Properties

Label 256.6.e.c.193.7
Level $256$
Weight $6$
Character 256.193
Analytic conductor $41.058$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [256,6,Mod(65,256)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("256.65"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(256, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 256.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,-160] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.0582578721\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 193.7
Character \(\chi\) \(=\) 256.193
Dual form 256.6.e.c.65.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.14100 - 4.14100i) q^{3} +(30.9040 + 30.9040i) q^{5} -106.094i q^{7} +208.704i q^{9} +(-242.499 - 242.499i) q^{11} +(76.4407 - 76.4407i) q^{13} +255.947 q^{15} +1146.65 q^{17} +(1107.85 - 1107.85i) q^{19} +(-439.337 - 439.337i) q^{21} -199.505i q^{23} -1214.88i q^{25} +(1870.51 + 1870.51i) q^{27} +(-785.771 + 785.771i) q^{29} -2486.00 q^{31} -2008.37 q^{33} +(3278.74 - 3278.74i) q^{35} +(8899.35 + 8899.35i) q^{37} -633.081i q^{39} -14420.5i q^{41} +(-2925.13 - 2925.13i) q^{43} +(-6449.80 + 6449.80i) q^{45} +25229.5 q^{47} +5550.98 q^{49} +(4748.26 - 4748.26i) q^{51} +(2017.41 + 2017.41i) q^{53} -14988.4i q^{55} -9175.20i q^{57} +(9031.27 + 9031.27i) q^{59} +(-28207.7 + 28207.7i) q^{61} +22142.4 q^{63} +4724.65 q^{65} +(49993.9 - 49993.9i) q^{67} +(-826.149 - 826.149i) q^{69} -79547.5i q^{71} -69785.1i q^{73} +(-5030.83 - 5030.83i) q^{75} +(-25727.7 + 25727.7i) q^{77} +41295.6 q^{79} -35223.6 q^{81} +(24978.6 - 24978.6i) q^{83} +(35436.0 + 35436.0i) q^{85} +6507.75i q^{87} -80681.9i q^{89} +(-8109.93 - 8109.93i) q^{91} +(-10294.5 + 10294.5i) q^{93} +68474.0 q^{95} +86279.9 q^{97} +(50610.5 - 50610.5i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 160 q^{5} - 1040 q^{13} + 384 q^{17} + 7376 q^{21} - 14624 q^{29} + 78208 q^{33} - 35248 q^{37} - 118288 q^{45} + 100072 q^{49} - 104144 q^{53} - 174640 q^{61} + 464496 q^{65} - 29968 q^{69} - 667920 q^{77}+ \cdots + 833152 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.14100 4.14100i 0.265645 0.265645i −0.561698 0.827343i \(-0.689852\pi\)
0.827343 + 0.561698i \(0.189852\pi\)
\(4\) 0 0
\(5\) 30.9040 + 30.9040i 0.552828 + 0.552828i 0.927256 0.374428i \(-0.122161\pi\)
−0.374428 + 0.927256i \(0.622161\pi\)
\(6\) 0 0
\(7\) 106.094i 0.818366i −0.912452 0.409183i \(-0.865814\pi\)
0.912452 0.409183i \(-0.134186\pi\)
\(8\) 0 0
\(9\) 208.704i 0.858865i
\(10\) 0 0
\(11\) −242.499 242.499i −0.604265 0.604265i 0.337176 0.941441i \(-0.390528\pi\)
−0.941441 + 0.337176i \(0.890528\pi\)
\(12\) 0 0
\(13\) 76.4407 76.4407i 0.125449 0.125449i −0.641595 0.767044i \(-0.721727\pi\)
0.767044 + 0.641595i \(0.221727\pi\)
\(14\) 0 0
\(15\) 255.947 0.293712
\(16\) 0 0
\(17\) 1146.65 0.962293 0.481147 0.876640i \(-0.340220\pi\)
0.481147 + 0.876640i \(0.340220\pi\)
\(18\) 0 0
\(19\) 1107.85 1107.85i 0.704039 0.704039i −0.261236 0.965275i \(-0.584130\pi\)
0.965275 + 0.261236i \(0.0841302\pi\)
\(20\) 0 0
\(21\) −439.337 439.337i −0.217395 0.217395i
\(22\) 0 0
\(23\) 199.505i 0.0786383i −0.999227 0.0393191i \(-0.987481\pi\)
0.999227 0.0393191i \(-0.0125189\pi\)
\(24\) 0 0
\(25\) 1214.88i 0.388763i
\(26\) 0 0
\(27\) 1870.51 + 1870.51i 0.493798 + 0.493798i
\(28\) 0 0
\(29\) −785.771 + 785.771i −0.173501 + 0.173501i −0.788516 0.615015i \(-0.789150\pi\)
0.615015 + 0.788516i \(0.289150\pi\)
\(30\) 0 0
\(31\) −2486.00 −0.464619 −0.232310 0.972642i \(-0.574628\pi\)
−0.232310 + 0.972642i \(0.574628\pi\)
\(32\) 0 0
\(33\) −2008.37 −0.321040
\(34\) 0 0
\(35\) 3278.74 3278.74i 0.452415 0.452415i
\(36\) 0 0
\(37\) 8899.35 + 8899.35i 1.06870 + 1.06870i 0.997459 + 0.0712366i \(0.0226945\pi\)
0.0712366 + 0.997459i \(0.477305\pi\)
\(38\) 0 0
\(39\) 633.081i 0.0666497i
\(40\) 0 0
\(41\) 14420.5i 1.33974i −0.742480 0.669868i \(-0.766351\pi\)
0.742480 0.669868i \(-0.233649\pi\)
\(42\) 0 0
\(43\) −2925.13 2925.13i −0.241254 0.241254i 0.576115 0.817369i \(-0.304568\pi\)
−0.817369 + 0.576115i \(0.804568\pi\)
\(44\) 0 0
\(45\) −6449.80 + 6449.80i −0.474805 + 0.474805i
\(46\) 0 0
\(47\) 25229.5 1.66595 0.832977 0.553307i \(-0.186634\pi\)
0.832977 + 0.553307i \(0.186634\pi\)
\(48\) 0 0
\(49\) 5550.98 0.330278
\(50\) 0 0
\(51\) 4748.26 4748.26i 0.255629 0.255629i
\(52\) 0 0
\(53\) 2017.41 + 2017.41i 0.0986519 + 0.0986519i 0.754710 0.656058i \(-0.227777\pi\)
−0.656058 + 0.754710i \(0.727777\pi\)
\(54\) 0 0
\(55\) 14988.4i 0.668109i
\(56\) 0 0
\(57\) 9175.20i 0.374049i
\(58\) 0 0
\(59\) 9031.27 + 9031.27i 0.337768 + 0.337768i 0.855527 0.517758i \(-0.173233\pi\)
−0.517758 + 0.855527i \(0.673233\pi\)
\(60\) 0 0
\(61\) −28207.7 + 28207.7i −0.970606 + 0.970606i −0.999580 0.0289740i \(-0.990776\pi\)
0.0289740 + 0.999580i \(0.490776\pi\)
\(62\) 0 0
\(63\) 22142.4 0.702866
\(64\) 0 0
\(65\) 4724.65 0.138703
\(66\) 0 0
\(67\) 49993.9 49993.9i 1.36060 1.36060i 0.487447 0.873153i \(-0.337928\pi\)
0.873153 0.487447i \(-0.162072\pi\)
\(68\) 0 0
\(69\) −826.149 826.149i −0.0208899 0.0208899i
\(70\) 0 0
\(71\) 79547.5i 1.87275i −0.350997 0.936376i \(-0.614157\pi\)
