Properties

Label 256.8.a.g.1.2
Level $256$
Weight $8$
Character 256.1
Self dual yes
Analytic conductor $79.971$
Analytic rank $1$
Dimension $2$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,8,Mod(1,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 256.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.9705665239\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 128)
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 256.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+36.7696 q^{3} -835.000 q^{9} +O(q^{10})\) \(q+36.7696 q^{3} -835.000 q^{9} -511.945 q^{11} +22182.0 q^{17} -2961.36 q^{19} -78125.0 q^{25} -111118. q^{27} -18824.0 q^{33} +236886. q^{41} -1.01914e6 q^{43} -823543. q^{49} +815622. q^{51} -108888. q^{57} -2.98191e6 q^{59} +3.06762e6 q^{67} -4.86561e6 q^{73} -2.87262e6 q^{75} -2.25960e6 q^{81} +9.24221e6 q^{83} -7.07312e6 q^{89} -9.93889e6 q^{97} +427474. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 1670 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 1670 q^{9} + 44364 q^{17} - 156250 q^{25} - 37648 q^{33} + 473772 q^{41} - 1647086 q^{49} - 217776 q^{57} - 9731228 q^{73} - 4519198 q^{81} - 14146236 q^{89} - 19877780 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 36.7696 0.786256 0.393128 0.919484i \(-0.371393\pi\)
0.393128 + 0.919484i \(0.371393\pi\)
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −835.000 −0.381802
\(10\) 0 0
\(11\) −511.945 −0.115971 −0.0579855 0.998317i \(-0.518468\pi\)
−0.0579855 + 0.998317i \(0.518468\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 22182.0 1.09504 0.547519 0.836793i \(-0.315572\pi\)
0.547519 + 0.836793i \(0.315572\pi\)
\(18\) 0 0
\(19\) −2961.36 −0.0990499 −0.0495250 0.998773i \(-0.515771\pi\)
−0.0495250 + 0.998773i \(0.515771\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −78125.0 −1.00000
\(26\) 0 0
\(27\) −111118. −1.08645
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) −18824.0 −0.0911828
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 236886. 0.536779 0.268390 0.963310i \(-0.413509\pi\)
0.268390 + 0.963310i \(0.413509\pi\)
\(42\) 0 0
\(43\) −1.01914e6 −1.95477 −0.977383 0.211475i \(-0.932173\pi\)
−0.977383 + 0.211475i \(0.932173\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −823543. −1.00000
\(50\) 0 0
\(51\) 815622. 0.860981
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −108888. −0.0778786
\(58\) 0 0
\(59\) −2.98191e6 −1.89022 −0.945111 0.326750i \(-0.894047\pi\)
−0.945111 + 0.326750i \(0.894047\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.06762e6 1.24606 0.623032 0.782196i \(-0.285901\pi\)
0.623032 + 0.782196i \(0.285901\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −4.86561e6 −1.46389 −0.731944 0.681365i \(-0.761387\pi\)
−0.731944 + 0.681365i \(0.761387\pi\)
\(74\) 0 0
\(75\) −2.87262e6 −0.786256
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −2.25960e6 −0.472426
\(82\) 0 0
\(83\) 9.24221e6 1.77420 0.887099 0.461578i \(-0.152717\pi\)
0.887099 + 0.461578i \(0.152717\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −7.07312e6 −1.06352 −0.531760 0.846895i \(-0.678469\pi\)
−0.531760 + 0.846895i \(0.678469\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −9.93889e6 −1.10570 −0.552849 0.833281i \(-0.686460\pi\)
−0.552849 + 0.833281i \(0.686460\pi\)
\(98\) 0 0
\(99\) 427474. 0.0442779
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.19039e7 0.939389 0.469695 0.882829i \(-0.344364\pi\)
0.469695 + 0.882829i \(0.344364\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.16700e7 −1.41281 −0.706405 0.707808i \(-0.749684\pi\)
−0.706405 + 0.707808i \(0.749684\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.92251e7 −0.986551
