2.53518 1.46368i 0.185390 0.107035i
\(188\) 2.18525 0.159376
\(189\) −12.8455 4.89821i −0.934375 0.356292i
\(190\) 6.94462 0.503816
\(191\) −5.38124 + 3.10686i −0.389373 + 0.224805i −0.681888 0.731456i \(-0.738841\pi\)
0.292515 + 0.956261i \(0.405508\pi\)
\(192\) 1.62181 0.608059i 0.117044 0.0438828i
\(193\) 3.90271 6.75970i 0.280923 0.486574i −0.690689 0.723152i \(-0.742693\pi\)
0.971612 + 0.236578i \(0.0760260\pi\)
\(194\) −9.40980 + 16.2983i −0.675584 + 1.17015i
\(195\) −12.1977 + 14.8246i −0.873497 + 1.06161i
\(196\) −1.81873 + 6.75960i −0.129910 + 0.482829i
\(197\) 12.7737i 0.910092i 0.890468 + 0.455046i \(0.150377\pi\)
−0.890468 + 0.455046i \(0.849623\pi\)
\(198\) 2.27922 + 11.6123i 0.161977 + 0.825250i
\(199\) 1.81201i 0.128450i 0.997935 + 0.0642250i \(0.0204575\pi\)
−0.997935 + 0.0642250i \(0.979542\pi\)
\(200\) 8.78217 5.07039i 0.620993 0.358530i
\(201\) 3.82377 22.9788i 0.269708 1.62080i
\(202\) −7.17206 4.14079i −0.504624 0.291345i
\(203\) −4.64782 6.06365i −0.326213 0.425585i
\(204\) −0.210992 + 1.26795i −0.0147724 + 0.0887742i
\(205\) 20.4169 + 35.3631i 1.42598 + 2.46986i
\(206\) 17.0487 1.18784
\(207\) −18.4081 + 3.61308i −1.27945 + 0.251127i
\(208\) 2.84849i 0.197507i
\(209\) −3.52006 6.09692i −0.243487 0.421732i
\(210\) 15.7408 8.37753i 1.08622 0.578104i
\(211\) −1.88766 + 3.26953i −0.129952 + 0.225083i −0.923658 0.383218i \(-0.874816\pi\)
0.793706 + 0.608302i \(0.208149\pi\)
\(212\) 0 0
\(213\) 1.18148 + 3.15124i 0.0809539 + 0.215920i
\(214\) −7.16846 12.4161i −0.490026 0.848750i
\(215\) 3.66949 0.250257
\(216\) −4.57324 2.46687i −0.311170 0.167849i
\(217\) −3.56002 + 8.58209i −0.241670 + 0.582590i
\(218\) −9.76874 + 5.63998i −0.661622 + 0.381988i
\(219\) −2.95204 7.87366i −0.199480 0.532052i
\(220\) −13.2926 7.67448i −0.896187 0.517414i
\(221\) 1.83070 + 1.05696i 0.123146 + 0.0710987i
\(222\) 3.30323 4.01461i 0.221698 0.269443i
\(223\) 11.0662 6.38910i 0.741051 0.427846i −0.0814006 0.996681i \(-0.525939\pi\)
0.822451 + 0.568836i \(0.192606\pi\)
\(224\) −1.01375 + 2.44383i −0.0677341 + 0.163285i
\(225\) −28.7829 9.85197i −1.91886 0.656798i
\(226\) 9.83228 0.654034
\(227\) −9.99110 17.3051i −0.663133 1.14858i −0.979788 0.200039i \(-0.935893\pi\)
0.316655 0.948541i \(-0.397440\pi\)
\(228\) 3.04933 + 0.507420i 0.201947 + 0.0336047i
\(229\) 8.77402 + 5.06568i 0.579804 + 0.334750i 0.761055 0.648687i \(-0.224682\pi\)
−0.181252 + 0.983437i \(0.558015\pi\)
\(230\) 12.1658 21.0718i 0.802188 1.38943i
\(231\) −15.3335 9.57303i −1.00887 0.629859i
\(232\) −1.44383 2.50079i −0.0947921 0.164185i
\(233\) 7.31007i 0.478898i 0.970909 + 0.239449i \(0.0769669\pi\)
−0.970909 + 0.239449i \(0.923033\pi\)
\(234\) −6.43910 + 5.61811i −0.420937 + 0.367267i
\(235\) 8.50307 0.554679
\(236\) −0.0105673 0.0183031i −0.000687873 0.00119143i
\(237\) 4.86332 + 4.00156i 0.315906 + 0.259929i
\(238\) −1.19447 1.55833i −0.0774260 0.101012i
\(239\) 7.28317 + 4.20494i 0.471109 + 0.271995i 0.716704 0.697378i \(-0.245650\pi\)
−0.245595 + 0.969373i \(0.578983\pi\)
\(240\) 6.31064 2.36603i 0.407350 0.152726i
\(241\) −7.75277 + 4.47607i −0.499400 + 0.288329i −0.728466 0.685082i \(-0.759766\pi\)
0.229066 + 0.973411i \(0.426433\pi\)
\(242\) 4.56002i 0.293129i
\(243\) 3.44343 + 15.2034i 0.220896 + 0.975297i
\(244\) 2.46911i 0.158069i
\(245\) −7.07690 + 26.3024i −0.452127 + 1.68040i
\(246\) 6.38103 + 17.0194i 0.406840 + 1.08512i
\(247\) 2.54191 4.40271i 0.161738 0.280138i
\(248\) −1.75587 + 3.04125i −0.111498 + 0.193120i
\(249\) 10.7802 + 8.86997i 0.683166 + 0.562111i
\(250\) 17.3234 10.0017i 1.09563 0.632561i
\(251\) 12.6432 0.798033 0.399017 0.916944i \(-0.369352\pi\)
0.399017 + 0.916944i \(0.369352\pi\)
\(252\) 7.52378 2.52838i 0.473954 0.159273i
\(253\) −24.6661 −1.55075
\(254\) −2.55012 + 1.47231i −0.160008 + 0.0923809i
\(255\) −0.820992 + 4.93374i −0.0514125 + 0.308962i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −8.15329 + 14.1219i −0.508588 + 0.880900i 0.491362 + 0.870955i \(0.336499\pi\)
−0.999951 + 0.00994523i \(0.996834\pi\)
\(258\) 1.61124 + 0.268117i 0.100312 + 0.0166922i
