Properties

Label 256.2.i.a.81.4
Level $256$
Weight $2$
Character 256.81
Analytic conductor $2.044$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [256,2,Mod(17,256)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("256.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(256, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 256.i (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04417029174\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(7\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 64)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 81.4
Character \(\chi\) \(=\) 256.81
Dual form 256.2.i.a.177.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.123576 + 0.621259i) q^{3} +(0.660623 + 0.441414i) q^{5} +(0.860072 - 0.356253i) q^{7} +(2.40095 + 0.994505i) q^{9} +(0.0768198 - 0.0152804i) q^{11} +(-1.83807 + 1.22816i) q^{13} +(-0.355870 + 0.355870i) q^{15} +(3.15660 + 3.15660i) q^{17} +(3.67418 + 5.49880i) q^{19} +(0.115041 + 0.578352i) q^{21} +(2.85915 - 6.90260i) q^{23} +(-1.67184 - 4.03618i) q^{25} +(-1.97029 + 2.94875i) q^{27} +(-8.72686 - 1.73588i) q^{29} +4.18821i q^{31} +0.0496134i q^{33} +(0.725438 + 0.144299i) q^{35} +(2.71234 - 4.05931i) q^{37} +(-0.535863 - 1.29369i) q^{39} +(2.38360 - 5.75451i) q^{41} +(-0.476196 - 2.39400i) q^{43} +(1.14713 + 1.71680i) q^{45} +(-5.93827 - 5.93827i) q^{47} +(-4.33694 + 4.33694i) q^{49} +(-2.35115 + 1.57099i) q^{51} +(-1.38768 + 0.276027i) q^{53} +(0.0574939 + 0.0238148i) q^{55} +(-3.87022 + 1.60310i) q^{57} +(-10.1842 - 6.80486i) q^{59} +(0.575578 - 2.89363i) q^{61} +2.41928 q^{63} -1.75639 q^{65} +(1.81110 - 9.10504i) q^{67} +(3.93498 + 2.62927i) q^{69} +(-3.80374 + 1.57556i) q^{71} +(0.958083 + 0.396851i) q^{73} +(2.71412 - 0.539871i) q^{75} +(0.0606269 - 0.0405096i) q^{77} +(-7.08438 + 7.08438i) q^{79} +(3.92436 + 3.92436i) q^{81} +(3.50145 + 5.24029i) q^{83} +(0.691955 + 3.47869i) q^{85} +(2.15687 - 5.20713i) q^{87} +(-2.98468 - 7.20566i) q^{89} +(-1.14333 + 1.71112i) q^{91} +(-2.60196 - 0.517563i) q^{93} +5.25446i q^{95} -7.39898i q^{97} +(0.199637 + 0.0397102i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{3} - 8 q^{5} + 8 q^{7} - 8 q^{9} + 8 q^{11} - 8 q^{13} + 8 q^{15} - 8 q^{17} + 8 q^{19} - 8 q^{21} + 8 q^{23} - 8 q^{25} + 8 q^{27} - 8 q^{29} + 8 q^{35} - 8 q^{37} + 8 q^{39} - 8 q^{41} + 8 q^{43}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(e\left(\frac{3}{16}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.123576 + 0.621259i −0.0713467 + 0.358684i −0.999922 0.0124589i \(-0.996034\pi\)