0.350997 0.936376i \(-0.385843\pi\)
\(72\) 0 0
\(73\) 69785.1i 1.53269i −0.642426 0.766347i \(-0.722072\pi\)
0.642426 0.766347i \(-0.277928\pi\)
\(74\) 0 0
\(75\) −5030.83 5030.83i −0.103273 0.103273i
\(76\) 0 0
\(77\) −25727.7 + 25727.7i −0.494510 + 0.494510i
\(78\) 0 0
\(79\) 41295.6 0.744450 0.372225 0.928143i \(-0.378595\pi\)
0.372225 + 0.928143i \(0.378595\pi\)
\(80\) 0 0
\(81\) −35223.6 −0.596515
\(82\) 0 0
\(83\) 24978.6 24978.6i 0.397991 0.397991i −0.479533 0.877524i \(-0.659194\pi\)
0.877524 + 0.479533i \(0.159194\pi\)
\(84\) 0 0
\(85\) 35436.0 + 35436.0i 0.531983 + 0.531983i
\(86\) 0 0
\(87\) 6507.75i 0.0921792i
\(88\) 0 0
\(89\) 80681.9i 1.07970i −0.841763 0.539848i \(-0.818482\pi\)
0.841763 0.539848i \(-0.181518\pi\)
\(90\) 0 0
\(91\) −8109.93 8109.93i −0.102663 0.102663i
\(92\) 0 0
\(93\) −10294.5 + 10294.5i −0.123424 + 0.123424i
\(94\) 0 0
\(95\) 68474.0 0.778424
\(96\) 0 0
\(97\) 86279.9 0.931065 0.465533 0.885031i \(-0.345863\pi\)
0.465533 + 0.885031i \(0.345863\pi\)
\(98\) 0 0
\(99\) 50610.5 50610.5i 0.518982 0.518982i
\(100\) 0 0
\(101\) 106616. + 106616.i 1.03997 + 1.03997i 0.999167 + 0.0408028i \(0.0129915\pi\)
0.0408028 + 0.999167i \(0.487008\pi\)
\(102\) 0 0
\(103\) 54346.7i 0.504754i 0.967629 + 0.252377i \(0.0812123\pi\)
−0.967629 + 0.252377i \(0.918788\pi\)
\(104\) 0 0
\(105\) 27154.5i 0.240364i
\(106\) 0 0
\(107\) 86694.5 + 86694.5i 0.732036 + 0.732036i 0.971023 0.238987i \(-0.0768154\pi\)
−0.238987 + 0.971023i \(0.576815\pi\)
\(108\) 0 0
\(109\) −128900. + 128900.i −1.03917 + 1.03917i −0.0399673 + 0.999201i \(0.512725\pi\)
−0.999201 + 0.0399673i \(0.987275\pi\)
\(110\) 0 0
\(111\) 73704.4 0.567788
\(112\) 0 0
\(113\) 9078.59 0.0668840 0.0334420 0.999441i \(-0.489353\pi\)
0.0334420 + 0.999441i \(0.489353\pi\)
\(114\) 0 0
\(115\) 6165.50 6165.50i 0.0434734 0.0434734i
\(116\) 0 0
\(117\) 15953.5 + 15953.5i 0.107744 + 0.107744i
\(118\) 0 0
\(119\) 121653.i 0.787508i
\(120\) 0 0
\(121\) 43439.9i 0.269728i
\(122\) 0 0
\(123\) −59715.1 59715.1i −0.355894 0.355894i
\(124\) 0 0
\(125\) 134120. 134120.i 0.767747 0.767747i
\(126\) 0 0
\(127\) −181852. −1.00048 −0.500240 0.865887i \(-0.666755\pi\)
−0.500240 + 0.865887i \(0.666755\pi\)
\(128\) 0 0
\(129\) −24225.9 −0.128176
\(130\) 0 0
\(131\) 63673.5 63673.5i 0.324176 0.324176i −0.526191 0.850367i \(-0.676380\pi\)
0.850367 + 0.526191i \(0.176380\pi\)
\(132\) 0 0
\(133\) −117537. 117537.i −0.576161 0.576161i
\(134\) 0 0
\(135\) 115612.i 0.545971i
\(136\) 0 0
\(137\) 44873.3i 0.204262i 0.994771 + 0.102131i \(0.0325660\pi\)
−0.994771 + 0.102131i \(0.967434\pi\)
\(138\) 0 0
\(139\) −47157.4 47157.4i −0.207020 0.207020i 0.595979 0.803000i \(-0.296764\pi\)
−0.803000 + 0.595979i \(0.796764\pi\)
\(140\) 0 0
\(141\) 104475. 104475.i 0.442553 0.442553i
\(142\) 0 0
\(143\) −37073.5 −0.151609
\(144\) 0 0
\(145\) −48567.0 −0.191832
\(146\) 0 0
\(147\) 22986.6 22986.6i 0.0877366 0.0877366i
\(148\) 0 0
\(149\) −152444. 152444.i −0.562530 0.562530i 0.367495 0.930025i \(-0.380215\pi\)
−0.930025 + 0.367495i \(0.880215\pi\)
\(150\) 0 0
\(151\) 256068.i 0.913930i −0.889485 0.456965i \(-0.848936\pi\)
0.889485 0.456965i \(-0.151064\pi\)
\(152\) 0 0
\(153\) 239310.i 0.826481i
\(154\) 0 0
\(155\) −76827.5 76827.5i −0.256855 0.256855i
\(156\) 0 0
\(157\) −105314. + 105314.i −0.340986 + 0.340986i −0.856738 0.515752i \(-0.827513\pi\)
0.515752 + 0.856738i \(0.327513\pi\)
\(158\) 0 0
\(159\) 16708.2 0.0524128
\(160\) 0 0
\(161\) −21166.4 −0.0643549
\(162\) 0 0
\(163\) −408738. + 408738.i −1.20497 + 1.20497i −0.232335 + 0.972636i \(0.574636\pi\)
−0.972636 + 0.232335i \(0.925364\pi\)
\(164\) 0 0
\(165\) −62066.7 62066.7i −0.177480 0.177480i
\(166\) 0 0
\(167\) 470864.i 1.30649i 0.757149 + 0.653243i \(0.226592\pi\)
−0.757149 + 0.653243i \(0.773408\pi\)
\(168\) 0 0
\(169\) 359607.i 0.968525i
\(170\) 0 0
\(171\) 231213. + 231213.i 0.604674 + 0.604674i
\(172\) 0 0
\(173\) 195267. 195267.i 0.496038 0.496038i −0.414165 0.910202i \(-0.635926\pi\)
0.910202 + 0.414165i \(0.135926\pi\)
\(174\) 0 0
\(175\) −128892. −0.318150
\(176\) 0 0
\(177\) 74797.0 0.179453
\(178\) 0 0
\(179\) −526698. + 526698.i −1.22865 + 1.22865i −0.264178 + 0.964474i \(0.585101\pi\)
−0.964474 + 0.264178i \(0.914899\pi\)
\(180\) 0 0
\(181\) −48608.7 48608.7i −0.110285 0.110285i 0.649811 0.760096i \(-0.274848\pi\)
−0.760096 + 0.649811i \(0.774848\pi\)
\(182\) 0 0
\(183\) 233616.i 0.515673i
\(184\) 0 0
\(185\) 550052.i 1.18161i
\(186\) 0 0
\(187\) −278060. 278060.i −0.581480 0.581480i
\(188\) 0 0
\(189\) 198450. 198450.i 0.404108 0.404108i
\(190\) 0 0
\(191\) −556170. −1.10312 −0.551561 0.834134i \(-0.685968\pi\)
−0.551561 + 0.834134i \(0.685968\pi\)
\(192\) 0 0
\(193\) −314493. −0.607740 −0.303870 0.952713i \(-0.598279\pi\)
−0.303870 + 0.952713i \(0.598279\pi\)
\(194\) 0 0
\(195\) 19564.8 19564.8i 0.0368458 0.0368458i
\(196\) 0 0
\(197\) −2467.55 2467.55i −0.00453002 0.00453002i 0.704838 0.709368i \(-0.251020\pi\)
−0.709368 + 0.704838i \(0.751020\pi\)
\(198\) 0 0
\(199\) 524346.i 0.938611i 0.883036 + 0.469305i \(0.155496\pi\)
−0.883036 + 0.469305i \(0.844504\pi\)