\(259\) 1.03249 + 7.87402i 0.0641557 + 0.489268i
\(260\) 11.0838i 0.687389i
\(261\) −2.80542 + 8.19615i −0.173651 + 0.507329i
\(262\) 15.0651i 0.930725i
\(263\) 20.5434 11.8608i 1.26676 0.731366i 0.292389 0.956300i \(-0.405550\pi\)
0.974374 + 0.224934i \(0.0722166\pi\)
\(264\) −5.27592 4.34105i −0.324711 0.267173i
\(265\) 0 0
\(266\) −3.74768 + 2.87261i −0.229785 + 0.176131i
\(267\) 15.0284 5.63455i 0.919725 0.344829i
\(268\) 6.72463 + 11.6474i 0.410772 + 0.711478i
\(269\) 7.28288 0.444045 0.222022 0.975042i \(-0.428734\pi\)
0.222022 + 0.975042i \(0.428734\pi\)
\(270\) −17.7950 9.59886i −1.08297 0.584168i
\(271\) 22.6879i 1.37819i 0.724669 + 0.689097i \(0.241993\pi\)
−0.724669 + 0.689097i \(0.758007\pi\)
\(272\) −0.371058 0.642692i −0.0224987 0.0389689i
\(273\) 0.450397 13.0457i 0.0272593 0.789560i
\(274\) 7.85997 13.6139i 0.474838 0.822444i
\(275\) −34.6423 20.0007i −2.08901 1.20609i
\(276\) 6.88154 8.36353i 0.414220 0.503425i
\(277\) −12.0838 20.9298i −0.726046 1.25755i −0.958542 0.284951i \(-0.908023\pi\)
0.232496 0.972597i \(-0.425311\pi\)
\(278\) −3.30675 −0.198326
\(279\) 10.3380 2.02910i 0.618917 0.121479i
\(280\) −3.94462 + 9.50923i −0.235736 + 0.568285i
\(281\) −4.11229 + 2.37423i −0.245319 + 0.141635i −0.617619 0.786478i \(-0.711903\pi\)
0.372300 + 0.928112i \(0.378569\pi\)
\(282\) 3.73363 + 0.621290i 0.222334 + 0.0369973i
\(283\) −25.4484 14.6926i −1.51275 0.873387i −0.999889 0.0149153i \(-0.995252\pi\)
−0.512861 0.858471i \(-0.671415\pi\)
\(284\) −1.68272 0.971521i −0.0998513 0.0576492i
\(285\) 11.8653 + 1.97443i 0.702838 + 0.116955i
\(286\) −9.73085 + 5.61811i −0.575398 + 0.332206i
\(287\) −25.6458 10.6384i −1.51382 0.627965i
\(288\) 2.94383 0.577806i 0.173467 0.0340475i
\(289\) −16.4493 −0.967604
\(290\) −5.61811 9.73085i −0.329907 0.571415i
\(291\) −20.7109 + 25.1712i −1.21410 + 1.47556i
\(292\) 4.20443 + 2.42743i 0.246046 + 0.142055i
\(293\) 3.31206 5.73666i 0.193493 0.335139i −0.752913 0.658121i \(-0.771352\pi\)
0.946405 + 0.322981i \(0.104685\pi\)
\(294\) −5.02924 + 11.0321i −0.293311 + 0.643404i
\(295\) −0.0411186 0.0712195i −0.00239402 0.00414656i
\(296\) 3.00158i 0.174463i
\(297\) 0.592687 + 20.4883i 0.0343912 + 1.18885i
\(298\) −11.0016 −0.637304
\(299\) −8.90597 15.4256i −0.515046 0.892085i
\(300\) 16.4464 6.16618i 0.949533 0.356005i
\(301\) −1.98025 + 1.51787i −0.114140 + 0.0874885i
\(302\) −1.24706 0.719988i −0.0717600 0.0414307i
\(303\) −11.0766 9.11387i −0.636334 0.523578i
\(304\) −1.54563 + 0.892369i −0.0886479 + 0.0511809i
\(305\) 9.60761i 0.550130i
\(306\) −0.720982 + 2.10638i −0.0412158 + 0.120414i
\(307\) 21.7242i 1.23987i −0.784655 0.619933i \(-0.787160\pi\)
0.784655 0.619933i \(-0.212840\pi\)
\(308\) 10.3479 1.35688i 0.589626 0.0773152i
\(309\) 29.1287 + 4.84712i 1.65707 + 0.275743i
\(310\) −6.83228 + 11.8339i −0.388048 + 0.672118i
\(311\) 3.14900 5.45422i 0.178563 0.309281i −0.762825 0.646605i \(-0.776188\pi\)
0.941389 + 0.337324i \(0.109522\pi\)
\(312\) 0.809856 4.86681i 0.0458491 0.275529i
\(313\) −19.2423 + 11.1095i −1.08764 + 0.627948i −0.932946 0.360015i \(-0.882771\pi\)
−0.154691 + 0.987963i \(0.549438\pi\)
\(314\) −16.6071 −0.937192
\(315\) 29.2759 9.83821i 1.64951 0.554320i
\(316\) −3.63613 −0.204548
\(317\) 13.5632 7.83070i 0.761784 0.439816i −0.0681519 0.997675i \(-0.521710\pi\)
0.829936 + 0.557859i \(0.188377\pi\)
\(318\) 0 0
\(319\) −5.69536 + 9.86466i −0.318879 + 0.552315i
\(320\) −1.94556 + 3.36980i −0.108760 + 0.188378i
\(321\) −8.71769 23.2518i −0.486574 1.29779i
\(322\) 2.15096 + 16.4038i 0.119868 + 0.914145i
\(323\) 1.32448i 0.0736963i
\(324\) −7.11229 5.51501i −0.395127 0.306389i
\(325\) 28.8859i 1.60230i
\(326\) 10.7348 6.19773i 0.594545 0.343260i
\(327\) −18.2940 + 6.85888i −1.01166 + 0.379297i
\(328\) −9.08816 5.24705i −0.501810 0.289720i
\(329\) −4.58870 + 3.51726i −0.252983 + 0.193913i
\(330\) −20.5292 16.8915i −1.13010 0.929847i
\(331\) −0.636129 1.10181i −0.0349648 0.0605608i 0.848013 0.529975i \(-0.177799\pi\)
−0.882978 + 0.469414i \(0.844465\pi\)
\(332\) −8.05995 −0.442347