0.928576 + 0.371143i \(0.121034\pi\)
\(4\) 0 0
\(5\) 0.660623 + 0.441414i 0.295439 + 0.197406i 0.694452 0.719539i \(-0.255647\pi\)
−0.399012 + 0.916946i \(0.630647\pi\)
\(6\) 0 0
\(7\) 0.860072 0.356253i 0.325077 0.134651i −0.214176 0.976795i \(-0.568707\pi\)
0.539253 + 0.842144i \(0.318707\pi\)
\(8\) 0 0
\(9\) 2.40095 + 0.994505i 0.800315 + 0.331502i
\(10\) 0 0
\(11\) 0.0768198 0.0152804i 0.0231621 0.00460722i −0.183496 0.983021i \(-0.558741\pi\)
0.206658 + 0.978413i \(0.433741\pi\)
\(12\) 0 0
\(13\) −1.83807 + 1.22816i −0.509788 + 0.340629i −0.783714 0.621121i \(-0.786677\pi\)
0.273927 + 0.961751i \(0.411677\pi\)
\(14\) 0 0
\(15\) −0.355870 + 0.355870i −0.0918852 + 0.0918852i
\(16\) 0 0
\(17\) 3.15660 + 3.15660i 0.765589 + 0.765589i 0.977326 0.211738i \(-0.0679123\pi\)
−0.211738 + 0.977326i \(0.567912\pi\)
\(18\) 0 0
\(19\) 3.67418 + 5.49880i 0.842914 + 1.26151i 0.963204 + 0.268771i \(0.0866176\pi\)
−0.120290 + 0.992739i \(0.538382\pi\)
\(20\) 0 0
\(21\) 0.115041 + 0.578352i 0.0251041 + 0.126207i
\(22\) 0 0
\(23\) 2.85915 6.90260i 0.596174 1.43929i −0.281277 0.959627i \(-0.590758\pi\)
0.877452 0.479665i \(-0.159242\pi\)
\(24\) 0 0
\(25\) −1.67184 4.03618i −0.334368 0.807236i
\(26\) 0 0
\(27\) −1.97029 + 2.94875i −0.379183 + 0.567487i
\(28\) 0 0
\(29\) −8.72686 1.73588i −1.62054 0.322345i −0.700343 0.713806i \(-0.746970\pi\)
−0.920195 + 0.391461i \(0.871970\pi\)
\(30\) 0 0
\(31\) 4.18821i 0.752225i 0.926574 + 0.376112i \(0.122739\pi\)
−0.926574 + 0.376112i \(0.877261\pi\)
\(32\) 0 0
\(33\) 0.0496134i 0.00863658i
\(34\) 0 0
\(35\) 0.725438 + 0.144299i 0.122621 + 0.0243909i
\(36\) 0 0
\(37\) 2.71234 4.05931i 0.445907 0.667346i −0.538627 0.842545i \(-0.681057\pi\)
0.984533 + 0.175198i \(0.0560566\pi\)
\(38\) 0 0
\(39\) −0.535863 1.29369i −0.0858067 0.207156i
\(40\) 0 0
\(41\) 2.38360 5.75451i 0.372255 0.898703i −0.621113 0.783721i \(-0.713319\pi\)
0.993368 0.114982i \(-0.0366810\pi\)
\(42\) 0 0
\(43\) −0.476196 2.39400i −0.0726192 0.365081i 0.927339 0.374222i \(-0.122090\pi\)
−0.999958 + 0.00914095i \(0.997090\pi\)
\(44\) 0 0
\(45\) 1.14713 + 1.71680i 0.171004 + 0.255926i
\(46\) 0 0
\(47\) −5.93827 5.93827i −0.866186 0.866186i 0.125862 0.992048i \(-0.459830\pi\)
−0.992048 + 0.125862i \(0.959830\pi\)
\(48\) 0 0
\(49\) −4.33694 + 4.33694i −0.619563 + 0.619563i
\(50\) 0 0
\(51\) −2.35115 + 1.57099i −0.329227 + 0.219982i
\(52\) 0 0
\(53\) −1.38768 + 0.276027i −0.190613 + 0.0379152i −0.289473 0.957186i \(-0.593480\pi\)
0.0988607 + 0.995101i \(0.468480\pi\)