\(122\) 0 0
\(123\) 8.71019e6 0.422046
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) −3.74734e7 −1.53695
\(130\) 0 0
\(131\) −5.13948e7 −1.99742 −0.998711 0.0507560i \(-0.983837\pi\)
−0.998711 + 0.0507560i \(0.983837\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.84166e7 −1.94095 −0.970475 0.241201i \(-0.922459\pi\)
−0.970475 + 0.241201i \(0.922459\pi\)
\(138\) 0 0
\(139\) 3.38949e7 1.07049 0.535244 0.844697i \(-0.320219\pi\)
0.535244 + 0.844697i \(0.320219\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −3.02813e7 −0.786256
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) −1.85220e7 −0.418087
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −9.43411e7 −1.70626 −0.853128 0.521702i \(-0.825297\pi\)
−0.853128 + 0.521702i \(0.825297\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −6.27485e7 −1.00000
\(170\) 0 0
\(171\) 2.47274e6 0.0378174
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1.09644e8 −1.48620
\(178\) 0 0
\(179\) 6.70974e7 0.874420 0.437210 0.899359i \(-0.355967\pi\)
0.437210 + 0.899359i \(0.355967\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1.13560e7 −0.126993
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −2.25308e7 −0.225593 −0.112797 0.993618i \(-0.535981\pi\)
−0.112797 + 0.993618i \(0.535981\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 1.12795e8 0.979725
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.51606e6 0.0114869
\(210\) 0 0
\(211\) 2.53627e8 1.85869 0.929346 0.369210i \(-0.120372\pi\)
0.929346 + 0.369210i \(0.120372\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −1.78906e8 −1.15099
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 6.52344e7 0.381802
\(226\) 0 0
\(227\) 2.15553e8 1.22310 0.611552 0.791204i \(-0.290545\pi\)
0.611552 + 0.791204i \(0.290545\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.01581e8 −0.526099 −0.263050 0.964782i \(-0.584728\pi\)
−0.263050 + 0.964782i \(0.584728\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 2.67977e8 1.23321 0.616606 0.787272i \(-0.288507\pi\)
0.616606 + 0.787272i \(0.288507\pi\)
\(242\) 0 0
\(243\) 1.59930e8 0.715002
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 3.39832e8 1.39497
\(250\) 0 0
\(251\) −1.17757e8 −0.470034 −0.235017 0.971991i \(-0.575515\pi\)
−0.235017 + 0.971991i \(0.575515\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.43843e8 1.63103 0.815517 0.578733i \(-0.196453\pi\)
0.815517 + 0.578733i \(0.196453\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −2.60075e8 −0.836199
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.99957e7 0.115971
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.46754e8 1.47001 0.735005 0.678062i \(-0.237180\pi\)
0.735005 + 0.678062i \(0.237180\pi\)
\(282\) 0 0
\(283\) 2.08205e8 0.546058 0.273029 0.962006i \(-0.411975\pi\)
0.273029 + 0.962006i \(0.411975\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.17025e7 0.199110
\(290\) 0 0
\(291\) −3.65449e8 −0.869362
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 5.68861e7 0.125997
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1.00385e9 −1.98010 −0.990048 0.140733i \(-0.955054\pi\)
−0.990048 + 0.140733i \(0.955054\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 9.84035e8 1.81387 0.906933 0.421275i \(-0.138417\pi\)
0.906933 + 0.421275i \(0.138417\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 4.37701e8 0.738600
\(322\) 0 0
\(323\) −6.56890e7 −0.108463
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 9.99518e8 1.51493 0.757465 0.652876i \(-0.226438\pi\)
0.757465 + 0.652876i \(0.226438\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 5.51176e8 0.784487 0.392244 0.919861i \(-0.371699\pi\)
