Properties

Label 26.6.a
Level $26$
Weight $6$
Character orbit 26.a
Rep. character $\chi_{26}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $3$
Sturm bound $21$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 26.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(21\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(26))\).

Total New Old
Modular forms 19 5 14
Cusp forms 15 5 10
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(4\)\(1\)\(3\)\(3\)\(1\)\(2\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(6\)\(2\)\(4\)\(5\)\(2\)\(3\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(5\)\(2\)\(3\)\(4\)\(2\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(4\)\(0\)\(4\)\(3\)\(0\)\(3\)\(1\)\(0\)\(1\)
Plus space\(+\)\(8\)\(1\)\(7\)\(6\)\(1\)\(5\)\(2\)\(0\)\(2\)
Minus space\(-\)\(11\)\(4\)\(7\)\(9\)\(4\)\(5\)\(2\)\(0\)\(2\)

Trace form

\( 5 q - 4 q^{2} + 18 q^{3} + 80 q^{4} + 22 q^{5} + 312 q^{7} - 64 q^{8} + 683 q^{9} + 496 q^{10} - 384 q^{11} + 288 q^{12} - 169 q^{13} - 8 q^{14} - 2504 q^{15} + 1280 q^{16} + 392 q^{17} - 2900 q^{18} - 1332 q^{19}+ \cdots + 70148 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(26))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 13
26.6.a.a 26.a 1.a $1$ $4.170$ \(\Q\) None 26.6.a.a \(-4\) \(0\) \(-14\) \(-170\) $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}-14q^{5}-170q^{7}+\cdots\)
26.6.a.b 26.a 1.a $2$ $4.170$ \(\Q(\sqrt{2785}) \) None 26.6.a.b \(-8\) \(9\) \(-37\) \(327\) $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+(5-\beta )q^{3}+2^{4}q^{4}+(-19+\cdots)q^{5}+\cdots\)
26.6.a.c 26.a 1.a $2$ $4.170$ \(\Q(\sqrt{849}) \) None 26.6.a.c \(8\) \(9\) \(73\) \(155\) $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+(5-\beta )q^{3}+2^{4}q^{4}+(35+3\beta )q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(26))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(26)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 2}\)