\(54\) 0 0
\(55\) 0.0574939 + 0.0238148i 0.00775248 + 0.00321118i
\(56\) 0 0
\(57\) −3.87022 + 1.60310i −0.512623 + 0.212335i
\(58\) 0 0
\(59\) −10.1842 6.80486i −1.32587 0.885918i −0.327606 0.944815i \(-0.606242\pi\)
−0.998264 + 0.0588967i \(0.981242\pi\)
\(60\) 0 0
\(61\) 0.575578 2.89363i 0.0736952 0.370491i −0.926285 0.376824i \(-0.877016\pi\)
0.999980 + 0.00633357i \(0.00201605\pi\)
\(62\) 0 0
\(63\) 2.41928 0.304801
\(64\) 0 0
\(65\) −1.75639 −0.217854
\(66\) 0 0
\(67\) 1.81110 9.10504i 0.221262 1.11236i −0.697209 0.716868i \(-0.745575\pi\)
0.918471 0.395489i \(-0.129425\pi\)
\(68\) 0 0
\(69\) 3.93498 + 2.62927i 0.473716 + 0.316527i
\(70\) 0 0
\(71\) −3.80374 + 1.57556i −0.451421 + 0.186985i −0.596798 0.802392i \(-0.703560\pi\)
0.145377 + 0.989376i \(0.453560\pi\)
\(72\) 0 0
\(73\) 0.958083 + 0.396851i 0.112135 + 0.0464479i 0.438046 0.898953i \(-0.355671\pi\)
−0.325910 + 0.945401i \(0.605671\pi\)
\(74\) 0 0
\(75\) 2.71412 0.539871i 0.313399 0.0623390i
\(76\) 0 0
\(77\) 0.0606269 0.0405096i 0.00690908 0.00461650i
\(78\) 0 0
\(79\) −7.08438 + 7.08438i −0.797055 + 0.797055i −0.982630 0.185575i \(-0.940585\pi\)
0.185575 + 0.982630i \(0.440585\pi\)
\(80\) 0 0
\(81\) 3.92436 + 3.92436i 0.436040 + 0.436040i
\(82\) 0 0
\(83\) 3.50145 + 5.24029i 0.384334 + 0.575196i 0.972314 0.233679i \(-0.0750766\pi\)
−0.587980 + 0.808875i \(0.700077\pi\)
\(84\) 0 0
\(85\) 0.691955 + 3.47869i 0.0750530 + 0.377317i
\(86\) 0 0
\(87\) 2.15687 5.20713i 0.231240 0.558263i
\(88\) 0 0
\(89\) −2.98468 7.20566i −0.316375 0.763798i −0.999441 0.0334406i \(-0.989354\pi\)
0.683065 0.730357i \(-0.260646\pi\)
\(90\) 0 0
\(91\) −1.14333 + 1.71112i −0.119854 + 0.179374i
\(92\) 0 0
\(93\) −2.60196 0.517563i −0.269811 0.0536688i
\(94\) 0 0
\(95\) 5.25446i 0.539096i
\(96\) 0 0
\(97\) 7.39898i 0.751252i −0.926771 0.375626i \(-0.877428\pi\)
0.926771 0.375626i \(-0.122572\pi\)
\(98\) 0 0
\(99\) 0.199637 + 0.0397102i 0.0200643 + 0.00399103i
\(100\) 0 0
\(101\) 7.00497 10.4837i 0.697020 1.04316i −0.299019 0.954247i \(-0.596659\pi\)
0.996039 0.0889173i \(-0.0283407\pi\)
\(102\) 0 0
\(103\) 6.29127 + 15.1885i 0.619897 + 1.49656i 0.851822 + 0.523831i \(0.175498\pi\)
−0.231925 + 0.972734i \(0.574502\pi\)
\(104\) 0 0
\(105\) −0.179294 + 0.432854i −0.0174973 + 0.0422422i
\(106\) 0 0
\(107\) −1.51228 7.60273i −0.146197 0.734983i −0.982433 0.186614i \(-0.940249\pi\)
0.836236 0.548370i \(-0.184751\pi\)
\(108\) 0 0
\(109\) 9.12348 + 13.6543i 0.873871 + 1.30784i 0.950482 + 0.310780i \(0.100590\pi\)