\(333\) 6.78515 5.92004i 0.371824 0.324416i
\(334\) 11.7217i 0.641386i
\(335\) 26.1663 + 45.3214i 1.42962 + 2.47617i
\(336\) −2.42686 + 3.88721i −0.132396 + 0.212064i
\(337\) −3.78001 + 6.54717i −0.205910 + 0.356647i −0.950422 0.310962i \(-0.899349\pi\)
0.744512 + 0.667609i \(0.232682\pi\)
\(338\) 4.23147 + 2.44304i 0.230162 + 0.132884i
\(339\) 16.7990 + 2.79542i 0.912397 + 0.151826i
\(340\) −1.44383 2.50079i −0.0783027 0.135624i
\(341\) 13.8525 0.750153
\(342\) 5.06568 + 1.73391i 0.273921 + 0.0937592i
\(343\) −7.06081 17.1215i −0.381248 0.924473i
\(344\) −0.816699 + 0.471521i −0.0440334 + 0.0254227i
\(345\) 26.7769 32.5434i 1.44162 1.75208i
\(346\) 14.5241 + 8.38548i 0.780820 + 0.450806i
\(347\) 19.1470 + 11.0545i 1.02787 + 0.593439i 0.916373 0.400326i \(-0.131103\pi\)
0.111494 + 0.993765i \(0.464436\pi\)
\(348\) −1.75587 4.68324i −0.0941244 0.251048i
\(349\) −12.7682 + 7.37173i −0.683467 + 0.394600i −0.801160 0.598450i \(-0.795783\pi\)
0.117693 + 0.993050i \(0.462450\pi\)
\(350\) −10.2802 + 24.7823i −0.549501 + 1.32467i
\(351\) −12.5989 + 7.76816i −0.672478 + 0.414634i
\(352\) 3.94462 0.210249
\(353\) 8.63881 + 14.9629i 0.459798 + 0.796393i 0.998950 0.0458154i \(-0.0145886\pi\)
−0.539152 + 0.842208i \(0.681255\pi\)
\(354\) −0.0128511 0.0342763i −0.000683027 0.00182176i
\(355\) −6.54767 3.78030i −0.347514 0.200638i
\(356\) −4.63323 + 8.02499i −0.245561 + 0.425324i
\(357\) −1.59777 3.00210i −0.0845630 0.158888i
\(358\) 2.88766 + 5.00158i 0.152618 + 0.264342i
\(359\) 10.9129i 0.575963i 0.957636 + 0.287982i \(0.0929842\pi\)
−0.957636 + 0.287982i \(0.907016\pi\)
\(360\) 11.4548 2.24831i 0.603720 0.118496i
\(361\) 15.8147 0.832353
\(362\) −2.76655 4.79180i −0.145407 0.251852i
\(363\) −1.29646 + 7.79106i −0.0680466 + 0.408925i
\(364\) 4.58478 + 5.98141i 0.240308 + 0.313511i
\(365\) 16.3599 + 9.44541i 0.856318 + 0.494395i
\(366\) −0.701995 + 4.21862i −0.0366939 + 0.220511i
\(367\) 30.9407 17.8636i 1.61509 0.932472i 0.626923 0.779081i \(-0.284314\pi\)
0.988166 0.153391i \(-0.0490194\pi\)
\(368\) 6.25311i 0.325966i
\(369\) 6.06355 + 30.8929i 0.315656 + 1.60822i
\(370\) 11.6795i 0.607187i
\(371\) 0 0
\(372\) −3.86466 + 4.69694i −0.200373 + 0.243525i
\(373\) 16.0300 27.7648i 0.830003 1.43761i −0.0680328 0.997683i \(-0.521672\pi\)
0.898035 0.439923i \(-0.144994\pi\)
\(374\) −1.46368 + 2.53518i −0.0756853 + 0.131091i
\(375\) 32.4416 12.1632i 1.67528 0.628105i
\(376\) −1.89248 + 1.09263i −0.0975974 + 0.0563479i
\(377\) −8.22549 −0.423634
\(378\) 13.5737 2.18079i 0.698154 0.112168i
\(379\) 34.8891 1.79214 0.896068 0.443918i \(-0.146412\pi\)
0.896068 + 0.443918i \(0.146412\pi\)
\(380\) −6.01422 + 3.47231i −0.308523 + 0.178126i
\(381\) −4.77561 + 1.79050i −0.244662 + 0.0917301i
\(382\) 3.10686 5.38124i 0.158961 0.275328i
\(383\) −8.76711 + 15.1851i −0.447978 + 0.775921i −0.998254 0.0590616i \(-0.981189\pi\)
0.550276 + 0.834983i \(0.314523\pi\)
\(384\) −1.10050 + 1.33750i −0.0561596 + 0.0682539i
\(385\) 40.2649 5.27976i 2.05209 0.269082i
\(386\) 7.80542i 0.397286i
\(387\) 2.67667 + 0.916186i 0.136063 + 0.0465723i
\(388\) 18.8196i 0.955421i
\(389\) −6.60060 + 3.81086i −0.334664 + 0.193218i −0.657910 0.753097i \(-0.728559\pi\)
0.323246 + 0.946315i \(0.395226\pi\)
\(390\) 3.15124 18.9373i 0.159569 0.958929i
\(391\) −4.01882 2.32027i −0.203241 0.117341i
\(392\) −1.80473 6.76335i −0.0911527 0.341601i
\(393\) −4.28317 + 25.7396i −0.216057 + 1.29839i
\(394\) −6.38687 11.0624i −0.321766 0.557315i
\(395\) −14.1486 −0.711893
\(396\) −7.78001 8.91693i −0.390960 0.448093i
\(397\) 37.6469i 1.88944i −0.327873 0.944722i \(-0.606332\pi\)
0.327873 0.944722i \(-0.393668\pi\)
\(398\) −0.906005 1.56925i −0.0454139 0.0786592i
\(399\) −7.21984 + 3.84252i −0.361444 + 0.192367i
\(400\) −5.07039 + 8.78217i −0.253519 + 0.439108i
\(401\) 18.5689 + 10.7207i 0.927284 + 0.535368i 0.885952 0.463778i \(-0.153506\pi\)
0.0413326 + 0.999145i \(0.486840\pi\)
\(402\) 8.17794 + 21.8121i 0.407879 + 1.08789i
\(403\) 5.00158 + 8.66299i 0.249146 + 0.431534i
\(404\) 8.28158 0.412024
\(405\) −27.6747 21.4595i −1.37517 1.06633i