0.392244 + 0.919861i \(0.371699\pi\)
\(338\) 0 0
\(339\) −7.96795e8 −1.11083
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.60950e8 0.849211 0.424606 0.905378i \(-0.360413\pi\)
0.424606 + 0.905378i \(0.360413\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.10363e8 0.375542 0.187771 0.982213i \(-0.439874\pi\)
0.187771 + 0.982213i \(0.439874\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −8.85102e8 −0.990189
\(362\) 0 0
\(363\) −7.06898e8 −0.775681
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) −1.97800e8 −0.204943
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 2.11851e9 1.99891 0.999457 0.0329408i \(-0.0104873\pi\)
0.999457 + 0.0329408i \(0.0104873\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.50983e8 0.746333
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −1.88976e9 −1.57049
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.24350e9 −1.73748 −0.868740 0.495268i \(-0.835070\pi\)
−0.868740 + 0.495268i \(0.835070\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 2.14006e9 1.54666 0.773330 0.634004i \(-0.218590\pi\)
0.773330 + 0.634004i \(0.218590\pi\)
\(410\) 0 0
\(411\) −2.14795e9 −1.52608
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.24630e9 0.841678
\(418\) 0 0
\(419\) 3.00841e9 1.99797 0.998983 0.0450790i \(-0.0143540\pi\)
0.998983 + 0.0450790i \(0.0143540\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.73297e9 −1.09504
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −3.31027e9 −1.95955 −0.979774 0.200109i \(-0.935870\pi\)
−0.979774 + 0.200109i \(0.935870\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 6.87658e8 0.381802
\(442\) 0 0
\(443\) −1.65968e9 −0.907010 −0.453505 0.891254i \(-0.649826\pi\)
−0.453505 + 0.891254i \(0.649826\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.27126e9 −1.18414 −0.592072 0.805885i \(-0.701690\pi\)
−0.592072 + 0.805885i \(0.701690\pi\)
\(450\) 0 0
\(451\) −1.21273e8 −0.0622508
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.04270e9 −1.98137 −0.990684 0.136183i \(-0.956517\pi\)
−0.990684 + 0.136183i \(0.956517\pi\)
\(458\) 0 0
\(459\) −2.46481e9 −1.18970
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.69178e9 1.22301 0.611505 0.791241i \(-0.290565\pi\)
0.611505 + 0.791241i \(0.290565\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.21745e8 0.226696
\(474\) 0 0
\(475\) 2.31356e8 0.0990499
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) −3.46888e9 −1.34155
\(490\) 0 0
\(491\) −4.00291e9 −1.52613 −0.763064 0.646323i \(-0.776306\pi\)
−0.763064 + 0.646323i \(0.776306\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −3.40494e9 −1.22676 −0.613378 0.789790i \(-0.710190\pi\)
−0.613378 + 0.789790i \(0.710190\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −2.30723e9 −0.786256
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 3.29060e8 0.107613
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −5.14691e9 −1.59446 −0.797232 0.603673i \(-0.793703\pi\)
−0.797232 + 0.603673i \(0.793703\pi\)
\(522\) 0 0
\(523\) 5.47033e9 1.67208 0.836040 0.548668i \(-0.184865\pi\)
0.836040 + 0.548668i \(0.184865\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −3.40483e9 −1.00000
\(530\) 0 0
\(531\) 2.48990e9 0.721690
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 2.46714e9 0.687518
\(538\) 0 0
\(539\) 4.21609e8 0.115971
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −7.32742e9 −1.91424 −0.957118 0.289698i \(-0.906445\pi\)
−0.957118 + 0.289698i \(0.906445\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −4.17554e8 −0.0998487
\(562\) 0 0
\(563\) −6.60784e8 −0.156056 −0.0780279 0.996951i \(-0.524862\pi\)