−0.0766107 + 0.997061i \(0.524410\pi\)
\(110\) 0 0
\(111\) 2.18670 + 2.18670i 0.207553 + 0.207553i
\(112\) 0 0
\(113\) −7.16639 + 7.16639i −0.674158 + 0.674158i −0.958672 0.284514i \(-0.908168\pi\)
0.284514 + 0.958672i \(0.408168\pi\)
\(114\) 0 0
\(115\) 4.93572 3.29795i 0.460259 0.307535i
\(116\) 0 0
\(117\) −5.63451 + 1.12077i −0.520910 + 0.103615i
\(118\) 0 0
\(119\) 3.83946 + 1.59035i 0.351962 + 0.145788i
\(120\) 0 0
\(121\) −10.1570 + 4.20717i −0.923364 + 0.382470i
\(122\) 0 0
\(123\) 3.28049 + 2.19195i 0.295792 + 0.197642i
\(124\) 0 0
\(125\) 1.45219 7.30065i 0.129888 0.652990i
\(126\) 0 0
\(127\) 12.6480 1.12233 0.561166 0.827704i \(-0.310353\pi\)
0.561166 + 0.827704i \(0.310353\pi\)
\(128\) 0 0
\(129\) 1.54614 0.136130
\(130\) 0 0
\(131\) 0.303754 1.52707i 0.0265391 0.133421i −0.965244 0.261349i \(-0.915833\pi\)
0.991783 + 0.127928i \(0.0408326\pi\)
\(132\) 0 0
\(133\) 5.11902 + 3.42042i 0.443876 + 0.296588i
\(134\) 0 0
\(135\) −2.60324 + 1.07830i −0.224051 + 0.0928050i
\(136\) 0 0
\(137\) 5.30492 + 2.19737i 0.453230 + 0.187734i 0.597608 0.801789i \(-0.296118\pi\)
−0.144378 + 0.989523i \(0.546118\pi\)
\(138\) 0 0
\(139\) 18.9696 3.77329i 1.60898 0.320046i 0.692899 0.721035i \(-0.256333\pi\)
0.916083 + 0.400988i \(0.131333\pi\)
\(140\) 0 0
\(141\) 4.42303 2.95538i 0.372487 0.248888i
\(142\) 0 0
\(143\) −0.122433 + 0.122433i −0.0102384 + 0.0102384i
\(144\) 0 0
\(145\) −4.99892 4.99892i −0.415138 0.415138i
\(146\) 0 0
\(147\) −2.15842 3.23031i −0.178024 0.266431i
\(148\) 0 0
\(149\) 1.63597 + 8.22459i 0.134024 + 0.673785i 0.988122 + 0.153672i \(0.0491100\pi\)
−0.854098 + 0.520113i \(0.825890\pi\)
\(150\) 0 0
\(151\) −2.47779 + 5.98190i −0.201639 + 0.486800i −0.992060 0.125764i \(-0.959862\pi\)
0.790421 + 0.612564i \(0.209862\pi\)
\(152\) 0 0
\(153\) 4.43958 + 10.7181i 0.358919 + 0.866506i
\(154\) 0 0
\(155\) −1.84873 + 2.76683i −0.148494 + 0.222237i
\(156\) 0 0
\(157\) 15.1994 + 3.02335i 1.21304 + 0.241289i 0.759836 0.650115i \(-0.225279\pi\)
0.453208 + 0.891405i \(0.350279\pi\)
\(158\) 0 0
\(159\) 0.896221i 0.0710749i
\(160\) 0 0
\(161\) 6.95532i 0.548156i
\(162\) 0 0
\(163\) −13.1823 2.62213i −1.03252 0.205381i −0.350384 0.936606i \(-0.613949\pi\)
−0.682136 + 0.731225i \(0.738949\pi\)
\(164\) 0 0
\(165\) −0.0219000 + 0.0327757i −0.00170491 + 0.00255159i
\(166\) 0 0
\(167\) −3.50753 8.46791i −0.271420 0.655267i 0.728124 0.685445i \(-0.240392\pi\)
−0.999545 + 0.0301784i \(0.990392\pi\)
\(168\) 0 0
\(169\) −3.10477 + 7.49557i −0.238828 + 0.576582i
\(170\) 0 0
\(171\) 3.35293 + 16.8563i 0.256405 + 1.28903i