\(406\) 7.05696 + 2.92737i 0.350231 + 0.145283i
\(407\) 10.2538 5.92004i 0.508262 0.293445i
\(408\) −0.451251 1.20357i −0.0223402 0.0595857i
\(409\) −25.6086 14.7851i −1.26627 0.731079i −0.291986 0.956423i \(-0.594316\pi\)
−0.974279 + 0.225344i \(0.927649\pi\)
\(410\) −35.3631 20.4169i −1.74646 1.00832i
\(411\) 17.2998 21.0254i 0.853335 1.03711i
\(412\) −14.7646 + 8.52435i −0.727400 + 0.419964i
\(413\) 0.0516494 + 0.0214252i 0.00254150 + 0.00105427i
\(414\) 14.1353 12.3331i 0.694714 0.606137i
\(415\) −31.3622 −1.53951
\(416\) 1.42425 + 2.46687i 0.0698294 + 0.120948i
\(417\) −5.64977 0.940143i −0.276670 0.0460390i
\(418\) 6.09692 + 3.52006i 0.298210 + 0.172172i
\(419\) 3.56481 6.17443i 0.174152 0.301641i −0.765715 0.643180i \(-0.777615\pi\)
0.939868 + 0.341539i \(0.110948\pi\)
\(420\) −9.44318 + 15.1256i −0.460780 + 0.738052i
\(421\) −2.31007 4.00115i −0.112586 0.195004i 0.804226 0.594323i \(-0.202580\pi\)
−0.916812 + 0.399319i \(0.869247\pi\)
\(422\) 3.77532i 0.183780i
\(423\) 6.20248 + 2.12302i 0.301575 + 0.103225i
\(424\) 0 0
\(425\) −3.76282 6.51739i −0.182524 0.316140i
\(426\) −2.59882 2.13832i −0.125913 0.103602i
\(427\) −3.97415 5.18477i −0.192323 0.250908i
\(428\) 12.4161 + 7.16846i 0.600157 + 0.346501i
\(429\) −18.2230 + 6.83228i −0.879815 + 0.329866i
\(430\) −3.17787 + 1.83474i −0.153250 + 0.0884792i
\(431\) 4.00771i 0.193045i −0.995331 0.0965223i \(-0.969228\pi\)
0.995331 0.0965223i \(-0.0307719\pi\)
\(432\) 5.19398 0.150252i 0.249895 0.00722900i
\(433\) 29.4125i 1.41348i 0.707475 + 0.706738i \(0.249834\pi\)
−0.707475 + 0.706738i \(0.750166\pi\)
\(434\) −1.20797 9.21232i −0.0579845 0.442205i
\(435\) −6.83228 18.2230i −0.327583 0.873726i
\(436\) 5.63998 9.76874i 0.270106 0.467838i
\(437\) −5.58008 + 9.66498i −0.266931 + 0.462339i
\(438\) 6.49337 + 5.34277i 0.310265 + 0.255287i
\(439\) 18.5130 10.6885i 0.883575 0.510133i 0.0117398 0.999931i \(-0.496263\pi\)
0.871836 + 0.489799i \(0.162930\pi\)
\(440\) 15.3490 0.731733
\(441\) −11.7293 + 17.4191i −0.558537 + 0.829480i
\(442\) −2.11392 −0.100549
\(443\) 5.05227 2.91693i 0.240041 0.138587i −0.375155 0.926962i \(-0.622410\pi\)
0.615195 + 0.788375i \(0.289077\pi\)
\(444\) −0.853380 + 5.12837i −0.0404996 + 0.243381i
\(445\) −18.0284 + 31.2262i −0.854630 + 1.48026i
\(446\) −6.38910 + 11.0662i −0.302533 + 0.524002i
\(447\) −18.7968 3.12786i −0.889059 0.147943i
\(448\) −0.343982 2.62329i −0.0162516 0.123939i
\(449\) 22.5823i 1.06573i −0.846202 0.532863i \(-0.821116\pi\)
0.846202 0.532863i \(-0.178884\pi\)
\(450\) 29.8527 5.85939i 1.40727 0.276215i
\(451\) 41.3953i 1.94923i
\(452\) −8.51501 + 4.91614i −0.400512 + 0.231236i
\(453\) −1.92597 1.58469i −0.0904898 0.0744553i
\(454\) 17.3051 + 9.99110i 0.812168 + 0.468906i
\(455\) 17.8399 + 23.2743i 0.836347 + 1.09112i
\(456\) −2.89450 + 1.08523i −0.135548 + 0.0508203i
\(457\) −19.9311 34.5218i −0.932340 1.61486i −0.779310 0.626638i \(-0.784430\pi\)
−0.153029 0.988222i \(-0.548903\pi\)
\(458\) −10.1314 −0.473408
\(459\) −1.83070 + 3.39388i −0.0854500 + 0.158413i
\(460\) 24.3316i 1.13447i
\(461\) 3.68254 + 6.37834i 0.171513 + 0.297069i 0.938949 0.344056i \(-0.111801\pi\)
−0.767436 + 0.641125i \(0.778468\pi\)
\(462\) 18.0658 + 0.623714i 0.840495 + 0.0290178i
\(463\) −14.3457 + 24.8475i −0.666702 + 1.15476i 0.312119 + 0.950043i \(0.398961\pi\)
−0.978821 + 0.204718i \(0.934372\pi\)
\(464\) 2.50079 + 1.44383i 0.116096 + 0.0670282i
\(465\) −15.0378 + 18.2763i −0.697363 + 0.847545i
\(466\) −3.65503 6.33070i −0.169316 0.293264i
\(467\) 13.6704 0.632590 0.316295 0.948661i \(-0.397561\pi\)
0.316295 + 0.948661i \(0.397561\pi\)
\(468\) 2.76737 8.08498i 0.127922 0.373728i
\(469\) −32.8677 13.6342i −1.51769 0.629569i
\(470\) −7.36387 + 4.25153i −0.339670 + 0.196109i
\(471\) −28.3741 4.72157i −1.30741 0.217558i
\(472\) 0.0183031 + 0.0105673i 0.000842469 + 0.000486400i
\(473\) 3.22157 + 1.85997i 0.148128 + 0.0855216i
\(474\) −6.21253 1.03379i −0.285351 0.0474835i
\(475\) −15.6739 + 9.04931i −0.719166 + 0.415211i
\(476\) 1.81361 + 0.752321i 0.0831266 + 0.0344826i
\(477\) 0 0