\(200\) 0 0
\(201\) 414049.i 0.722873i
\(202\) 0 0
\(203\) 83365.9 + 83365.9i 0.141987 + 0.141987i
\(204\) 0 0
\(205\) 445650. 445650.i 0.740644 0.740644i
\(206\) 0 0
\(207\) 41637.5 0.0675397
\(208\) 0 0
\(209\) −537303. −0.850852
\(210\) 0 0
\(211\) −518692. + 518692.i −0.802054 + 0.802054i −0.983416 0.181362i \(-0.941949\pi\)
0.181362 + 0.983416i \(0.441949\pi\)
\(212\) 0 0
\(213\) −329406. 329406.i −0.497488 0.497488i
\(214\) 0 0
\(215\) 180796.i 0.266743i
\(216\) 0 0
\(217\) 263751.i 0.380228i
\(218\) 0 0
\(219\) −288980. 288980.i −0.407153 0.407153i
\(220\) 0 0
\(221\) 87650.5 87650.5i 0.120718 0.120718i
\(222\) 0 0
\(223\) −1.23712e6 −1.66591 −0.832955 0.553341i \(-0.813353\pi\)
−0.832955 + 0.553341i \(0.813353\pi\)
\(224\) 0 0
\(225\) 253551. 0.333895
\(226\) 0 0
\(227\) 624437. 624437.i 0.804310 0.804310i −0.179456 0.983766i \(-0.557434\pi\)
0.983766 + 0.179456i \(0.0574337\pi\)
\(228\) 0 0
\(229\) −337587. 337587.i −0.425400 0.425400i 0.461658 0.887058i \(-0.347255\pi\)
−0.887058 + 0.461658i \(0.847255\pi\)
\(230\) 0 0
\(231\) 213077.i 0.262728i
\(232\) 0 0
\(233\) 1.36771e6i 1.65045i 0.564803 + 0.825226i \(0.308952\pi\)
−0.564803 + 0.825226i \(0.691048\pi\)
\(234\) 0 0
\(235\) 779692. + 779692.i 0.920986 + 0.920986i
\(236\) 0 0
\(237\) 171005. 171005.i 0.197759 0.197759i
\(238\) 0 0
\(239\) 63907.7 0.0723699 0.0361850 0.999345i \(-0.488479\pi\)
0.0361850 + 0.999345i \(0.488479\pi\)
\(240\) 0 0
\(241\) 1.48625e6 1.64835 0.824173 0.566338i \(-0.191640\pi\)
0.824173 + 0.566338i \(0.191640\pi\)
\(242\) 0 0
\(243\) −600394. + 600394.i −0.652260 + 0.652260i
\(244\) 0 0
\(245\) 171547. + 171547.i 0.182587 + 0.182587i
\(246\) 0 0
\(247\) 169369.i 0.176642i
\(248\) 0 0
\(249\) 206873.i 0.211449i
\(250\) 0 0
\(251\) −624265. 624265.i −0.625438 0.625438i 0.321478 0.946917i \(-0.395820\pi\)
−0.946917 + 0.321478i \(0.895820\pi\)
\(252\) 0 0
\(253\) −48379.7 + 48379.7i −0.0475184 + 0.0475184i
\(254\) 0 0
\(255\) 293481. 0.282637
\(256\) 0 0
\(257\) −448824. −0.423880 −0.211940 0.977283i \(-0.567978\pi\)
−0.211940 + 0.977283i \(0.567978\pi\)
\(258\) 0 0
\(259\) 944172. 944172.i 0.874584 0.874584i
\(260\) 0 0
\(261\) −163994. 163994.i −0.149014 0.149014i
\(262\) 0 0
\(263\) 6710.33i 0.00598211i 0.999996 + 0.00299105i \(0.000952084\pi\)
−0.999996 + 0.00299105i \(0.999048\pi\)
\(264\) 0 0
\(265\) 124692.i 0.109075i
\(266\) 0 0
\(267\) −334103. 334103.i −0.286816 0.286816i
\(268\) 0 0
\(269\) −661872. + 661872.i −0.557690 + 0.557690i −0.928649 0.370959i \(-0.879029\pi\)
0.370959 + 0.928649i \(0.379029\pi\)
\(270\) 0 0
\(271\) 2.30343e6 1.90525 0.952627 0.304142i \(-0.0983698\pi\)
0.952627 + 0.304142i \(0.0983698\pi\)
\(272\) 0 0
\(273\) −67166.4 −0.0545438
\(274\) 0 0
\(275\) −294607. + 294607.i −0.234916 + 0.234916i
\(276\) 0 0
\(277\) 823249. + 823249.i 0.644661 + 0.644661i 0.951698 0.307036i \(-0.0993374\pi\)
−0.307036 + 0.951698i \(0.599337\pi\)
\(278\) 0 0
\(279\) 518839.i 0.399045i
\(280\) 0 0
\(281\) 1.75615e6i 1.32677i −0.748279 0.663384i \(-0.769120\pi\)
0.748279 0.663384i \(-0.230880\pi\)
\(282\) 0 0
\(283\) 155973. + 155973.i 0.115767 + 0.115767i 0.762617 0.646850i \(-0.223914\pi\)
−0.646850 + 0.762617i \(0.723914\pi\)
\(284\) 0 0
\(285\) 283550. 283550.i 0.206785 0.206785i
\(286\) 0 0
\(287\) −1.52993e6 −1.09639
\(288\) 0 0
\(289\) −105057. −0.0739913
\(290\) 0 0
\(291\) 357285. 357285.i 0.247333 0.247333i
\(292\) 0 0
\(293\) 683159. + 683159.i 0.464893 + 0.464893i 0.900255 0.435362i \(-0.143380\pi\)
−0.435362 + 0.900255i \(0.643380\pi\)
\(294\) 0 0
\(295\) 558205.i 0.373456i
\(296\) 0 0
\(297\) 907190.i 0.596770i
\(298\) 0 0
\(299\) −15250.3 15250.3i −0.00986507 0.00986507i
\(300\) 0 0
\(301\) −310340. + 310340.i −0.197434 + 0.197434i
\(302\) 0 0
\(303\) 882997. 0.552526
\(304\) 0 0
\(305\) −1.74346e6 −1.07316
\(306\) 0 0
\(307\) 271733. 271733.i 0.164549 0.164549i −0.620029 0.784579i \(-0.712879\pi\)
0.784579 + 0.620029i \(0.212879\pi\)
\(308\) 0 0
\(309\) 225049. + 225049.i 0.134085 + 0.134085i
\(310\) 0 0
\(311\) 2.61117e6i 1.53086i −0.643521 0.765429i \(-0.722527\pi\)
0.643521 0.765429i \(-0.277473\pi\)
\(312\) 0 0
\(313\) 1.29214e6i 0.745502i −0.927932 0.372751i \(-0.878415\pi\)
0.927932 0.372751i \(-0.121585\pi\)
\(314\) 0 0
\(315\) 684288. + 684288.i 0.388564 + 0.388564i
\(316\) 0 0
\(317\) −1.61784e6 + 1.61784e6i −0.904246 + 0.904246i −0.995800 0.0915538i \(-0.970817\pi\)
0.0915538 + 0.995800i \(0.470817\pi\)
\(318\) 0 0
\(319\) 381097. 0.209681
\(320\) 0 0
\(321\) 718004. 0.388923
\(322\) 0 0
\(323\) 1.27031e6 1.27031e6i 0.677492 0.677492i
\(324\) 0 0
\(325\) −92866.5 92866.5i −0.0487698 0.0487698i
\(326\) 0 0
\(327\) 1.06755e6i 0.552100i
\(328\) 0 0
\(329\) 2.67670e6i 1.36336i
\(330\) 0 0
\(331\) 2.43745e6 + 2.43745e6i 1.22283 + 1.22283i 0.966623 + 0.256204i \(0.0824720\pi\)
0.256204 + 0.966623i \(0.417528\pi\)
\(332\) 0 0
\(333\) −1.85733e6 + 1.85733e6i −0.917866 + 0.917866i
\(334\) 0 0
\(335\) 3.09003e6 1.50435
\(336\) 0 0
\(337\) −559028. −0.268138 −0.134069 0.990972i \(-0.542804\pi\)
−0.134069 + 0.990972i \(0.542804\pi\)
\(338\) 0 0
\(339\) 37594.4 37594.4i 0.0177674 0.0177674i