\(172\) 0 0
\(173\) −4.17887 6.25411i −0.317713 0.475491i 0.637898 0.770120i \(-0.279804\pi\)
−0.955612 + 0.294629i \(0.904804\pi\)
\(174\) 0 0
\(175\) −2.87581 2.87581i −0.217391 0.217391i
\(176\) 0 0
\(177\) 5.48611 5.48611i 0.412361 0.412361i
\(178\) 0 0
\(179\) −4.20486 + 2.80960i −0.314286 + 0.209999i −0.702701 0.711485i \(-0.748023\pi\)
0.388415 + 0.921485i \(0.373023\pi\)
\(180\) 0 0
\(181\) −5.52166 + 1.09833i −0.410422 + 0.0816379i −0.395983 0.918258i \(-0.629596\pi\)
−0.0144385 + 0.999896i \(0.504596\pi\)
\(182\) 0 0
\(183\) 1.72656 + 0.715166i 0.127631 + 0.0528666i
\(184\) 0 0
\(185\) 3.58367 1.48441i 0.263477 0.109136i
\(186\) 0 0
\(187\) 0.290724 + 0.194256i 0.0212598 + 0.0142054i
\(188\) 0 0
\(189\) −0.644090 + 3.23806i −0.0468507 + 0.235534i
\(190\) 0 0
\(191\) −1.29893 −0.0939871 −0.0469936 0.998895i \(-0.514964\pi\)
−0.0469936 + 0.998895i \(0.514964\pi\)
\(192\) 0 0
\(193\) −0.155182 −0.0111702 −0.00558511 0.999984i \(-0.501778\pi\)
−0.00558511 + 0.999984i \(0.501778\pi\)
\(194\) 0 0
\(195\) 0.217048 1.09118i 0.0155432 0.0781407i
\(196\) 0 0
\(197\) −10.0765 6.73293i −0.717923 0.479701i 0.142167 0.989843i \(-0.454593\pi\)
−0.860090 + 0.510142i \(0.829593\pi\)
\(198\) 0 0
\(199\) −22.3945 + 9.27612i −1.58751 + 0.657566i −0.989580 0.143985i \(-0.954008\pi\)
−0.597926 + 0.801551i \(0.704008\pi\)
\(200\) 0 0
\(201\) 5.43278 + 2.25033i 0.383199 + 0.158726i
\(202\) 0 0
\(203\) −8.12414 + 1.61599i −0.570203 + 0.113420i
\(204\) 0 0
\(205\) 4.11478 2.74941i 0.287388 0.192027i
\(206\) 0 0
\(207\) 13.7293 13.7293i 0.954255 0.954255i
\(208\) 0 0
\(209\) 0.366274 + 0.366274i 0.0253357 + 0.0253357i
\(210\) 0 0
\(211\) −5.00786 7.49478i −0.344755 0.515962i 0.618057 0.786133i \(-0.287920\pi\)
−0.962812 + 0.270171i \(0.912920\pi\)
\(212\) 0 0
\(213\) −0.508780 2.55781i −0.0348610 0.175258i
\(214\) 0 0
\(215\) 0.742159 1.79173i 0.0506148 0.122195i
\(216\) 0 0
\(217\) 1.49206 + 3.60216i 0.101288 + 0.244531i
\(218\) 0 0
\(219\) −0.364944 + 0.546177i −0.0246606 + 0.0369072i
\(220\) 0 0
\(221\) −9.67885 1.92524i −0.651070 0.129506i
\(222\) 0 0
\(223\) 14.3604i 0.961644i −0.876818 0.480822i \(-0.840338\pi\)
0.876818 0.480822i \(-0.159662\pi\)
\(224\) 0 0
\(225\) 11.3533i 0.756887i
\(226\) 0 0
\(227\) −1.51532 0.301416i −0.100575 0.0200057i 0.144546 0.989498i \(-0.453828\pi\)
−0.245121 + 0.969492i \(0.578828\pi\)
\(228\) 0 0
\(229\) −10.8318 + 16.2109i −0.715784 + 1.07125i 0.278071 + 0.960560i \(0.410305\pi\)
−0.993855 + 0.110686i \(0.964695\pi\)
\(230\) 0 0