\(478\) −8.40988 −0.384659
\(479\) −5.20537 9.01596i −0.237839 0.411950i 0.722255 0.691627i \(-0.243106\pi\)
−0.960094 + 0.279677i \(0.909773\pi\)
\(480\) −4.28217 + 5.20436i −0.195453 + 0.237545i
\(481\) 7.40449 + 4.27499i 0.337616 + 0.194923i
\(482\) 4.47607 7.75277i 0.203879 0.353129i
\(483\) −0.988727 + 28.6383i −0.0449886 + 1.30309i
\(484\) −2.28001 3.94910i −0.103637 0.179504i
\(485\) 73.2292i 3.32517i
\(486\) −10.5838 11.4448i −0.480090 0.519147i
\(487\) 2.33850 0.105968 0.0529838 0.998595i \(-0.483127\pi\)
0.0529838 + 0.998595i \(0.483127\pi\)
\(488\) −1.23456 2.13832i −0.0558858 0.0967970i
\(489\) 20.1031 7.53716i 0.909092 0.340842i
\(490\) −7.02242 26.3170i −0.317240 1.18888i
\(491\) −29.3448 16.9422i −1.32431 0.764591i −0.339898 0.940462i \(-0.610392\pi\)
−0.984413 + 0.175871i \(0.943726\pi\)
\(492\) −14.0359 11.5487i −0.632785 0.520658i
\(493\) −1.85588 + 1.07149i −0.0835845 + 0.0482575i
\(494\) 5.08381i 0.228732i
\(495\) −30.2729 34.6968i −1.36067 1.55950i
\(496\) 3.51174i 0.157682i
\(497\) 5.09717 0.668371i 0.228639 0.0299805i
\(498\) −13.7709 2.29153i −0.617088 0.102686i
\(499\) 8.30223 14.3799i 0.371659 0.643732i −0.618162 0.786051i \(-0.712123\pi\)
0.989821 + 0.142319i \(0.0454558\pi\)
\(500\) −10.0017 + 17.3234i −0.447288 + 0.774726i
\(501\) 3.33262 20.0273i 0.148890 0.894753i
\(502\) −10.9494 + 6.32161i −0.488694 + 0.282147i
\(503\) 35.3661 1.57690 0.788449 0.615100i \(-0.210885\pi\)
0.788449 + 0.615100i \(0.210885\pi\)
\(504\) −5.25160 + 5.95153i −0.233925 + 0.265102i
\(505\) 32.2246 1.43398
\(506\) 21.3615 12.3331i 0.949635 0.548272i
\(507\) 6.53513 + 5.37713i 0.290235 + 0.238807i
\(508\) 1.47231 2.55012i 0.0653232 0.113143i
\(509\) 18.5291 32.0933i 0.821287 1.42251i −0.0834371 0.996513i \(-0.526590\pi\)
0.904724 0.425998i \(-0.140077\pi\)
\(510\) −1.75587 4.68324i −0.0777511 0.207377i
\(511\) −12.7357 + 1.66998i −0.563396 + 0.0738757i
\(512\) 1.00000i 0.0441942i
\(513\) 8.16204 + 4.40271i 0.360363 + 0.194384i
\(514\) 16.3066i 0.719252i
\(515\) −57.4507 + 33.1692i −2.53158 + 1.46161i
\(516\) −1.52943 + 0.573425i −0.0673296 + 0.0252436i
\(517\) 7.46513 + 4.30999i 0.328316 + 0.189553i
\(518\) −4.83117 6.30286i −0.212270 0.276932i
\(519\) 22.4311 + 18.4564i 0.984618 + 0.810147i
\(520\) 5.54191 + 9.59886i 0.243029 + 0.420938i
\(521\) −1.78309 −0.0781187 −0.0390594 0.999237i \(-0.512436\pi\)
−0.0390594 + 0.999237i \(0.512436\pi\)
\(522\) −1.66851 8.50079i −0.0730286 0.372069i
\(523\) 24.0538i 1.05180i 0.850546 + 0.525901i \(0.176272\pi\)
−0.850546 + 0.525901i \(0.823728\pi\)
\(524\) −7.53255 13.0468i −0.329061 0.569950i
\(525\) −24.6102 + 39.4193i −1.07408 + 1.72040i
\(526\) −11.8608 + 20.5434i −0.517154 + 0.895737i
\(527\) 2.25696 + 1.30306i 0.0983149 + 0.0567621i
\(528\) 6.73961 + 1.12150i 0.293304 + 0.0488069i
\(529\) 8.05069 + 13.9442i 0.350030 + 0.606270i
\(530\) 0 0
\(531\) −0.0122117 0.0622167i −0.000529942 0.00269998i
\(532\) 1.80928 4.36160i 0.0784422 0.189099i
\(533\) −25.8876 + 14.9462i −1.12132 + 0.647392i
\(534\) −10.1977 + 12.3939i −0.441299 + 0.536336i
\(535\) 48.3126 + 27.8933i 2.08874 + 1.20593i
\(536\) −11.6474 6.72463i −0.503091 0.290460i
\(537\) 3.51174 + 9.36647i 0.151543 + 0.404193i
\(538\) −6.30716 + 3.64144i −0.271921 + 0.156994i
\(539\) −19.5451 + 19.5046i −0.841866 + 0.840124i
\(540\) 20.2104 0.584648i 0.869716 0.0251592i
\(541\) 30.0032 1.28994 0.644968 0.764209i \(-0.276871\pi\)
0.644968 + 0.764209i \(0.276871\pi\)
\(542\) −11.3440 19.6483i −0.487265 0.843968i
\(543\) −3.36445 8.97363i −0.144382 0.385095i
\(544\) 0.642692 + 0.371058i 0.0275552 + 0.0159090i
\(545\) 21.9458 38.0113i 0.940056 1.62822i
\(546\) 6.13278 + 11.5231i 0.262459 + 0.493142i
\(547\) −10.7816 18.6743i −0.460987 0.798454i 0.538023 0.842930i \(-0.319171\pi\)
−0.999010 + 0.0444765i \(0.985838\pi\)
\(548\) 15.7199i 0.671523i
\(549\) −2.39880 + 7.00817i −0.102378 + 0.299102i
\(550\) 40.0015 1.70567
\(551\) 2.57686 + 4.46325i 0.109778 + 0.190141i
\(552\) −1.77782 + 10.6838i −0.0756692 + 0.454733i
\(553\) 7.63532 5.85251i 0.324687 0.248874i