\(340\) 0 0
\(341\) 602852. + 602852.i 0.280753 + 0.280753i
\(342\) 0 0
\(343\) 2.37206e6i 1.08865i
\(344\) 0 0
\(345\) 51062.7i 0.0230970i
\(346\) 0 0
\(347\) −2.33249e6 2.33249e6i −1.03991 1.03991i −0.999170 0.0407409i \(-0.987028\pi\)
−0.0407409 0.999170i \(-0.512972\pi\)
\(348\) 0 0
\(349\) −635152. + 635152.i −0.279135 + 0.279135i −0.832764 0.553629i \(-0.813243\pi\)
0.553629 + 0.832764i \(0.313243\pi\)
\(350\) 0 0
\(351\) 285966. 0.123893
\(352\) 0 0
\(353\) 1.44800e6 0.618489 0.309245 0.950983i \(-0.399924\pi\)
0.309245 + 0.950983i \(0.399924\pi\)
\(354\) 0 0
\(355\) 2.45834e6 2.45834e6i 1.03531 1.03531i
\(356\) 0 0
\(357\) −503764. 503764.i −0.209198 0.209198i
\(358\) 0 0
\(359\) 251926.i 0.103166i 0.998669 + 0.0515831i \(0.0164267\pi\)
−0.998669 + 0.0515831i \(0.983573\pi\)
\(360\) 0 0
\(361\) 21440.8i 0.00865910i
\(362\) 0 0
\(363\) −179885. 179885.i −0.0716518 0.0716518i
\(364\) 0 0
\(365\) 2.15664e6 2.15664e6i 0.847316 0.847316i
\(366\) 0 0
\(367\) 2.74198e6 1.06267 0.531337 0.847161i \(-0.321690\pi\)
0.531337 + 0.847161i \(0.321690\pi\)
\(368\) 0 0
\(369\) 3.00961e6 1.15065
\(370\) 0 0
\(371\) 214036. 214036.i 0.0807333 0.0807333i
\(372\) 0 0
\(373\) 419624. + 419624.i 0.156167 + 0.156167i 0.780866 0.624699i \(-0.214778\pi\)
−0.624699 + 0.780866i \(0.714778\pi\)
\(374\) 0 0
\(375\) 1.11078e6i 0.407896i
\(376\) 0 0
\(377\) 120130.i 0.0435309i
\(378\) 0 0
\(379\) −2.15651e6 2.15651e6i −0.771176 0.771176i 0.207136 0.978312i \(-0.433586\pi\)
−0.978312 + 0.207136i \(0.933586\pi\)
\(380\) 0 0
\(381\) −753048. + 753048.i −0.265773 + 0.265773i
\(382\) 0 0
\(383\) −1.57667e6 −0.549218 −0.274609 0.961556i \(-0.588548\pi\)
−0.274609 + 0.961556i \(0.588548\pi\)
\(384\) 0 0
\(385\) −1.59018e6 −0.546758
\(386\) 0 0
\(387\) 610487. 610487.i 0.207204 0.207204i
\(388\) 0 0
\(389\) 2.80620e6 + 2.80620e6i 0.940254 + 0.940254i 0.998313 0.0580588i \(-0.0184911\pi\)
−0.0580588 + 0.998313i \(0.518491\pi\)
\(390\) 0 0
\(391\) 228762.i 0.0756731i
\(392\) 0 0
\(393\) 527344.i 0.172231i
\(394\) 0 0
\(395\) 1.27620e6 + 1.27620e6i 0.411553 + 0.411553i
\(396\) 0 0
\(397\) −1.49035e6 + 1.49035e6i −0.474582 + 0.474582i −0.903394 0.428812i \(-0.858932\pi\)
0.428812 + 0.903394i \(0.358932\pi\)
\(398\) 0 0
\(399\) −973437. −0.306109
\(400\) 0 0
\(401\) −304536. −0.0945753 −0.0472877 0.998881i \(-0.515058\pi\)
−0.0472877 + 0.998881i \(0.515058\pi\)
\(402\) 0 0
\(403\) −190032. + 190032.i −0.0582859 + 0.0582859i
\(404\) 0 0
\(405\) −1.08855e6 1.08855e6i −0.329770 0.329770i
\(406\) 0 0
\(407\) 4.31616e6i 1.29155i
\(408\) 0 0
\(409\) 1.06484e6i 0.314758i 0.987538 + 0.157379i \(0.0503044\pi\)
−0.987538 + 0.157379i \(0.949696\pi\)
\(410\) 0 0
\(411\) 185820. + 185820.i 0.0542611 + 0.0542611i
\(412\) 0 0
\(413\) 958168. 958168.i 0.276418 0.276418i
\(414\) 0 0
\(415\) 1.54388e6 0.440041
\(416\) 0 0
\(417\) −390557. −0.109988
\(418\) 0 0
\(419\) 674556. 674556.i 0.187708 0.187708i −0.606996 0.794705i \(-0.707626\pi\)
0.794705 + 0.606996i \(0.207626\pi\)
\(420\) 0 0
\(421\) −98026.4 98026.4i −0.0269549 0.0269549i 0.693501 0.720456i \(-0.256067\pi\)
−0.720456 + 0.693501i \(0.756067\pi\)
\(422\) 0 0
\(423\) 5.26550e6i 1.43083i
\(424\) 0 0
\(425\) 1.39304e6i 0.374104i
\(426\) 0 0
\(427\) 2.99268e6 + 2.99268e6i 0.794311 + 0.794311i
\(428\) 0 0
\(429\) −153521. + 153521.i −0.0402741 + 0.0402741i
\(430\) 0 0
\(431\) −6.20674e6 −1.60942 −0.804712 0.593665i \(-0.797680\pi\)
−0.804712 + 0.593665i \(0.797680\pi\)
\(432\) 0 0
\(433\) 601366. 0.154141 0.0770707 0.997026i \(-0.475443\pi\)
0.0770707 + 0.997026i \(0.475443\pi\)
\(434\) 0 0
\(435\) −201116. + 201116.i −0.0509592 + 0.0509592i
\(436\) 0 0
\(437\) −221021. 221021.i −0.0553644 0.0553644i
\(438\) 0 0
\(439\) 6.65283e6i 1.64757i 0.566899 + 0.823787i \(0.308143\pi\)
−0.566899 + 0.823787i \(0.691857\pi\)
\(440\) 0 0
\(441\) 1.15851e6i 0.283664i
\(442\) 0 0
\(443\) −1.01578e6 1.01578e6i −0.245917 0.245917i 0.573376 0.819293i \(-0.305634\pi\)
−0.819293 + 0.573376i \(0.805634\pi\)
\(444\) 0 0
\(445\) 2.49340e6 2.49340e6i 0.596886 0.596886i
\(446\) 0 0
\(447\) −1.26254e6 −0.298867
\(448\) 0 0
\(449\) −953508. −0.223207 −0.111604 0.993753i \(-0.535599\pi\)
−0.111604 + 0.993753i \(0.535599\pi\)
\(450\) 0 0
\(451\) −3.49694e6 + 3.49694e6i −0.809556 + 0.809556i
\(452\) 0 0
\(453\) −1.06038e6 1.06038e6i −0.242781 0.242781i
\(454\) 0 0
\(455\) 501259.i 0.113510i
\(456\) 0 0
\(457\) 1.42502e6i 0.319175i 0.987184 + 0.159588i \(0.0510165\pi\)
−0.987184 + 0.159588i \(0.948984\pi\)
\(458\) 0 0
\(459\) 2.14481e6 + 2.14481e6i 0.475179 + 0.475179i
\(460\) 0 0
\(461\) 2.56159e6 2.56159e6i 0.561380 0.561380i −0.368319 0.929699i \(-0.620067\pi\)
0.929699 + 0.368319i \(0.120067\pi\)
\(462\) 0 0
\(463\) 1.33201e6 0.288772 0.144386 0.989521i \(-0.453879\pi\)
0.144386 + 0.989521i \(0.453879\pi\)
\(464\) 0 0
\(465\) −636284. −0.136464
\(466\) 0 0
\(467\) −4.95885e6 + 4.95885e6i −1.05218 + 1.05218i −0.0536156 + 0.998562i \(0.517075\pi\)
−0.998562 + 0.0536156i \(0.982925\pi\)
\(468\) 0 0
\(469\) −5.30408e6 5.30408e6i −1.11347 1.11347i
\(470\) 0 0
\(471\) 872208.i 0.181162i