−0.0780279 + 0.996951i \(0.524862\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.34926e9 1.90001 0.950003 0.312241i \(-0.101080\pi\)
0.950003 + 0.312241i \(0.101080\pi\)
\(570\) 0 0
\(571\) 8.70729e9 1.95730 0.978648 0.205545i \(-0.0658966\pi\)
0.978648 + 0.205545i \(0.0658966\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 6.48604e9 1.40561 0.702805 0.711383i \(-0.251931\pi\)
0.702805 + 0.711383i \(0.251931\pi\)
\(578\) 0 0
\(579\) −8.28447e8 −0.177374
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.32738e9 1.29119 0.645596 0.763679i \(-0.276609\pi\)
0.645596 + 0.763679i \(0.276609\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −4.79445e9 −0.944164 −0.472082 0.881555i \(-0.656497\pi\)
−0.472082 + 0.881555i \(0.656497\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 8.35888e9 1.57068 0.785339 0.619066i \(-0.212489\pi\)
0.785339 + 0.619066i \(0.212489\pi\)
\(602\) 0 0
\(603\) −2.56147e9 −0.475749
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.14929e10 −1.96984 −0.984919 0.173018i \(-0.944648\pi\)
−0.984919 + 0.173018i \(0.944648\pi\)
\(618\) 0 0
\(619\) 8.97316e9 1.52065 0.760323 0.649545i \(-0.225041\pi\)
0.760323 + 0.649545i \(0.225041\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 6.10352e9 1.00000
\(626\) 0 0
\(627\) 5.57447e7 0.00903165
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 9.32576e9 1.46141
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.12547e9 1.06859 0.534294 0.845299i \(-0.320577\pi\)
0.534294 + 0.845299i \(0.320577\pi\)
\(642\) 0 0
\(643\) −1.24491e10 −1.84671 −0.923355 0.383948i \(-0.874564\pi\)
−0.923355 + 0.383948i \(0.874564\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 1.52658e9 0.219211
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 4.06279e9 0.558914
\(658\) 0 0
\(659\) 1.18365e10 1.61111 0.805556 0.592520i \(-0.201867\pi\)
0.805556 + 0.592520i \(0.201867\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.54576e10 1.95474 0.977369 0.211539i \(-0.0678477\pi\)
0.977369 + 0.211539i \(0.0678477\pi\)
\(674\) 0 0
\(675\) 8.68106e9 1.08645
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 7.92579e9 0.961674
\(682\) 0 0
\(683\) −1.61382e10 −1.93813 −0.969066 0.246800i \(-0.920621\pi\)
−0.969066 + 0.246800i \(0.920621\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −6.69881e9 −0.772369 −0.386184 0.922422i \(-0.626207\pi\)
−0.386184 + 0.922422i \(0.626207\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 5.25461e9 0.587794
\(698\) 0 0
\(699\) −3.73510e9 −0.413649
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 9.85339e9 0.969620
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 1.08223e10 1.03460
\(730\) 0 0
\(731\) −2.26066e10 −2.14055
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.57046e9 −0.144507
\(738\) 0 0
\(739\) 3.66788e8 0.0334318 0.0167159 0.999860i \(-0.494679\pi\)
0.0167159 + 0.999860i \(0.494679\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −7.71724e9 −0.677392
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) −4.32988e9 −0.369567
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.03427e9 0.249579 0.124789 0.992183i \(-0.460175\pi\)
0.124789 + 0.992183i \(0.460175\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −7.12479e9 −0.564976 −0.282488 0.959271i \(-0.591160\pi\)
−0.282488 + 0.959271i \(0.591160\pi\)
\(770\) 0 0
\(771\) 1.63199e10 1.28241
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7.01505e8 −0.0531680
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −4.21697e9 −0.308382 −0.154191 0.988041i \(-0.549277\pi\)
−0.154191 + 0.988041i \(0.549277\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 5.90605e9 0.406054