\(554\) 20.9298 + 12.0838i 0.889221 + 0.513392i
\(555\) −3.32060 + 19.9551i −0.140952 + 0.847045i
\(556\) 2.86373 1.65337i 0.121449 0.0701187i
\(557\) 36.9477i 1.56552i −0.622321 0.782762i \(-0.713810\pi\)
0.622321 0.782762i \(-0.286190\pi\)
\(558\) −7.93838 + 6.92623i −0.336058 + 0.293211i
\(559\) 2.68625i 0.113616i
\(560\) −1.33847 10.2075i −0.0565608 0.431347i
\(561\) −3.22157 + 3.91535i −0.136015 + 0.165306i
\(562\) 2.37423 4.11229i 0.100151 0.173467i
\(563\) −7.58422 + 13.1363i −0.319637 + 0.553627i −0.980412 0.196957i \(-0.936894\pi\)
0.660776 + 0.750584i \(0.270228\pi\)
\(564\) −3.54406 + 1.32876i −0.149232 + 0.0559509i
\(565\) −33.1329 + 19.1293i −1.39391 + 0.804774i
\(566\) 29.3853 1.23516
\(567\) 23.8114 + 0.133128i 0.999984 + 0.00559087i
\(568\) 1.94304 0.0815282
\(569\) −31.8084 + 18.3646i −1.33348 + 0.769885i −0.985831 0.167740i \(-0.946353\pi\)
−0.347648 + 0.937625i \(0.613020\pi\)
\(570\) −11.2628 + 4.22274i −0.471749 + 0.176871i
\(571\) −5.61387 + 9.72351i −0.234933 + 0.406916i −0.959253 0.282548i \(-0.908820\pi\)
0.724320 + 0.689464i \(0.242154\pi\)
\(572\) 5.61811 9.73085i 0.234905 0.406867i
\(573\) 6.83819 8.31085i 0.285670 0.347191i
\(574\) 27.5291 3.60978i 1.14904 0.150669i
\(575\) 63.4114i 2.64444i
\(576\) −2.26053 + 1.97231i −0.0941887 + 0.0821796i
\(577\) 36.5515i 1.52166i −0.648952 0.760829i \(-0.724792\pi\)
0.648952 0.760829i \(-0.275208\pi\)
\(578\) 14.2455 8.22463i 0.592534 0.342100i
\(579\) −2.21916 + 13.3360i −0.0922253 + 0.554226i
\(580\) 9.73085 + 5.61811i 0.404052 + 0.233279i
\(581\) 16.9247 12.9729i 0.702154 0.538205i
\(582\) 5.35061 32.1544i 0.221790 1.33284i
\(583\) 0 0
\(584\) −4.85486 −0.200896
\(585\) 10.7682 31.4596i 0.445209 1.30069i
\(586\) 6.62413i 0.273640i
\(587\) −4.99738 8.65571i −0.206264 0.357259i 0.744271 0.667878i \(-0.232797\pi\)
−0.950535 + 0.310619i \(0.899464\pi\)
\(588\) −1.16059 12.0687i −0.0478621 0.497704i
\(589\) 3.13376 5.42784i 0.129124 0.223650i
\(590\) 0.0712195 + 0.0411186i 0.00293206 + 0.00169283i
\(591\) −7.76719 20.7166i −0.319499 0.852166i
\(592\) −1.50079 2.59944i −0.0616820 0.106836i
\(593\) −7.78223 −0.319578 −0.159789 0.987151i \(-0.551081\pi\)
−0.159789 + 0.987151i \(0.551081\pi\)
\(594\) −10.7574 17.4470i −0.441382 0.715860i
\(595\) 7.05696 + 2.92737i 0.289307 + 0.120010i
\(596\) 9.52765 5.50079i 0.390268 0.225321i
\(597\) −1.10181 2.93873i −0.0450940 0.120274i
\(598\) 15.4256 + 8.90597i 0.630800 + 0.364192i
\(599\) 21.6614 + 12.5062i 0.885061 + 0.510990i 0.872324 0.488929i \(-0.162612\pi\)
0.0127373 + 0.999919i \(0.495945\pi\)
\(600\) −11.1599 + 13.5633i −0.455601 + 0.553718i
\(601\) −25.9925 + 15.0068i −1.06026 + 0.612139i −0.925503 0.378740i \(-0.876357\pi\)
−0.134753 + 0.990879i \(0.543024\pi\)
\(602\) 0.956010 2.30464i 0.0389640 0.0939300i
\(603\) 7.77106 + 39.5924i 0.316462 + 1.61233i
\(604\) 1.43998 0.0585918
\(605\) −8.87179 15.3664i −0.360689 0.624732i
\(606\) 14.1496 + 2.35454i 0.574786 + 0.0956467i
\(607\) −3.96882 2.29140i −0.161089 0.0930050i 0.417288 0.908774i \(-0.362981\pi\)
−0.578378 + 0.815769i \(0.696314\pi\)
\(608\) 0.892369 1.54563i 0.0361903 0.0626835i
\(609\) 11.2249 + 7.00794i 0.454857 + 0.283976i
\(610\) −4.80380 8.32043i −0.194500 0.336884i
\(611\) 6.22468i 0.251823i
\(612\) −0.428799 2.18467i −0.0173332 0.0883099i
\(613\) 30.5522 1.23399 0.616996 0.786966i \(-0.288349\pi\)
0.616996 + 0.786966i \(0.288349\pi\)
\(614\) 10.8621 + 18.8137i 0.438359 + 0.759259i
\(615\) −54.6151 44.9375i −2.20229 1.81206i
\(616\) −8.28311 + 6.34904i −0.333736 + 0.255810i
\(617\) −28.2484 16.3092i −1.13724 0.656585i −0.191493 0.981494i \(-0.561333\pi\)
−0.945745 + 0.324909i \(0.894666\pi\)
\(618\) −27.6497 + 10.3666i −1.11224 + 0.417006i
\(619\) 17.3244 10.0023i 0.696327 0.402024i −0.109651 0.993970i \(-0.534973\pi\)
0.805978 + 0.591946i \(0.201640\pi\)
\(620\) 13.6646i 0.548782i
\(621\) 27.6575 17.0529i 1.10986 0.684311i
\(622\) 6.29800i 0.252527i
\(623\) −3.18749 24.3087i −0.127704 0.973906i
\(624\) 1.73205 + 4.61971i 0.0693375 + 0.184937i
\(625\) −13.5657 + 23.4965i −0.542628 + 0.939859i
