Newspace parameters
| Level: | \( N \) | \(=\) | \( 256 = 2^{8} \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 256.e (of order \(4\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(41.0582578721\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Relative dimension: | \(12\) over \(\Q(i)\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 65.1 | 0 | −17.5695 | − | 17.5695i | 0 | −43.4890 | + | 43.4890i | 0 | 227.856i | 0 | 374.378i | 0 | ||||||||||||||
| 65.2 | 0 | −14.1218 | − | 14.1218i | 0 | −23.0034 | + | 23.0034i | 0 | − | 38.9237i | 0 | 155.852i | 0 | |||||||||||||
| 65.3 | 0 | −13.0057 | − | 13.0057i | 0 | −4.08320 | + | 4.08320i | 0 | − | 44.6895i | 0 | 95.2962i | 0 | |||||||||||||
| 65.4 | 0 | −9.76896 | − | 9.76896i | 0 | −57.3733 | + | 57.3733i | 0 | − | 89.3741i | 0 | − | 52.1348i | 0 | ||||||||||||
| 65.5 | 0 | −8.37595 | − | 8.37595i | 0 | 57.0449 | − | 57.0449i | 0 | 33.9058i | 0 | − | 102.687i | 0 | |||||||||||||
| 65.6 | 0 | −4.14100 | − | 4.14100i | 0 | 30.9040 | − | 30.9040i | 0 | − | 106.094i | 0 | − | 208.704i | 0 | ||||||||||||
| 65.7 | 0 | 4.14100 | + | 4.14100i | 0 | 30.9040 | − | 30.9040i | 0 | 106.094i | 0 | − | 208.704i | 0 | |||||||||||||
| 65.8 | 0 | 8.37595 | + | 8.37595i | 0 | 57.0449 | − | 57.0449i | 0 | − | 33.9058i | 0 | − | 102.687i | 0 | ||||||||||||
| 65.9 | 0 | 9.76896 | + | 9.76896i | 0 | −57.3733 | + | 57.3733i | 0 | 89.3741i | 0 | − | 52.1348i | 0 | |||||||||||||
| 65.10 | 0 | 13.0057 | + | 13.0057i | 0 | −4.08320 | + | 4.08320i | 0 | 44.6895i | 0 | 95.2962i | 0 | ||||||||||||||
| 65.11 | 0 | 14.1218 | + | 14.1218i | 0 | −23.0034 | + | 23.0034i | 0 | 38.9237i | 0 | 155.852i | 0 | ||||||||||||||
| 65.12 | 0 | 17.5695 | + | 17.5695i | 0 | −43.4890 | + | 43.4890i | 0 | − | 227.856i | 0 | 374.378i | 0 | |||||||||||||
| 193.1 | 0 | −17.5695 | + | 17.5695i | 0 | −43.4890 | − | 43.4890i | 0 | − | 227.856i | 0 | − | 374.378i | 0 | ||||||||||||
| 193.2 | 0 | −14.1218 | + | 14.1218i | 0 | −23.0034 | − | 23.0034i | 0 | 38.9237i | 0 | − | 155.852i | 0 | |||||||||||||
| 193.3 | 0 | −13.0057 | + | 13.0057i | 0 | −4.08320 | − | 4.08320i | 0 | 44.6895i | 0 | − | 95.2962i | 0 | |||||||||||||
| 193.4 | 0 | −9.76896 | + | 9.76896i | 0 | −57.3733 | − | 57.3733i | 0 | 89.3741i | 0 | 52.1348i | 0 | ||||||||||||||
| 193.5 | 0 | −8.37595 | + | 8.37595i | 0 | 57.0449 | + | 57.0449i | 0 | − | 33.9058i | 0 | 102.687i | 0 | |||||||||||||
| 193.6 | 0 | −4.14100 | + | 4.14100i | 0 | 30.9040 | + | 30.9040i | 0 | 106.094i | 0 | 208.704i | 0 | ||||||||||||||
| 193.7 | 0 | 4.14100 | − | 4.14100i | 0 | 30.9040 | + | 30.9040i | 0 | − | 106.094i | 0 | 208.704i | 0 | |||||||||||||
| 193.8 | 0 | 8.37595 | − | 8.37595i | 0 | 57.0449 | + | 57.0449i | 0 | 33.9058i | 0 | 102.687i | 0 | ||||||||||||||
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 4.b | odd | 2 | 1 | inner |
| 16.e | even | 4 | 1 | inner |
| 16.f | odd | 4 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 256.6.e.c | ✓ | 24 |
| 4.b | odd | 2 | 1 | inner | 256.6.e.c | ✓ | 24 |
| 8.b | even | 2 | 1 | 256.6.e.d | yes | 24 | |
| 8.d | odd | 2 | 1 | 256.6.e.d | yes | 24 | |
| 16.e | even | 4 | 1 | inner | 256.6.e.c | ✓ | 24 |
| 16.e | even | 4 | 1 | 256.6.e.d | yes | 24 | |
| 16.f | odd | 4 | 1 | inner | 256.6.e.c | ✓ | 24 |
| 16.f | odd | 4 | 1 | 256.6.e.d | yes | 24 | |
| 32.g | even | 8 | 1 | 1024.6.a.h | 12 | ||
| 32.g | even | 8 | 1 | 1024.6.a.j | 12 | ||
| 32.h | odd | 8 | 1 | 1024.6.a.h | 12 | ||
| 32.h | odd | 8 | 1 | 1024.6.a.j | 12 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 256.6.e.c | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
| 256.6.e.c | ✓ | 24 | 4.b | odd | 2 | 1 | inner |
| 256.6.e.c | ✓ | 24 | 16.e | even | 4 | 1 | inner |
| 256.6.e.c | ✓ | 24 | 16.f | odd | 4 | 1 | inner |
| 256.6.e.d | yes | 24 | 8.b | even | 2 | 1 | |
| 256.6.e.d | yes | 24 | 8.d | odd | 2 | 1 | |
| 256.6.e.d | yes | 24 | 16.e | even | 4 | 1 | |
| 256.6.e.d | yes | 24 | 16.f | odd | 4 | 1 | |
| 1024.6.a.h | 12 | 32.g | even | 8 | 1 | ||
| 1024.6.a.h | 12 | 32.h | odd | 8 | 1 | ||
| 1024.6.a.j | 12 | 32.g | even | 8 | 1 | ||
| 1024.6.a.j | 12 | 32.h | odd | 8 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(256, [\chi])\):
|
\( T_{3}^{24} + 711976 T_{3}^{20} + 160754791152 T_{3}^{16} + \cdots + 58\!\cdots\!16 \)
|
|
\( T_{5}^{12} + 80 T_{5}^{11} + 3200 T_{5}^{10} - 5600 T_{5}^{9} + 46819948 T_{5}^{8} + \cdots + 10\!\cdots\!96 \)
|