\(231\) 0.0176749 + 0.0426711i 0.00116292 + 0.00280755i
\(232\) 0 0
\(233\) 0.955848 2.30762i 0.0626197 0.151177i −0.889472 0.456989i \(-0.848928\pi\)
0.952092 + 0.305812i \(0.0989278\pi\)
\(234\) 0 0
\(235\) −1.30172 6.54419i −0.0849149 0.426896i
\(236\) 0 0
\(237\) −3.52578 5.27670i −0.229024 0.342759i
\(238\) 0 0
\(239\) −5.93760 5.93760i −0.384072 0.384072i 0.488495 0.872567i \(-0.337546\pi\)
−0.872567 + 0.488495i \(0.837546\pi\)
\(240\) 0 0
\(241\) 7.45454 7.45454i 0.480189 0.480189i −0.425003 0.905192i \(-0.639727\pi\)
0.905192 + 0.425003i \(0.139727\pi\)
\(242\) 0 0
\(243\) −11.7692 + 7.86396i −0.754998 + 0.504473i
\(244\) 0 0
\(245\) −4.77947 + 0.950695i −0.305349 + 0.0607377i
\(246\) 0 0
\(247\) −13.5068 5.59468i −0.859415 0.355981i
\(248\) 0 0
\(249\) −3.68827 + 1.52773i −0.233735 + 0.0968161i
\(250\) 0 0
\(251\) 13.2843 + 8.87629i 0.838498 + 0.560267i 0.899024 0.437900i \(-0.144278\pi\)
−0.0605253 + 0.998167i \(0.519278\pi\)
\(252\) 0 0
\(253\) 0.114165 0.573946i 0.00717749 0.0360837i
\(254\) 0 0
\(255\) −2.24668 −0.140693
\(256\) 0 0
\(257\) 0.502791 0.0313633 0.0156816 0.999877i \(-0.495008\pi\)
0.0156816 + 0.999877i \(0.495008\pi\)
\(258\) 0 0
\(259\) 0.886668 4.45758i 0.0550949 0.276981i
\(260\) 0 0
\(261\) −19.2264 12.8467i −1.19008 0.795188i
\(262\) 0 0
\(263\) 26.2018 10.8532i 1.61567 0.669234i 0.622155 0.782894i \(-0.286257\pi\)
0.993520 + 0.113660i \(0.0362574\pi\)
\(264\) 0 0
\(265\) −1.03858 0.430192i −0.0637992 0.0264265i
\(266\) 0 0
\(267\) 4.84542 0.963813i 0.296535 0.0589844i
\(268\) 0 0
\(269\) −5.76407 + 3.85143i −0.351442 + 0.234826i −0.718742 0.695276i \(-0.755282\pi\)
0.367301 + 0.930102i \(0.380282\pi\)
\(270\) 0 0
\(271\) 1.72051 1.72051i 0.104513 0.104513i −0.652917 0.757430i \(-0.726455\pi\)
0.757430 + 0.652917i \(0.226455\pi\)
\(272\) 0 0
\(273\) −0.921761 0.921761i −0.0557875 0.0557875i
\(274\) 0 0
\(275\) −0.190105 0.284512i −0.0114638 0.0171567i
\(276\) 0 0
\(277\) −3.73240 18.7640i −0.224258 1.12742i −0.914731 0.404063i \(-0.867598\pi\)
0.690473 0.723358i \(-0.257402\pi\)
\(278\) 0 0
\(279\) −4.16519 + 10.0557i −0.249364 + 0.602017i
\(280\) 0 0
\(281\) 2.79945 + 6.75847i 0.167001 + 0.403177i 0.985119 0.171874i \(-0.0549823\pi\)
−0.818118 + 0.575051i \(0.804982\pi\)
\(282\) 0 0
\(283\) −5.39086 + 8.06799i −0.320453 + 0.479592i −0.956367 0.292168i \(-0.905623\pi\)
0.635914 + 0.771760i \(0.280623\pi\)
\(284\) 0 0
\(285\) −3.26438 0.649326i −0.193365 0.0384628i
\(286\) 0 0
\(287\) 5.79845i 0.342272i
\(288\) 0 0
\(289\) 2.92828i 0.172252i