\(472\) 0 0
\(473\) 1.41868e6i 0.291562i
\(474\) 0 0
\(475\) −1.34591e6 1.34591e6i −0.273704 0.273704i
\(476\) 0 0
\(477\) −421043. + 421043.i −0.0847287 + 0.0847287i
\(478\) 0 0
\(479\) −2.58495e6 −0.514769 −0.257385 0.966309i \(-0.582861\pi\)
−0.257385 + 0.966309i \(0.582861\pi\)
\(480\) 0 0
\(481\) 1.36055e6 0.268133
\(482\) 0 0
\(483\) −87649.8 + 87649.8i −0.0170956 + 0.0170956i
\(484\) 0 0
\(485\) 2.66640e6 + 2.66640e6i 0.514719 + 0.514719i
\(486\) 0 0
\(487\) 3.24600e6i 0.620193i 0.950705 + 0.310096i \(0.100361\pi\)
−0.950705 + 0.310096i \(0.899639\pi\)
\(488\) 0 0
\(489\) 3.38517e6i 0.640189i
\(490\) 0 0
\(491\) −6.85283e6 6.85283e6i −1.28282 1.28282i −0.939055 0.343767i \(-0.888297\pi\)
−0.343767 0.939055i \(-0.611703\pi\)
\(492\) 0 0
\(493\) −901002. + 901002.i −0.166959 + 0.166959i
\(494\) 0 0
\(495\) 3.12813e6 0.573816
\(496\) 0 0
\(497\) −8.43954e6 −1.53260
\(498\) 0 0
\(499\) −2.73128e6 + 2.73128e6i −0.491037 + 0.491037i −0.908633 0.417596i \(-0.862873\pi\)
0.417596 + 0.908633i \(0.362873\pi\)
\(500\) 0 0
\(501\) 1.94985e6 + 1.94985e6i 0.347061 + 0.347061i
\(502\) 0 0
\(503\) 6.10885e6i 1.07656i −0.842765 0.538282i \(-0.819074\pi\)
0.842765 0.538282i \(-0.180926\pi\)
\(504\) 0 0
\(505\) 6.58975e6i 1.14985i
\(506\) 0 0
\(507\) 1.48913e6 + 1.48913e6i 0.257284 + 0.257284i
\(508\) 0 0
\(509\) 6.29864e6 6.29864e6i 1.07759 1.07759i 0.0808620 0.996725i \(-0.474233\pi\)
0.996725 0.0808620i \(-0.0257673\pi\)
\(510\) 0 0
\(511\) −7.40381e6 −1.25430
\(512\) 0 0
\(513\) 4.14448e6 0.695306
\(514\) 0 0
\(515\) −1.67953e6 + 1.67953e6i −0.279042 + 0.279042i
\(516\) 0 0
\(517\) −6.11811e6 6.11811e6i −1.00668 1.00668i
\(518\) 0 0
\(519\) 1.61720e6i 0.263540i
\(520\) 0 0
\(521\) 1.07069e7i 1.72810i 0.503407 + 0.864050i \(0.332080\pi\)
−0.503407 + 0.864050i \(0.667920\pi\)
\(522\) 0 0
\(523\) 183125. + 183125.i 0.0292748 + 0.0292748i 0.721593 0.692318i \(-0.243410\pi\)
−0.692318 + 0.721593i \(0.743410\pi\)
\(524\) 0 0
\(525\) −533743. + 533743.i −0.0845150 + 0.0845150i
\(526\) 0 0
\(527\) −2.85057e6 −0.447100
\(528\) 0 0
\(529\) 6.39654e6 0.993816
\(530\) 0 0
\(531\) −1.88487e6 + 1.88487e6i −0.290098 + 0.290098i
\(532\) 0 0
\(533\) −1.10231e6 1.10231e6i −0.168068 0.168068i
\(534\) 0 0
\(535\) 5.35842e6i 0.809380i
\(536\) 0 0
\(537\) 4.36211e6i 0.652770i
\(538\) 0 0
\(539\) −1.34610e6 1.34610e6i −0.199575 0.199575i
\(540\) 0 0
\(541\) −1.18352e6 + 1.18352e6i −0.173853 + 0.173853i −0.788670 0.614817i \(-0.789230\pi\)
0.614817 + 0.788670i \(0.289230\pi\)
\(542\) 0 0
\(543\) −402577. −0.0585935
\(544\) 0 0
\(545\) −7.96704e6 −1.14896
\(546\) 0 0
\(547\) −3.51313e6 + 3.51313e6i −0.502026 + 0.502026i −0.912067 0.410041i \(-0.865514\pi\)
0.410041 + 0.912067i \(0.365514\pi\)
\(548\) 0 0
\(549\) −5.88707e6 5.88707e6i −0.833620 0.833620i
\(550\) 0 0
\(551\) 1.74103e6i 0.244302i
\(552\) 0 0
\(553\) 4.38123e6i 0.609232i
\(554\) 0 0
\(555\) 2.27776e6 + 2.27776e6i 0.313889 + 0.313889i
\(556\) 0 0
\(557\) 7.03090e6 7.03090e6i 0.960225 0.960225i −0.0390140 0.999239i \(-0.512422\pi\)
0.999239 + 0.0390140i \(0.0124217\pi\)
\(558\) 0 0
\(559\) −447198. −0.0605299
\(560\) 0 0
\(561\) −2.30289e6 −0.308935
\(562\) 0 0
\(563\) 1.90977e6 1.90977e6i 0.253928 0.253928i −0.568651 0.822579i \(-0.692534\pi\)
0.822579 + 0.568651i \(0.192534\pi\)
\(564\) 0 0
\(565\) 280565. + 280565.i 0.0369753 + 0.0369753i
\(566\) 0 0
\(567\) 3.73703e6i 0.488168i
\(568\) 0 0
\(569\) 7.90850e6i 1.02403i −0.858976 0.512016i \(-0.828899\pi\)
0.858976 0.512016i \(-0.171101\pi\)
\(570\) 0 0
\(571\) 4.47066e6 + 4.47066e6i 0.573827 + 0.573827i 0.933196 0.359369i \(-0.117008\pi\)
−0.359369 + 0.933196i \(0.617008\pi\)
\(572\) 0 0
\(573\) −2.30310e6 + 2.30310e6i −0.293039 + 0.293039i
\(574\) 0 0
\(575\) −242375. −0.0305716
\(576\) 0 0
\(577\) 1.01680e7 1.27144 0.635718 0.771921i \(-0.280704\pi\)
0.635718 + 0.771921i \(0.280704\pi\)
\(578\) 0 0
\(579\) −1.30232e6 + 1.30232e6i −0.161443 + 0.161443i
\(580\) 0 0
\(581\) −2.65009e6 2.65009e6i −0.325702 0.325702i
\(582\) 0 0
\(583\) 978440.i 0.119224i
\(584\) 0 0
\(585\) 986055.i 0.119127i
\(586\) 0 0
\(587\) −8.14994e6 8.14994e6i −0.976245 0.976245i 0.0234789 0.999724i \(-0.492526\pi\)
−0.999724 + 0.0234789i \(0.992526\pi\)
\(588\) 0 0
\(589\) −2.75411e6 + 2.75411e6i −0.327110 + 0.327110i
\(590\) 0 0
\(591\) −20436.2 −0.00240676
\(592\) 0 0
\(593\) −6.47036e6 −0.755599 −0.377800 0.925887i \(-0.623319\pi\)
−0.377800 + 0.925887i \(0.623319\pi\)
\(594\) 0 0
\(595\) 3.75956e6 3.75956e6i 0.435356 0.435356i
\(596\) 0 0
\(597\) 2.17132e6 + 2.17132e6i 0.249337 + 0.249337i
\(598\) 0 0
\(599\) 6.94195e6i 0.790522i 0.918569 + 0.395261i \(0.129346\pi\)
−0.918569 + 0.395261i \(0.870654\pi\)
\(600\) 0 0
\(601\) 1.37265e6i 0.155015i −0.996992 0.0775077i \(-0.975304\pi\)
0.996992 0.0775077i \(-0.0246962\pi\)
\(602\) 0 0
\(603\) 1.04339e7 + 1.04339e7i 1.16857 + 1.16857i
\(604\) 0 0
\(605\) 1.34247e6 1.34247e6i 0.149113 0.149113i
\(606\) 0 0
\(607\) −4.97819e6 −0.548403 −0.274202 0.961672i \(-0.588414\pi\)
−0.274202 + 0.961672i \(0.588414\pi\)
\(608\) 0 0
\(609\) 690436. 0.0754363
\(610\) 0 0