\(802\) 0 0
\(803\) 2.49093e9 0.169768
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2.03026e10 −1.34813 −0.674064 0.738673i \(-0.735453\pi\)
−0.674064 + 0.738673i \(0.735453\pi\)
\(810\) 0 0
\(811\) −1.18458e10 −0.779812 −0.389906 0.920855i \(-0.627492\pi\)
−0.389906 + 0.920855i \(0.627492\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 3.01805e9 0.193619
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 1.47062e9 0.0911828
\(826\) 0 0
\(827\) 2.04957e10 1.26006 0.630032 0.776569i \(-0.283042\pi\)
0.630032 + 0.776569i \(0.283042\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.82678e10 −1.09504
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −1.72499e10 −1.00000
\(842\) 0 0
\(843\) 2.01039e10 1.15580
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 7.65561e9 0.429341
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3.44377e10 −1.86897 −0.934483 0.356008i \(-0.884137\pi\)
−0.934483 + 0.356008i \(0.884137\pi\)
\(858\) 0 0
\(859\) 3.15983e10 1.70093 0.850467 0.526029i \(-0.176320\pi\)
0.850467 + 0.526029i \(0.176320\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 3.00416e9 0.156551
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 8.29897e9 0.422157
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −3.38273e10 −1.66668 −0.833338 0.552763i \(-0.813573\pi\)
−0.833338 + 0.552763i \(0.813573\pi\)
\(882\) 0 0
\(883\) −3.97855e10 −1.94474 −0.972371 0.233439i \(-0.925002\pi\)
−0.972371 + 0.233439i \(0.925002\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.15679e9 0.0547877
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.76352e10 0.784790 0.392395 0.919797i \(-0.371647\pi\)
0.392395 + 0.919797i \(0.371647\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −4.73150e9 −0.205756
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) −3.69112e10 −1.55686
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −4.75217e10 −1.94463 −0.972315 0.233673i \(-0.924925\pi\)
−0.972315 + 0.233673i \(0.924925\pi\)
\(930\) 0 0
\(931\) 2.43881e9 0.0990499
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 4.18278e10 1.66102 0.830512 0.557000i \(-0.188048\pi\)
0.830512 + 0.557000i \(0.188048\pi\)
\(938\) 0 0
\(939\) 3.61825e10 1.42616
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.76750e10 −1.82417 −0.912087 0.409998i \(-0.865530\pi\)
−0.912087 + 0.409998i \(0.865530\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −4.62577e10 −1.73125 −0.865624 0.500694i \(-0.833078\pi\)
−0.865624 + 0.500694i \(0.833078\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.75126e10 −1.00000
\(962\) 0 0
\(963\) −9.93974e9 −0.358660
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) −2.41535e9 −0.0852801
\(970\) 0 0
\(971\) −2.82185e10 −0.989161 −0.494581 0.869132i \(-0.664678\pi\)
−0.494581 + 0.869132i \(0.664678\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −3.63345e10 −1.24649 −0.623245 0.782027i \(-0.714186\pi\)
−0.623245 + 0.782027i \(0.714186\pi\)
\(978\) 0 0
\(979\) 3.62105e9 0.123337
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 3.67518e10 1.19112
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.8.a.g.1.2 2
4.3 odd 2 inner 256.8.a.g.1.1 2
8.3 odd 2 CM 256.8.a.g.1.2 2
8.5 even 2 inner 256.8.a.g.1.1 2
16.3 odd 4 128.8.b.a.65.1 2
16.5 even 4 128.8.b.a.65.1 2
16.11 odd 4 128.8.b.a.65.2 yes 2
16.13 even 4 128.8.b.a.65.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
128.8.b.a.65.1 2 16.3 odd 4
128.8.b.a.65.1 2 16.5 even 4
128.8.b.a.65.2 yes 2 16.11 odd 4
128.8.b.a.65.2 yes 2 16.13 even 4
256.8.a.g.1.1 2 4.3 odd 2 inner
256.8.a.g.1.1 2 8.5 even 2 inner
256.8.a.g.1.2 2 1.1 even 1 trivial
256.8.a.g.1.2 2 8.3 odd 2 CM