\(290\) 0 0
\(291\) 4.59668 + 0.914337i 0.269462 + 0.0535994i
\(292\) 0 0
\(293\) −5.00829 + 7.49544i −0.292587 + 0.437888i −0.948419 0.317019i \(-0.897318\pi\)
0.655832 + 0.754907i \(0.272318\pi\)
\(294\) 0 0
\(295\) −3.72415 8.99089i −0.216828 0.523470i
\(296\) 0 0
\(297\) −0.106299 + 0.256629i −0.00616811 + 0.0148911i
\(298\) 0 0
\(299\) 3.22217 + 16.1989i 0.186343 + 0.936808i
\(300\) 0 0
\(301\) −1.26243 1.88936i −0.0727654 0.108901i
\(302\) 0 0
\(303\) 5.64743 + 5.64743i 0.324437 + 0.324437i
\(304\) 0 0
\(305\) 1.65753 1.65753i 0.0949097 0.0949097i
\(306\) 0 0
\(307\) 12.5667 8.39679i 0.717218 0.479230i −0.142632 0.989776i \(-0.545557\pi\)
0.859851 + 0.510546i \(0.170557\pi\)
\(308\) 0 0
\(309\) −10.2134 + 2.03158i −0.581022 + 0.115572i
\(310\) 0 0
\(311\) 4.26292 + 1.76576i 0.241728 + 0.100127i 0.500259 0.865876i \(-0.333238\pi\)
−0.258531 + 0.966003i \(0.583238\pi\)
\(312\) 0 0
\(313\) 19.1426 7.92911i 1.08200 0.448180i 0.230790 0.973004i \(-0.425869\pi\)
0.851211 + 0.524824i \(0.175869\pi\)
\(314\) 0 0
\(315\) 1.59823 + 1.06790i 0.0900502 + 0.0601696i
\(316\) 0 0
\(317\) −1.16146 + 5.83907i −0.0652342 + 0.327955i −0.999598 0.0283671i \(-0.990969\pi\)
0.934363 + 0.356322i \(0.115969\pi\)
\(318\) 0 0
\(319\) −0.696921 −0.0390201
\(320\) 0 0
\(321\) 4.91015 0.274058
\(322\) 0 0
\(323\) −5.75959 + 28.9554i −0.320472 + 1.61112i
\(324\) 0 0
\(325\) 8.03002 + 5.36549i 0.445425 + 0.297624i
\(326\) 0 0
\(327\) −9.61028 + 3.98071i −0.531450 + 0.220134i
\(328\) 0 0
\(329\) −7.22287 2.99181i −0.398210 0.164944i
\(330\) 0 0
\(331\) −25.5621 + 5.08462i −1.40502 + 0.279476i −0.838648 0.544674i \(-0.816654\pi\)
−0.566372 + 0.824149i \(0.691654\pi\)
\(332\) 0 0
\(333\) 10.5492 7.04875i 0.578092 0.386269i
\(334\) 0 0
\(335\) 5.21555 5.21555i 0.284956 0.284956i
\(336\) 0 0
\(337\) −14.8554 14.8554i −0.809225 0.809225i 0.175292 0.984517i \(-0.443913\pi\)
−0.984517 + 0.175292i \(0.943913\pi\)
\(338\) 0 0
\(339\) −3.56659 5.33779i −0.193711 0.289909i
\(340\) 0 0
\(341\) 0.0639976 + 0.321738i 0.00346566 + 0.0174231i
\(342\) 0 0
\(343\) −4.67880 + 11.2956i −0.252632 + 0.609907i
\(344\) 0 0
\(345\) 1.43894 + 3.47391i 0.0774700 + 0.187029i
\(346\) 0 0
\(347\) 16.4814 24.6662i 0.884769 1.32415i −0.0606043 0.998162i \(-0.519303\pi\)
0.945374 0.325989i \(-0.105697\pi\)
\(348\) 0 0
\(349\) 31.9917 + 6.36355i 1.71248 + 0.340633i 0.951384 0.308009i \(-0.0996626\pi\)
0.761094 + 0.648642i \(0.224663\pi\)
\(350\) 0 0
\(351\) 7.83982i 0.418459i
\(352\) 0 0