\(626\) 11.1095 19.2423i 0.444026 0.769076i
\(627\) 9.41614 + 7.74763i 0.376044 + 0.309411i
\(628\) 14.3822 8.30354i 0.573910 0.331347i
\(629\) 2.22752 0.0888171
\(630\) −20.4346 + 23.1581i −0.814133 + 0.922640i
\(631\) 6.09634 0.242692 0.121346 0.992610i \(-0.461279\pi\)
0.121346 + 0.992610i \(0.461279\pi\)
\(632\) 3.14898 1.81806i 0.125260 0.0723187i
\(633\) 1.07336 6.45036i 0.0426624 0.256379i
\(634\) −7.83070 + 13.5632i −0.310997 + 0.538663i
\(635\) 5.72893 9.92279i 0.227345 0.393774i
\(636\) 0 0
\(637\) −19.2547 5.18065i −0.762898 0.205265i
\(638\) 11.3907i 0.450963i
\(639\) −3.83228 4.39230i −0.151603 0.173757i
\(640\) 3.89111i 0.153810i
\(641\) 28.9612 16.7207i 1.14390 0.660429i 0.196504 0.980503i \(-0.437041\pi\)
0.947393 + 0.320074i \(0.103708\pi\)
\(642\) 19.1756 + 15.7778i 0.756801 + 0.622699i
\(643\) 16.6022 + 9.58527i 0.654726 + 0.378006i 0.790264 0.612766i \(-0.209943\pi\)
−0.135539 + 0.990772i \(0.543276\pi\)
\(644\) −10.0647 13.1306i −0.396603 0.517418i
\(645\) −5.95121 + 2.23126i −0.234328 + 0.0878559i
\(646\) 0.662242 + 1.14704i 0.0260556 + 0.0451296i
\(647\) −44.6049 −1.75360 −0.876800 0.480854i \(-0.840327\pi\)
−0.876800 + 0.480854i \(0.840327\pi\)
\(648\) 8.91693 + 1.21999i 0.350290 + 0.0479257i
\(649\) 0.0833680i 0.00327248i
\(650\) 14.4430 + 25.0159i 0.566500 + 0.981206i
\(651\) 0.555267 16.0832i 0.0217626 0.630351i
\(652\) −6.19773 + 10.7348i −0.242722 + 0.420407i
\(653\) −0.564755 0.326061i −0.0221006 0.0127598i 0.488909 0.872335i \(-0.337395\pi\)
−0.511010 + 0.859575i \(0.670728\pi\)
\(654\) 12.4136 15.0869i 0.485410 0.589946i
\(655\) −29.3100 50.7664i −1.14524 1.98361i
\(656\) 10.4941 0.409726
\(657\) 9.57529 + 10.9746i 0.373568 + 0.428158i
\(658\) 2.21530 5.34039i 0.0863614 0.208190i
\(659\) 26.2738 15.1692i 1.02348 0.590908i 0.108372 0.994110i \(-0.465436\pi\)
0.915111 + 0.403202i \(0.132103\pi\)
\(660\) 26.2246 + 4.36387i 1.02079 + 0.169863i
\(661\) −11.1004 6.40881i −0.431755 0.249274i 0.268339 0.963325i \(-0.413525\pi\)
−0.700094 + 0.714051i \(0.746859\pi\)
\(662\) 1.10181 + 0.636129i 0.0428230 + 0.0247239i
\(663\) −3.61175 0.601008i −0.140269 0.0233412i
\(664\) 6.98012 4.02998i 0.270881 0.156393i
\(665\) 7.04011 16.9715i 0.273004 0.658126i
\(666\) −2.91610 + 8.51948i −0.112996 + 0.330123i
\(667\) 18.0569 0.699165
\(668\) 5.86087 + 10.1513i 0.226764 + 0.392767i
\(669\) −14.0624 + 17.0908i −0.543683 + 0.660769i
\(670\) −45.3214 26.1663i −1.75092 1.01089i
\(671\) −4.86986 + 8.43484i −0.187999 + 0.325623i
\(672\) 0.158118 4.57985i 0.00609952 0.176671i
\(673\) 11.2246 + 19.4416i 0.432678 + 0.749420i 0.997103 0.0760644i \(-0.0242355\pi\)
−0.564425 + 0.825484i \(0.690902\pi\)
\(674\) 7.56002i 0.291201i
\(675\) 52.6710 1.52367i 2.02731 0.0586461i
\(676\) −4.88608 −0.187926
\(677\) 25.5903 + 44.3237i 0.983516 + 1.70350i 0.648353 + 0.761340i \(0.275458\pi\)
0.335163 + 0.942160i \(0.391209\pi\)
\(678\) −15.9461 + 5.97860i −0.612406 + 0.229607i
\(679\) 30.2910 + 39.5183i 1.16246 + 1.51657i
\(680\) 2.50079 + 1.44383i 0.0959009 + 0.0553684i
\(681\) 26.7262 + 21.9904i 1.02415 + 0.842673i
\(682\) −11.9966 + 6.92623i −0.459373 + 0.265219i
\(683\) 14.5616i 0.557184i −0.960410 0.278592i \(-0.910132\pi\)
0.960410 0.278592i \(-0.0898677\pi\)
\(684\) −5.25397 + 1.03123i −0.200890 + 0.0394301i
\(685\) 61.1681i 2.33711i
\(686\) 14.6756 + 11.2972i 0.560316 + 0.431330i
\(687\) −17.3100 2.88045i −0.660419 0.109896i
\(688\) 0.471521 0.816699i 0.0179766 0.0311363i
\(689\) 0 0
\(690\) −6.91772 + 41.5719i −0.263353 + 1.58261i
\(691\) −21.1757 + 12.2258i −0.805560 + 0.465090i −0.845412 0.534115i \(-0.820645\pi\)
0.0398517 + 0.999206i \(0.487311\pi\)
\(692\) −16.7710 −0.637536
\(693\) 30.6890 + 6.20193i 1.16578 + 0.235592i
\(694\) −22.1091 −0.839250
\(695\) 11.1431 6.43347i 0.422682 0.244035i
\(696\) 3.86224 + 3.17787i 0.146398 + 0.120457i
\(697\) −3.89393 + 6.74448i −0.147493 + 0.255465i
\(698\) 7.37173 12.7682i 0.279024 0.483284i
\(699\) −4.44495 11.8555i −0.168123 0.448417i
\(700\) −3.48824 26.6022i −0.131843 1.00547i
