Defining parameters
Level: | \( N \) | = | \( 256 = 2^{8} \) |
Weight: | \( k \) | = | \( 8 \) |
Nonzero newspaces: | \( 6 \) | ||
Sturm bound: | \(32768\) | ||
Trace bound: | \(9\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(256))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 14512 | 8116 | 6396 |
Cusp forms | 14160 | 8012 | 6148 |
Eisenstein series | 352 | 104 | 248 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(256))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
256.8.a | \(\chi_{256}(1, \cdot)\) | 256.8.a.a | 1 | 1 |
256.8.a.b | 1 | |||
256.8.a.c | 1 | |||
256.8.a.d | 1 | |||
256.8.a.e | 2 | |||
256.8.a.f | 2 | |||
256.8.a.g | 2 | |||
256.8.a.h | 2 | |||
256.8.a.i | 2 | |||
256.8.a.j | 4 | |||
256.8.a.k | 4 | |||
256.8.a.l | 4 | |||
256.8.a.m | 4 | |||
256.8.a.n | 4 | |||
256.8.a.o | 4 | |||
256.8.a.p | 4 | |||
256.8.a.q | 6 | |||
256.8.a.r | 6 | |||
256.8.b | \(\chi_{256}(129, \cdot)\) | 256.8.b.a | 2 | 1 |
256.8.b.b | 2 | |||
256.8.b.c | 2 | |||
256.8.b.d | 2 | |||
256.8.b.e | 2 | |||
256.8.b.f | 2 | |||
256.8.b.g | 2 | |||
256.8.b.h | 4 | |||
256.8.b.i | 4 | |||
256.8.b.j | 4 | |||
256.8.b.k | 6 | |||
256.8.b.l | 6 | |||
256.8.b.m | 8 | |||
256.8.b.n | 8 | |||
256.8.e | \(\chi_{256}(65, \cdot)\) | n/a | 112 | 2 |
256.8.g | \(\chi_{256}(33, \cdot)\) | n/a | 216 | 4 |
256.8.i | \(\chi_{256}(17, \cdot)\) | n/a | 440 | 8 |
256.8.k | \(\chi_{256}(9, \cdot)\) | None | 0 | 16 |
256.8.m | \(\chi_{256}(5, \cdot)\) | n/a | 7136 | 32 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(256))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_1(256)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 7}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(128))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(256))\)\(^{\oplus 1}\)