| L(s) = 1 | + (−17.5 + 17.5i)3-s + (−43.4 − 43.4i)5-s − 227. i·7-s − 374. i·9-s + (−483. − 483. i)11-s + (177. − 177. i)13-s + 1.52e3·15-s + 575.·17-s + (−1.39e3 + 1.39e3i)19-s + (4.00e3 + 4.00e3i)21-s − 2.67e3i·23-s + 657. i·25-s + (2.30e3 + 2.30e3i)27-s + (2.91e3 − 2.91e3i)29-s − 2.71e3·31-s + ⋯ |
| L(s) = 1 | + (−1.12 + 1.12i)3-s + (−0.777 − 0.777i)5-s − 1.75i·7-s − 1.54i·9-s + (−1.20 − 1.20i)11-s + (0.290 − 0.290i)13-s + 1.75·15-s + 0.482·17-s + (−0.889 + 0.889i)19-s + (1.98 + 1.98i)21-s − 1.05i·23-s + 0.210i·25-s + (0.609 + 0.609i)27-s + (0.642 − 0.642i)29-s − 0.507·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.793 - 0.608i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.793 - 0.608i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(3)\) |
\(\approx\) |
\(0.3132066637\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3132066637\) |
| \(L(\frac{7}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| good | 3 | \( 1 + (17.5 - 17.5i)T - 243iT^{2} \) |
| 5 | \( 1 + (43.4 + 43.4i)T + 3.12e3iT^{2} \) |
| 7 | \( 1 + 227. iT - 1.68e4T^{2} \) |
| 11 | \( 1 + (483. + 483. i)T + 1.61e5iT^{2} \) |
| 13 | \( 1 + (-177. + 177. i)T - 3.71e5iT^{2} \) |
| 17 | \( 1 - 575.T + 1.41e6T^{2} \) |
| 19 | \( 1 + (1.39e3 - 1.39e3i)T - 2.47e6iT^{2} \) |
| 23 | \( 1 + 2.67e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 + (-2.91e3 + 2.91e3i)T - 2.05e7iT^{2} \) |
| 31 | \( 1 + 2.71e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + (1.42e3 + 1.42e3i)T + 6.93e7iT^{2} \) |
| 41 | \( 1 + 4.36e3iT - 1.15e8T^{2} \) |
| 43 | \( 1 + (9.39e3 + 9.39e3i)T + 1.47e8iT^{2} \) |
| 47 | \( 1 - 2.55e3T + 2.29e8T^{2} \) |
| 53 | \( 1 + (5.32e3 + 5.32e3i)T + 4.18e8iT^{2} \) |
| 59 | \( 1 + (-1.41e4 - 1.41e4i)T + 7.14e8iT^{2} \) |
| 61 | \( 1 + (6.91e3 - 6.91e3i)T - 8.44e8iT^{2} \) |
| 67 | \( 1 + (-3.78e4 + 3.78e4i)T - 1.35e9iT^{2} \) |
| 71 | \( 1 + 2.02e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 + 6.54e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 + 1.01e5T + 3.07e9T^{2} \) |
| 83 | \( 1 + (6.65e4 - 6.65e4i)T - 3.93e9iT^{2} \) |
| 89 | \( 1 - 7.06e4iT - 5.58e9T^{2} \) |
| 97 | \( 1 - 1.02e5T + 8.58e9T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48791564396296841060392900877, −10.22041793177204019603762723667, −8.532388420078127754232984088281, −7.77063229117458018925701115835, −6.29119726265051923939884199521, −5.20067348536266750483014247633, −4.29240202711801872902623094874, −3.58750118029849302708499265495, −0.67011195566832554231138901862, −0.17077123987091397868525197922,
1.79323396136883333192324304194, 2.85920149389390542716503688517, 4.91753083321226400110459569766, 5.77449079923373269220297173201, 6.82245878638141246934769501136, 7.52845005928185119234667791273, 8.595081455151531858989957061830, 10.03461860733225136928895361211, 11.31927460077820154001513102394, 11.58441270689653560020116218922