\(701\) 2.21697i 0.0837337i −0.999123 0.0418669i \(-0.986669\pi\)
0.999123 0.0418669i \(-0.0133305\pi\)
\(702\) 7.02686 13.0269i 0.265212 0.491667i
\(703\) 5.35703i 0.202044i
\(704\) −3.41614 + 1.97231i −0.128751 + 0.0743342i
\(705\) −13.7903 + 5.17036i −0.519375 + 0.194727i
\(706\) −14.9629 8.63881i −0.563135 0.325126i
\(707\) −17.3901 + 13.3296i −0.654021 + 0.501310i
\(708\) 0.0282675 + 0.0232586i 0.00106236 + 0.000874112i
\(709\) 12.1962 + 21.1244i 0.458036 + 0.793342i 0.998857 0.0477959i \(-0.0152197\pi\)
−0.540821 + 0.841138i \(0.681886\pi\)
\(710\) 7.56060 0.283744
\(711\) −10.3206 3.53258i −0.387051 0.132482i
\(712\) 9.26646i 0.347275i
\(713\) −10.9796 19.0173i −0.411190 0.712203i
\(714\) 2.88476 + 1.80101i 0.107959 + 0.0674012i
\(715\) 21.8607 37.8639i 0.817544 1.41603i
\(716\) −5.00158 2.88766i −0.186918 0.107917i
\(717\) −14.3688 2.39102i −0.536611 0.0892941i
\(718\) −5.45647 9.45088i −0.203634 0.352704i
\(719\) −2.22752 −0.0830725 −0.0415363 0.999137i \(-0.513225\pi\)
−0.0415363 + 0.999137i \(0.513225\pi\)
\(720\) −8.79598 + 7.67448i −0.327807 + 0.286011i
\(721\) 17.2831 41.6641i 0.643657 1.55165i
\(722\) −13.6959 + 7.90736i −0.509710 + 0.294281i
\(723\) 9.85181 11.9735i 0.366393 0.445298i
\(724\) 4.79180 + 2.76655i 0.178086 + 0.102818i
\(725\) 25.3599 + 14.6416i 0.941844 + 0.543774i
\(726\) −2.77276 7.39549i −0.102907 0.274472i
\(727\) 10.4880 6.05523i 0.388977 0.224576i −0.292740 0.956192i \(-0.594567\pi\)
0.681717 + 0.731616i \(0.261234\pi\)
\(728\) −6.96124 2.88766i −0.258001 0.107024i
\(729\) −14.8291 22.5632i −0.549227 0.835673i
\(730\) −18.8908 −0.699180
\(731\) 0.349924 + 0.606086i 0.0129424 + 0.0224169i
\(732\) −1.50137 4.00443i −0.0554921 0.148008i
\(733\) 13.5673 + 7.83306i 0.501118 + 0.289321i 0.729175 0.684327i \(-0.239904\pi\)
−0.228057 + 0.973648i \(0.573237\pi\)
\(734\) −17.8636 + 30.9407i −0.659357 + 1.14204i
\(735\) −4.51601 46.9606i −0.166575 1.73217i
\(736\) −3.12656 5.41535i −0.115246 0.199613i
\(737\) 53.0522i 1.95420i
\(738\) −20.6976 23.7222i −0.761890 0.873228i
\(739\) −8.10454 −0.298130 −0.149065 0.988827i \(-0.547626\pi\)
−0.149065 + 0.988827i \(0.547626\pi\)
\(740\) −5.83974 10.1147i −0.214673 0.371825i
\(741\) −1.44538 + 8.68599i −0.0530974 + 0.319088i
\(742\) 0 0
\(743\) −10.5429 6.08697i −0.386783 0.223309i 0.293982 0.955811i \(-0.405019\pi\)
−0.680765 + 0.732502i \(0.738353\pi\)
\(744\) 0.998423 6.00000i 0.0366040 0.219971i
\(745\) 37.0732 21.4042i 1.35826 0.784189i
\(746\) 32.0600i 1.17380i
\(747\) −22.8769 7.83042i −0.837020 0.286500i
\(748\) 2.92737i 0.107035i
\(749\) −37.6100 + 4.93164i −1.37424 + 0.180198i
\(750\) −22.0136 + 26.7544i −0.803824 + 0.976934i
\(751\) −17.3062 + 29.9752i −0.631511 + 1.09381i 0.355732 + 0.934588i \(0.384232\pi\)
−0.987243 + 0.159221i \(0.949102\pi\)
\(752\) 1.09263 1.89248i 0.0398440 0.0690118i
\(753\) −20.5049 + 7.68782i −0.747240 + 0.280160i
\(754\) 7.12348 4.11274i 0.259422 0.149777i
\(755\) 5.60311 0.203918
\(756\) −10.6647 + 8.67545i −0.387873 + 0.315523i
\(757\) −39.0553 −1.41949 −0.709744 0.704459i \(-0.751190\pi\)
−0.709744 + 0.704459i \(0.751190\pi\)
\(758\) −30.2149 + 17.4446i −1.09745 + 0.633615i
\(759\) 40.0038 14.9985i 1.45204 0.544410i
\(760\) 3.47231 6.01422i 0.125954 0.218159i
\(761\) 5.11262 8.85532i 0.185332 0.321005i −0.758356 0.651840i \(-0.773997\pi\)
0.943688 + 0.330835i \(0.107330\pi\)
\(762\) 3.24055 3.93842i 0.117393 0.142674i
\(763\) 3.88010 + 29.5907i 0.140469 + 1.07125i
\(764\) 6.21372i 0.224805i
\(765\) −1.66851 8.50079i −0.0603250 0.307347i
\(766\) 17.5342i 0.633537i
\(767\) 0.0521363 0.0301009i 0.00188253 0.00108688i
\(768\) 0.284310 1.70856i 0.0102592 0.0616522i
\(769\) −26.6746 15.4006i −0.961910 0.555359i −0.0651494 0.997876i \(-0.520752\pi\)
−0.896760 + 0.442517i \(0.854086\pi\)
\(770\) −32.2305 + 24.7048i −1.16151 + 0.890301i
\(771\) 4.63613 27.8607i 0.166966 1.00338i
\(772\) −3.90271 6.75970i −0.140462 0.243287i
\(773\) −35.7833 −1.28704 −0.643518 0.765431i \(-0.722526\pi\)
−0.643518 + 0.765431i \(0.722526\pi\)
\(774\) −2.77616 + 0.544895i −0.0997869 + 0.0195859i