\(611\) 1.92856e6 1.92856e6i 0.208992 0.208992i
\(612\) 0 0
\(613\) 1.08631e7 + 1.08631e7i 1.16762 + 1.16762i 0.982766 + 0.184853i \(0.0591811\pi\)
0.184853 + 0.982766i \(0.440819\pi\)
\(614\) 0 0
\(615\) 3.69087e6i 0.393497i
\(616\) 0 0
\(617\) 2.49531e6i 0.263883i −0.991257 0.131942i \(-0.957879\pi\)
0.991257 0.131942i \(-0.0421212\pi\)
\(618\) 0 0
\(619\) −1.42870e6 1.42870e6i −0.149869 0.149869i 0.628190 0.778060i \(-0.283796\pi\)
−0.778060 + 0.628190i \(0.783796\pi\)
\(620\) 0 0
\(621\) 373175. 373175.i 0.0388315 0.0388315i
\(622\) 0 0
\(623\) −8.55990e6 −0.883585
\(624\) 0 0
\(625\) 4.49317e6 0.460101
\(626\) 0 0
\(627\) −2.22497e6 + 2.22497e6i −0.226025 + 0.226025i
\(628\) 0 0
\(629\) 1.02044e7 + 1.02044e7i 1.02840 + 1.02840i
\(630\) 0 0
\(631\) 6.58495e6i 0.658383i 0.944263 + 0.329192i \(0.106776\pi\)
−0.944263 + 0.329192i \(0.893224\pi\)
\(632\) 0 0
\(633\) 4.29581e6i 0.426123i
\(634\) 0 0
\(635\) −5.61995e6 5.61995e6i −0.553093 0.553093i
\(636\) 0 0
\(637\) 424320. 424320.i 0.0414329 0.0414329i
\(638\) 0 0
\(639\) 1.66019e7 1.60844
\(640\) 0 0
\(641\) −1.49887e7 −1.44085 −0.720424 0.693534i \(-0.756053\pi\)
−0.720424 + 0.693534i \(0.756053\pi\)
\(642\) 0 0
\(643\) −866306. + 866306.i −0.0826312 + 0.0826312i −0.747214 0.664583i \(-0.768609\pi\)
0.664583 + 0.747214i \(0.268609\pi\)
\(644\) 0 0
\(645\) −748677. 748677.i −0.0708591 0.0708591i
\(646\) 0 0
\(647\) 1.73107e7i 1.62575i −0.582435 0.812877i \(-0.697900\pi\)
0.582435 0.812877i \(-0.302100\pi\)
\(648\) 0 0
\(649\) 4.38014e6i 0.408203i
\(650\) 0 0
\(651\) 1.09219e6 + 1.09219e6i 0.101006 + 0.101006i
\(652\) 0 0
\(653\) −6.59868e6 + 6.59868e6i −0.605583 + 0.605583i −0.941789 0.336205i \(-0.890856\pi\)
0.336205 + 0.941789i \(0.390856\pi\)
\(654\) 0 0
\(655\) 3.93554e6 0.358427
\(656\) 0 0
\(657\) 1.45645e7 1.31638
\(658\) 0 0
\(659\) 9.31741e6 9.31741e6i 0.835760 0.835760i −0.152537 0.988298i \(-0.548744\pi\)
0.988298 + 0.152537i \(0.0487445\pi\)
\(660\) 0 0
\(661\) −7.53377e6 7.53377e6i −0.670670 0.670670i 0.287200 0.957871i \(-0.407275\pi\)
−0.957871 + 0.287200i \(0.907275\pi\)
\(662\) 0 0
\(663\) 725921.i 0.0641365i
\(664\) 0 0
\(665\) 7.26471e6i 0.637036i
\(666\) 0 0
\(667\) 156765. + 156765.i 0.0136438 + 0.0136438i
\(668\) 0 0
\(669\) −5.12293e6 + 5.12293e6i −0.442541 + 0.442541i
\(670\) 0 0
\(671\) 1.36807e7 1.17301
\(672\) 0 0
\(673\) 5.96425e6 0.507596 0.253798 0.967257i \(-0.418320\pi\)
0.253798 + 0.967257i \(0.418320\pi\)
\(674\) 0 0
\(675\) 2.27245e6 2.27245e6i 0.191970 0.191970i
\(676\) 0 0
\(677\) 1.43516e7 + 1.43516e7i 1.20345 + 1.20345i 0.973110 + 0.230340i \(0.0739840\pi\)
0.230340 + 0.973110i \(0.426016\pi\)
\(678\) 0 0
\(679\) 9.15381e6i 0.761952i
\(680\) 0 0
\(681\) 5.17158e6i 0.427322i
\(682\) 0 0
\(683\) −2.28096e6 2.28096e6i −0.187096 0.187096i 0.607343 0.794440i \(-0.292235\pi\)
−0.794440 + 0.607343i \(0.792235\pi\)
\(684\) 0 0
\(685\) −1.38677e6 + 1.38677e6i −0.112922 + 0.112922i
\(686\) 0 0
\(687\) −2.79589e6 −0.226011
\(688\) 0 0
\(689\) 308425. 0.0247515
\(690\) 0 0
\(691\) 1.07640e7 1.07640e7i 0.857592 0.857592i −0.133462 0.991054i \(-0.542610\pi\)
0.991054 + 0.133462i \(0.0426095\pi\)
\(692\) 0 0
\(693\) −5.36949e6 5.36949e6i −0.424717 0.424717i
\(694\) 0 0
\(695\) 2.91471e6i 0.228893i
\(696\) 0 0
\(697\) 1.65352e7i 1.28922i
\(698\) 0 0
\(699\) 5.66366e6 + 5.66366e6i 0.438434 + 0.438434i
\(700\) 0 0
\(701\) −6.90269e6 + 6.90269e6i −0.530546 + 0.530546i −0.920735 0.390189i \(-0.872410\pi\)
0.390189 + 0.920735i \(0.372410\pi\)
\(702\) 0 0
\(703\) 1.97183e7 1.50481
\(704\) 0 0
\(705\) 6.45740e6 0.489311
\(706\) 0 0
\(707\) 1.13114e7 1.13114e7i 0.851076 0.851076i
\(708\) 0 0
\(709\) −1.40814e7 1.40814e7i −1.05203 1.05203i −0.998570 0.0534618i \(-0.982974\pi\)
−0.0534618 0.998570i \(-0.517026\pi\)
\(710\) 0 0
\(711\) 8.61856e6i 0.639382i
\(712\) 0 0
\(713\) 495970.i 0.0365369i
\(714\) 0 0
\(715\) −1.14572e6 1.14572e6i −0.0838134 0.0838134i
\(716\) 0 0
\(717\) 264641. 264641.i 0.0192247 0.0192247i
\(718\) 0 0
\(719\) −7.42194e6 −0.535421 −0.267710 0.963499i \(-0.586267\pi\)
−0.267710 + 0.963499i \(0.586267\pi\)
\(720\) 0 0
\(721\) 5.76588e6 0.413073
\(722\) 0 0
\(723\) 6.15454e6 6.15454e6i 0.437875 0.437875i
\(724\) 0 0
\(725\) 954620. + 954620.i 0.0674506 + 0.0674506i
\(726\) 0 0
\(727\) 9.63189e6i 0.675889i −0.941166 0.337945i \(-0.890268\pi\)
0.941166 0.337945i \(-0.109732\pi\)
\(728\) 0 0
\(729\) 3.58688e6i 0.249976i
\(730\) 0 0
\(731\) −3.35409e6 3.35409e6i −0.232157 0.232157i
\(732\) 0 0
\(733\) −1.28845e7 + 1.28845e7i −0.885743 + 0.885743i −0.994111 0.108368i \(-0.965438\pi\)
0.108368 + 0.994111i \(0.465438\pi\)
\(734\) 0 0
\(735\) 1.42076e6 0.0970065
\(736\) 0 0
\(737\) −2.42469e7 −1.64433
\(738\) 0 0
\(739\) −1.36646e7 + 1.36646e7i −0.920419 + 0.920419i −0.997059 0.0766398i \(-0.975581\pi\)
0.0766398 + 0.997059i \(0.475581\pi\)
\(740\) 0 0
\(741\) −701358. 701358.i −0.0469239 0.0469239i
\(742\) 0 0
\(743\) 2.75851e7i 1.83317i −0.399839 0.916585i \(-0.630934\pi\)
0.399839 0.916585i \(-0.369066\pi\)
\(744\) 0 0
\(745\) 9.42229e6i 0.621965i
\(746\) 0 0
\(747\) 5.21314e6 + 5.21314e6i 0.341820 + 0.341820i
