Properties

Label 26.6
Level 26
Weight 6
Dimension 35
Nonzero newspaces 4
Newform subspaces 8
Sturm bound 252
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 26 = 2 \cdot 13 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 8 \)
Sturm bound: \(252\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(26))\).

Total New Old
Modular forms 117 35 82
Cusp forms 93 35 58
Eisenstein series 24 0 24

Trace form

\( 35 q + 596 q^{7} - 192 q^{8} - 1296 q^{9} - 60 q^{10} + 1068 q^{11} + 576 q^{12} + 3144 q^{13} + 528 q^{14} - 2376 q^{15} - 1024 q^{16} - 969 q^{17} - 4860 q^{18} - 5236 q^{19} + 1968 q^{20} + 132 q^{21}+ \cdots - 284436 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(26))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
26.6.a \(\chi_{26}(1, \cdot)\) 26.6.a.a 1 1
26.6.a.b 2
26.6.a.c 2
26.6.b \(\chi_{26}(25, \cdot)\) 26.6.b.a 2 1
26.6.b.b 2
26.6.c \(\chi_{26}(3, \cdot)\) 26.6.c.a 6 2
26.6.c.b 8
26.6.e \(\chi_{26}(17, \cdot)\) 26.6.e.a 12 2

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(26))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(26)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 2}\)