Properties

Label 2-261-1.1-c5-0-41
Degree $2$
Conductor $261$
Sign $-1$
Analytic cond. $41.8601$
Root an. cond. $6.46994$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.164·2-s − 31.9·4-s + 46.4·5-s + 0.553·7-s + 10.5·8-s − 7.63·10-s − 524.·11-s + 933.·13-s − 0.0908·14-s + 1.02e3·16-s − 462.·17-s − 452.·19-s − 1.48e3·20-s + 86.1·22-s − 216.·23-s − 962.·25-s − 153.·26-s − 17.6·28-s + 841·29-s + 5.16e3·31-s − 504.·32-s + 76.0·34-s + 25.7·35-s + 9.19e3·37-s + 74.3·38-s + 488.·40-s − 1.72e4·41-s + ⋯
L(s)  = 1  − 0.0290·2-s − 0.999·4-s + 0.831·5-s + 0.00426·7-s + 0.0580·8-s − 0.0241·10-s − 1.30·11-s + 1.53·13-s − 0.000123·14-s + 0.997·16-s − 0.388·17-s − 0.287·19-s − 0.831·20-s + 0.0379·22-s − 0.0855·23-s − 0.308·25-s − 0.0444·26-s − 0.00426·28-s + 0.185·29-s + 0.965·31-s − 0.0870·32-s + 0.0112·34-s + 0.00355·35-s + 1.10·37-s + 0.00835·38-s + 0.0482·40-s − 1.60·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(261\)    =    \(3^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(41.8601\)
Root analytic conductor: \(6.46994\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 261,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 - 841T \)
good2 \( 1 + 0.164T + 32T^{2} \)
5 \( 1 - 46.4T + 3.12e3T^{2} \)
7 \( 1 - 0.553T + 1.68e4T^{2} \)
11 \( 1 + 524.T + 1.61e5T^{2} \)
13 \( 1 - 933.T + 3.71e5T^{2} \)
17 \( 1 + 462.T + 1.41e6T^{2} \)
19 \( 1 + 452.T + 2.47e6T^{2} \)
23 \( 1 + 216.T + 6.43e6T^{2} \)
31 \( 1 - 5.16e3T + 2.86e7T^{2} \)
37 \( 1 - 9.19e3T + 6.93e7T^{2} \)
41 \( 1 + 1.72e4T + 1.15e8T^{2} \)
43 \( 1 + 1.25e4T + 1.47e8T^{2} \)
47 \( 1 + 2.00e4T + 2.29e8T^{2} \)
53 \( 1 - 5.17e3T + 4.18e8T^{2} \)
59 \( 1 - 291.T + 7.14e8T^{2} \)
61 \( 1 + 3.00e4T + 8.44e8T^{2} \)
67 \( 1 - 2.75e4T + 1.35e9T^{2} \)
71 \( 1 + 5.90e4T + 1.80e9T^{2} \)
73 \( 1 + 2.49e4T + 2.07e9T^{2} \)
79 \( 1 + 4.57e4T + 3.07e9T^{2} \)
83 \( 1 + 9.38e4T + 3.93e9T^{2} \)
89 \( 1 + 4.34e4T + 5.58e9T^{2} \)
97 \( 1 + 926.T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.38862047150226779273867816773, −9.797969443286499581570604447826, −8.637430916340264804318561875470, −8.053118973323984925989294933678, −6.40070059253316010154432672957, −5.50691160138135576185037708801, −4.47844603985895449937057803810, −3.10344125692618307082168315447, −1.52584575959843792444607327245, 0, 1.52584575959843792444607327245, 3.10344125692618307082168315447, 4.47844603985895449937057803810, 5.50691160138135576185037708801, 6.40070059253316010154432672957, 8.053118973323984925989294933678, 8.637430916340264804318561875470, 9.797969443286499581570604447826, 10.38862047150226779273867816773

Graph of the $Z$-function along the critical line