\(748\) 0 0
\(749\) 9.19781e6 9.19781e6i 0.599073 0.599073i
\(750\) 0 0
\(751\) 7.42138e6 0.480159 0.240079 0.970753i \(-0.422827\pi\)
0.240079 + 0.970753i \(0.422827\pi\)
\(752\) 0 0
\(753\) −5.17016e6 −0.332289
\(754\) 0 0
\(755\) 7.91353e6 7.91353e6i 0.505246 0.505246i
\(756\) 0 0
\(757\) 1.45162e7 + 1.45162e7i 0.920688 + 0.920688i 0.997078 0.0763903i \(-0.0243395\pi\)
−0.0763903 + 0.997078i \(0.524340\pi\)
\(758\) 0 0
\(759\) 400680.i 0.0252460i
\(760\) 0 0
\(761\) 3.30896e6i 0.207124i −0.994623 0.103562i \(-0.966976\pi\)
0.994623 0.103562i \(-0.0330240\pi\)
\(762\) 0 0
\(763\) 1.36755e7 + 1.36755e7i 0.850420 + 0.850420i
\(764\) 0 0
\(765\) −7.39565e6 + 7.39565e6i −0.456902 + 0.456902i
\(766\) 0 0
\(767\) 1.38071e6 0.0847452
\(768\) 0 0
\(769\) 2.42921e6 0.148132 0.0740660 0.997253i \(-0.476402\pi\)
0.0740660 + 0.997253i \(0.476402\pi\)
\(770\) 0 0
\(771\) −1.85858e6 + 1.85858e6i −0.112602 + 0.112602i
\(772\) 0 0
\(773\) 1.11912e7 + 1.11912e7i 0.673638 + 0.673638i 0.958553 0.284915i \(-0.0919652\pi\)
−0.284915 + 0.958553i \(0.591965\pi\)
\(774\) 0 0
\(775\) 3.02020e6i 0.180627i
\(776\) 0 0
\(777\) 7.81962e6i 0.464658i
\(778\) 0 0
\(779\) −1.59757e7 1.59757e7i −0.943227 0.943227i
\(780\) 0 0
\(781\) −1.92901e7 + 1.92901e7i −1.13164 + 1.13164i
\(782\) 0 0
\(783\) −2.93958e6 −0.171349
\(784\) 0 0
\(785\) −6.50924e6 −0.377013
\(786\) 0 0
\(787\) 1.46098e7 1.46098e7i 0.840827 0.840827i −0.148140 0.988966i \(-0.547329\pi\)
0.988966 + 0.148140i \(0.0473285\pi\)
\(788\) 0 0
\(789\) 27787.4 + 27787.4i 0.00158912 + 0.00158912i
\(790\) 0 0
\(791\) 963187.i 0.0547356i
\(792\) 0 0
\(793\) 4.31243e6i 0.243523i
\(794\) 0 0
\(795\) 516351. + 516351.i 0.0289752 + 0.0289752i
\(796\) 0 0
\(797\) 1.39108e7 1.39108e7i 0.775722 0.775722i −0.203378 0.979100i \(-0.565192\pi\)
0.979100 + 0.203378i \(0.0651921\pi\)
\(798\) 0 0
\(799\) 2.89293e7 1.60314
\(800\) 0 0
\(801\) 1.68387e7 0.927313
\(802\) 0 0
\(803\) −1.69228e7 + 1.69228e7i −0.926154 + 0.926154i
\(804\) 0 0
\(805\) −654126. 654126.i −0.0355772 0.0355772i
\(806\) 0 0
\(807\) 5.48162e6i 0.296295i
\(808\) 0 0
\(809\) 1.33829e7i 0.718915i −0.933161 0.359458i \(-0.882962\pi\)
0.933161 0.359458i \(-0.117038\pi\)
\(810\) 0 0
\(811\) 2.91352e6 + 2.91352e6i 0.155548 + 0.155548i 0.780591 0.625042i \(-0.214918\pi\)
−0.625042 + 0.780591i \(0.714918\pi\)
\(812\) 0 0
\(813\) 9.53852e6 9.53852e6i 0.506121 0.506121i
\(814\) 0 0
\(815\) −2.52633e7 −1.33228
\(816\) 0 0
\(817\) −6.48120e6 −0.339704
\(818\) 0 0
\(819\) 1.69258e6 1.69258e6i 0.0881736 0.0881736i
\(820\) 0 0
\(821\) 1.82737e7 + 1.82737e7i 0.946170 + 0.946170i 0.998623 0.0524535i \(-0.0167041\pi\)
−0.0524535 + 0.998623i \(0.516704\pi\)
\(822\) 0 0
\(823\) 3.21353e7i 1.65380i 0.562350 + 0.826899i \(0.309897\pi\)
−0.562350 + 0.826899i \(0.690103\pi\)
\(824\) 0 0
\(825\) 2.43994e6i 0.124808i
\(826\) 0 0
\(827\) −6.74973e6 6.74973e6i −0.343181 0.343181i 0.514381 0.857562i \(-0.328022\pi\)
−0.857562 + 0.514381i \(0.828022\pi\)
\(828\) 0 0
\(829\) 6.28329e6 6.28329e6i 0.317542 0.317542i −0.530280 0.847822i \(-0.677913\pi\)
0.847822 + 0.530280i \(0.177913\pi\)
\(830\) 0 0
\(831\) 6.81814e6 0.342502
\(832\) 0 0
\(833\) 6.36501e6 0.317824
\(834\) 0 0
\(835\) −1.45516e7 + 1.45516e7i −0.722261 + 0.722261i
\(836\) 0 0
\(837\) −4.65008e6 4.65008e6i −0.229428 0.229428i
\(838\) 0 0
\(839\) 444643.i 0.0218076i 0.999941 + 0.0109038i \(0.00347085\pi\)
−0.999941 + 0.0109038i \(0.996529\pi\)
\(840\) 0 0
\(841\) 1.92763e7i 0.939795i
\(842\) 0 0
\(843\) −7.27220e6 7.27220e6i −0.352449 0.352449i
\(844\) 0 0
\(845\) −1.11133e7 + 1.11133e7i −0.535428 + 0.535428i
\(846\) 0 0
\(847\) −4.60873e6 −0.220736
\(848\) 0 0
\(849\) 1.29177e6 0.0615056
\(850\) 0 0
\(851\) 1.77547e6 1.77547e6i 0.0840404 0.0840404i
\(852\) 0 0
\(853\) −2.78792e7 2.78792e7i −1.31192 1.31192i −0.919997 0.391926i \(-0.871809\pi\)
−0.391926 0.919997i \(-0.628191\pi\)
\(854\) 0 0
\(855\) 1.42908e7i 0.668562i
\(856\) 0 0
\(857\) 3.64539e6i 0.169548i 0.996400 + 0.0847739i \(0.0270168\pi\)
−0.996400 + 0.0847739i \(0.972983\pi\)
\(858\) 0 0
\(859\) 2.62514e7 + 2.62514e7i 1.21386 + 1.21386i 0.969745 + 0.244119i \(0.0784989\pi\)
0.244119 + 0.969745i \(0.421501\pi\)
\(860\) 0 0
\(861\) −6.33544e6 + 6.33544e6i −0.291252 + 0.291252i
\(862\) 0 0
\(863\) −1.28317e7 −0.586484 −0.293242 0.956038i \(-0.594734\pi\)
−0.293242 + 0.956038i \(0.594734\pi\)
\(864\) 0 0
\(865\) 1.20691e7 0.548447
\(866\) 0 0
\(867\) −435041. + 435041.i −0.0196554 + 0.0196554i
\(868\) 0 0
\(869\) −1.00141e7 1.00141e7i −0.449845 0.449845i
\(870\) 0 0
\(871\) 7.64314e6i 0.341371i
\(872\) 0 0
\(873\) 1.80070e7i 0.799660i
\(874\) 0 0
\(875\) −1.42294e7 1.42294e7i −0.628298 0.628298i
\(876\) 0 0
\(877\) 2.24287e7 2.24287e7i 0.984702 0.984702i −0.0151830 0.999885i \(-0.504833\pi\)
0.999885 + 0.0151830i \(0.00483307\pi\)
\(878\) 0 0
\(879\) 5.65792e6 0.246993
\(880\) 0 0
\(881\) −1.01470e6 −0.0440451 −0.0220226 0.999757i \(-0.507011\pi\)
−0.0220226 + 0.999757i \(0.507011\pi\)
\(882\) 0 0
\(883\) 5.83316e6 5.83316e6i 0.251769 0.251769i −0.569927 0.821696i \(-0.693028\pi\)
