Defining parameters
Level: | \( N \) | \(=\) | \( 26 = 2 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 26.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(21\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(26))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 19 | 5 | 14 |
Cusp forms | 15 | 5 | 10 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(13\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(2\) |
Plus space | \(+\) | \(1\) | |
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(26))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 13 | |||||||
26.6.a.a | $1$ | $4.170$ | \(\Q\) | None | \(-4\) | \(0\) | \(-14\) | \(-170\) | $+$ | $+$ | \(q-4q^{2}+2^{4}q^{4}-14q^{5}-170q^{7}+\cdots\) | |
26.6.a.b | $2$ | $4.170$ | \(\Q(\sqrt{2785}) \) | None | \(-8\) | \(9\) | \(-37\) | \(327\) | $+$ | $-$ | \(q-4q^{2}+(5-\beta )q^{3}+2^{4}q^{4}+(-19+\cdots)q^{5}+\cdots\) | |
26.6.a.c | $2$ | $4.170$ | \(\Q(\sqrt{849}) \) | None | \(8\) | \(9\) | \(73\) | \(155\) | $-$ | $+$ | \(q+4q^{2}+(5-\beta )q^{3}+2^{4}q^{4}+(35+3\beta )q^{5}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(26))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(26)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 2}\)