Properties

Label 261.6.a.d
Level $261$
Weight $6$
Character orbit 261.a
Self dual yes
Analytic conductor $41.860$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [261,6,Mod(1,261)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(261, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("261.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 261.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,-13] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.8601769712\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 172x^{5} - 59x^{4} + 8297x^{3} + 9726x^{2} - 69644x + 47968 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 2) q^{2} + (\beta_{2} - 2 \beta_1 + 21) q^{4} + ( - \beta_{6} + \beta_{5} + \beta_{3} + \cdots - 10) q^{5} + ( - \beta_{6} - \beta_{4} - 2 \beta_{3} + \cdots + 26) q^{7} + ( - 2 \beta_{6} - 3 \beta_{5} + \cdots - 84) q^{8}+ \cdots + (59 \beta_{6} - 41 \beta_{5} + \cdots + 10778) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 13 q^{2} + 145 q^{4} - 64 q^{5} + 168 q^{7} - 588 q^{8} + 799 q^{10} - 832 q^{11} - 222 q^{13} - 1526 q^{14} + 1457 q^{16} - 1782 q^{17} + 174 q^{19} - 945 q^{20} - 5419 q^{22} - 9884 q^{23} + 11987 q^{25}+ \cdots + 85841 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - x^{6} - 172x^{5} - 59x^{4} + 8297x^{3} + 9726x^{2} - 69644x + 47968 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 49 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -37\nu^{6} - 215\nu^{5} + 5940\nu^{4} + 29115\nu^{3} - 213765\nu^{2} - 850354\nu + 609460 ) / 38492 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 3\nu^{6} + 1838\nu^{5} - 14526\nu^{4} - 215107\nu^{3} + 1177554\nu^{2} + 6549648\nu - 11598056 ) / 38492 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 115\nu^{6} - 112\nu^{5} - 17942\nu^{4} - 21311\nu^{3} + 777540\nu^{2} + 2103584\nu - 3961392 ) / 38492 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -271\nu^{6} + 766\nu^{5} + 41946\nu^{4} - 32789\nu^{3} - 1751122\nu^{2} - 1915604\nu + 6585104 ) / 76984 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 49 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{6} - 3\beta_{5} - 2\beta_{3} + 4\beta_{2} + 78\beta _1 + 90 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 8\beta_{6} + 5\beta_{5} - 3\beta_{4} - 14\beta_{3} + 95\beta_{2} + 317\beta _1 + 3803 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -172\beta_{6} - 312\beta_{5} - 2\beta_{4} - 340\beta_{3} + 563\beta_{2} + 6726\beta _1 + 14971 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 710\beta_{6} + 255\beta_{5} - 470\beta_{4} - 2886\beta_{3} + 9350\beta_{2} + 38648\beta _1 + 327740 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.38747
−7.51585
−5.12395
0.872419
1.83574
8.89724
10.4219
−10.3875 0 75.8996 35.5449 0 145.852 −456.006 0 −369.222
1.2 −9.51585 0 58.5514 −75.4366 0 −140.849 −252.660 0 717.844
1.3 −7.12395 0 18.7506 −15.0033 0 149.361 94.3878 0 106.883
1.4 −1.12758 0 −30.7286 −102.387 0 73.6139 70.7315 0 115.450
1.5 −0.164259 0 −31.9730 46.4998 0 0.553329 10.5082 0 −7.63802
1.6 6.89724 0 15.5719 103.837 0 −200.475 −113.309 0 716.189
1.7 8.42188 0 38.9280 −57.0545 0 139.944 58.3467 0 −480.506
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 261.6.a.d 7
3.b odd 2 1 87.6.a.c 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
87.6.a.c 7 3.b odd 2 1
261.6.a.d 7 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{7} + 13T_{2}^{6} - 100T_{2}^{5} - 1559T_{2}^{4} + 1345T_{2}^{3} + 44764T_{2}^{2} + 53432T_{2} + 7576 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(261))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} + 13 T^{6} + \cdots + 7576 \) Copy content Toggle raw display
$3$ \( T^{7} \) Copy content Toggle raw display
$5$ \( T^{7} + \cdots - 1134714673184 \) Copy content Toggle raw display
$7$ \( T^{7} + \cdots - 3506414197856 \) Copy content Toggle raw display
$11$ \( T^{7} + \cdots + 36\!\cdots\!28 \) Copy content Toggle raw display
$13$ \( T^{7} + \cdots + 17\!\cdots\!12 \) Copy content Toggle raw display
$17$ \( T^{7} + \cdots + 25\!\cdots\!58 \) Copy content Toggle raw display
$19$ \( T^{7} + \cdots - 16\!\cdots\!52 \) Copy content Toggle raw display
$23$ \( T^{7} + \cdots - 28\!\cdots\!12 \) Copy content Toggle raw display
$29$ \( (T - 841)^{7} \) Copy content Toggle raw display
$31$ \( T^{7} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{7} + \cdots - 10\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( T^{7} + \cdots - 41\!\cdots\!88 \) Copy content Toggle raw display
$43$ \( T^{7} + \cdots - 12\!\cdots\!68 \) Copy content Toggle raw display
$47$ \( T^{7} + \cdots - 83\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{7} + \cdots - 25\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{7} + \cdots - 12\!\cdots\!84 \) Copy content Toggle raw display
$61$ \( T^{7} + \cdots - 17\!\cdots\!28 \) Copy content Toggle raw display
$67$ \( T^{7} + \cdots + 20\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( T^{7} + \cdots - 38\!\cdots\!92 \) Copy content Toggle raw display
$73$ \( T^{7} + \cdots + 71\!\cdots\!72 \) Copy content Toggle raw display
$79$ \( T^{7} + \cdots - 45\!\cdots\!04 \) Copy content Toggle raw display
$83$ \( T^{7} + \cdots + 19\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T^{7} + \cdots - 43\!\cdots\!92 \) Copy content Toggle raw display
$97$ \( T^{7} + \cdots + 16\!\cdots\!24 \) Copy content Toggle raw display
show more
show less