0.821696 + 0.569927i \(0.193028\pi\)
\(884\) 0 0
\(885\) 2.31153e6 + 2.31153e6i 0.0992066 + 0.0992066i
\(886\) 0 0
\(887\) 2.57739e7i 1.09994i −0.835183 0.549972i \(-0.814638\pi\)
0.835183 0.549972i \(-0.185362\pi\)
\(888\) 0 0
\(889\) 1.92935e7i 0.818758i
\(890\) 0 0
\(891\) 8.54168e6 + 8.54168e6i 0.360453 + 0.360453i
\(892\) 0 0
\(893\) 2.79504e7 2.79504e7i 1.17290 1.17290i
\(894\) 0 0
\(895\) −3.25541e7 −1.35847
\(896\) 0 0
\(897\) −126303. −0.00524122
\(898\) 0 0
\(899\) 1.95343e6 1.95343e6i 0.0806117 0.0806117i
\(900\) 0 0
\(901\) 2.31326e6 + 2.31326e6i 0.0949321 + 0.0949321i
\(902\) 0 0
\(903\) 2.57023e6i 0.104895i
\(904\) 0 0
\(905\) 3.00441e6i 0.121938i
\(906\) 0 0
\(907\) −2.87884e6 2.87884e6i −0.116198 0.116198i 0.646617 0.762815i \(-0.276183\pi\)
−0.762815 + 0.646617i \(0.776183\pi\)
\(908\) 0 0
\(909\) −2.22513e7 + 2.22513e7i −0.893194 + 0.893194i
\(910\) 0 0
\(911\) −3.57373e7 −1.42668 −0.713338 0.700820i \(-0.752818\pi\)
−0.713338 + 0.700820i \(0.752818\pi\)
\(912\) 0 0
\(913\) −1.21145e7 −0.480984
\(914\) 0 0
\(915\) −7.21967e6 + 7.21967e6i −0.285079 + 0.285079i
\(916\) 0 0
\(917\) −6.75541e6 6.75541e6i −0.265294 0.265294i
\(918\) 0 0
\(919\) 2.91848e7i 1.13990i 0.821678 + 0.569952i \(0.193038\pi\)
−0.821678 + 0.569952i \(0.806962\pi\)
\(920\) 0 0
\(921\) 2.25049e6i 0.0874234i
\(922\) 0 0
\(923\) −6.08066e6 6.08066e6i −0.234934 0.234934i
\(924\) 0 0
\(925\) 1.08117e7 1.08117e7i 0.415469 0.415469i
\(926\) 0 0
\(927\) −1.13424e7 −0.433516
\(928\) 0 0
\(929\) −3.60526e6 −0.137056 −0.0685279 0.997649i \(-0.521830\pi\)
−0.0685279 + 0.997649i \(0.521830\pi\)
\(930\) 0 0
\(931\) 6.14964e6 6.14964e6i 0.232528 0.232528i
\(932\) 0 0
\(933\) −1.08129e7 1.08129e7i −0.406665 0.406665i
\(934\) 0 0
\(935\) 1.71864e7i 0.642917i
\(936\) 0 0
\(937\) 4.92155e7i 1.83127i 0.402010 + 0.915635i \(0.368312\pi\)
−0.402010 + 0.915635i \(0.631688\pi\)
\(938\) 0 0
\(939\) −5.35075e6 5.35075e6i −0.198039 0.198039i
\(940\) 0 0
\(941\) 3.04022e7 3.04022e7i 1.11926 1.11926i 0.127410 0.991850i \(-0.459334\pi\)
0.991850 0.127410i \(-0.0406664\pi\)
\(942\) 0 0
\(943\) −2.87695e6 −0.105355
\(944\) 0 0
\(945\) 1.22658e7 0.446804
\(946\) 0 0
\(947\) −3.27173e7 + 3.27173e7i −1.18550 + 1.18550i −0.207203 + 0.978298i \(0.566436\pi\)
−0.978298 + 0.207203i \(0.933564\pi\)
\(948\) 0 0
\(949\) −5.33442e6 5.33442e6i −0.192275 0.192275i
\(950\) 0 0
\(951\) 1.33989e7i 0.480417i
\(952\) 0 0
\(953\) 2.41105e7i 0.859953i 0.902840 + 0.429976i \(0.141478\pi\)
−0.902840 + 0.429976i \(0.858522\pi\)
\(954\) 0 0
\(955\) −1.71879e7 1.71879e7i −0.609837 0.609837i
\(956\) 0 0
\(957\) 1.57812e6 1.57812e6i 0.0557006 0.0557006i
\(958\) 0 0
\(959\) 4.76081e6 0.167161
\(960\) 0 0
\(961\) −2.24489e7 −0.784129
\(962\) 0 0
\(963\) −1.80935e7 + 1.80935e7i −0.628720 + 0.628720i
\(964\) 0 0
\(965\) −9.71911e6 9.71911e6i −0.335976 0.335976i
\(966\) 0 0
\(967\) 5.12206e6i 0.176148i 0.996114 + 0.0880742i \(0.0280713\pi\)
−0.996114 + 0.0880742i \(0.971929\pi\)
\(968\) 0 0
\(969\) 1.05207e7i 0.359945i
\(970\) 0 0
\(971\) 2.08093e6 + 2.08093e6i 0.0708288 + 0.0708288i 0.741634 0.670805i \(-0.234051\pi\)
−0.670805 + 0.741634i \(0.734051\pi\)
\(972\) 0 0
\(973\) −5.00314e6 + 5.00314e6i −0.169418 + 0.169418i
\(974\) 0 0
\(975\) −769120. −0.0259109
\(976\) 0 0
\(977\) −2.50049e7 −0.838085 −0.419043 0.907967i \(-0.637634\pi\)
−0.419043 + 0.907967i \(0.637634\pi\)
\(978\) 0 0
\(979\) −1.95652e7 + 1.95652e7i −0.652422 + 0.652422i
\(980\) 0 0
\(981\) −2.69019e7 2.69019e7i −0.892506 0.892506i
\(982\) 0 0
\(983\) 3.32909e7i 1.09886i 0.835541 + 0.549429i \(0.185155\pi\)
−0.835541 + 0.549429i \(0.814845\pi\)
\(984\) 0 0
\(985\) 152514.i 0.00500864i
\(986\) 0 0
\(987\) −1.10842e7 1.10842e7i −0.362170 0.362170i
\(988\) 0 0
\(989\) −583577. + 583577.i −0.0189718 + 0.0189718i
\(990\) 0 0
\(991\) 1.62983e7 0.527179 0.263589 0.964635i \(-0.415094\pi\)
0.263589 + 0.964635i \(0.415094\pi\)
\(992\) 0 0
\(993\) 2.01869e7 0.649676
\(994\) 0 0
\(995\) −1.62044e7 + 1.62044e7i −0.518890 + 0.518890i
\(996\) 0 0
\(997\) 2.79951e7 + 2.79951e7i 0.891957 + 0.891957i 0.994707 0.102750i \(-0.0327643\pi\)
−0.102750 + 0.994707i \(0.532764\pi\)
\(998\) 0 0
\(999\) 3.32926e7i 1.05544i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.6.e.c.193.7 yes 24
4.3 odd 2 inner 256.6.e.c.193.6 yes 24
8.3 odd 2 256.6.e.d.193.7 yes 24
8.5 even 2 256.6.e.d.193.6 yes 24
16.3 odd 4 inner 256.6.e.c.65.6 24
16.5 even 4 256.6.e.d.65.6 yes 24
16.11 odd 4 256.6.e.d.65.7 yes 24
16.13 even 4 inner 256.6.e.c.65.7 yes 24
32.3 odd 8 1024.6.a.h.1.7 12
32.13 even 8 1024.6.a.h.1.8 12
32.19 odd 8 1024.6.a.j.1.6 12
32.29 even 8 1024.6.a.j.1.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
256.6.e.c.65.6 24 16.3 odd 4 inner
256.6.e.c.65.7 yes 24 16.13 even 4 inner
256.6.e.c.193.6 yes 24 4.3 odd 2 inner
256.6.e.c.193.7 yes 24 1.1 even 1 trivial
256.6.e.d.65.6 yes 24 16.5 even 4
256.6.e.d.65.7 yes 24 16.11 odd 4
256.6.e.d.193.6 yes 24 8.5 even 2
256.6.e.d.193.7 yes 24 8.3 odd 2
1024.6.a.h.1.7 12 32.3 odd 8
1024.6.a.h.1.8 12 32.13 even 8
1024.6.a.j.1.5 12 32.29 even 8
1024.6.a.j.1.6 12 32.19 odd 8