\(353\) 33.6731i 1.79224i 0.443814 + 0.896119i \(0.353625\pi\)
−0.443814 + 0.896119i \(0.646375\pi\)
\(354\) 0 0
\(355\) −3.20831 0.638172i −0.170279 0.0338707i
\(356\) 0 0
\(357\) −1.46249 + 2.18877i −0.0774031 + 0.115842i
\(358\) 0 0
\(359\) 4.87560 + 11.7707i 0.257324 + 0.621235i 0.998760 0.0497885i \(-0.0158547\pi\)
−0.741436 + 0.671024i \(0.765855\pi\)
\(360\) 0 0
\(361\) −9.46619 + 22.8534i −0.498220 + 1.20281i
\(362\) 0 0
\(363\) −1.35858 6.83004i −0.0713070 0.358484i
\(364\) 0 0
\(365\) 0.457756 + 0.685080i 0.0239600 + 0.0358587i
\(366\) 0 0
\(367\) 7.60045 + 7.60045i 0.396740 + 0.396740i 0.877082 0.480341i \(-0.159487\pi\)
−0.480341 + 0.877082i \(0.659487\pi\)
\(368\) 0 0
\(369\) 11.4458 11.4458i 0.595843 0.595843i
\(370\) 0 0
\(371\) −1.09517 + 0.731770i −0.0568584 + 0.0379916i
\(372\) 0 0
\(373\) 19.4325 3.86536i 1.00618 0.200141i 0.335618 0.941998i \(-0.391055\pi\)
0.670558 + 0.741857i \(0.266055\pi\)
\(374\) 0 0
\(375\) 4.35614 + 1.80437i 0.224950 + 0.0931775i
\(376\) 0 0
\(377\) 18.1725 7.52729i 0.935931 0.387675i
\(378\) 0 0
\(379\) 23.2828 + 15.5571i 1.19596 + 0.799115i 0.984001 0.178164i \(-0.0570158\pi\)
0.211959 + 0.977279i \(0.432016\pi\)
\(380\) 0 0
\(381\) −1.56300 + 7.85771i −0.0800747 + 0.402563i
\(382\) 0 0
\(383\) −26.0613 −1.33167 −0.665835 0.746099i \(-0.731924\pi\)
−0.665835 + 0.746099i \(0.731924\pi\)
\(384\) 0 0
\(385\) 0.0579330 0.00295254
\(386\) 0 0
\(387\) 1.23752 6.22144i 0.0629068 0.316254i
\(388\) 0 0
\(389\) 17.0947 + 11.4223i 0.866737 + 0.579135i 0.907509 0.420034i \(-0.137982\pi\)
−0.0407720 + 0.999168i \(0.512982\pi\)
\(390\) 0 0
\(391\) 30.8140 12.7636i 1.55833 0.645481i
\(392\) 0 0
\(393\) 0.911172 + 0.377420i 0.0459626 + 0.0190383i
\(394\) 0 0
\(395\) −7.80725 + 1.55296i −0.392825 + 0.0781378i
\(396\) 0 0
\(397\) −13.8749 + 9.27088i −0.696359 + 0.465292i −0.852693 0.522412i \(-0.825032\pi\)
0.156334 + 0.987704i \(0.450032\pi\)
\(398\) 0 0
\(399\) −2.75756 + 2.75756i −0.138051 + 0.138051i
\(400\) 0 0
\(401\) 13.1510 + 13.1510i 0.656731 + 0.656731i 0.954605 0.297874i \(-0.0962775\pi\)
−0.297874 + 0.954605i \(0.596277\pi\)
\(402\) 0 0
\(403\) −5.14378 7.69820i −0.256230 0.383475i
\(404\) 0 0
\(405\) 0.860253 + 4.32479i 0.0427463 + 0.214900i
\(406\) 0 0
\(407\) 0.146334 0.353281i 0.00725350 0.0175115i
\(408\) 0 0
\(409\) −4.38868 10.5952i −0.217006 0.523899i 0.777463 0.628929i \(-0.216506\pi\)
−0.994469 + 0.105030i \(0.966506\pi\)
\(410\) 0 0
\(411\) −2.02070 + 3.02419i −0.0996737 + 0.149172i
\(412\) 0 0
\(413\) −11.1834 2.22452i −0.550299 0.109461i
\(414\) 0 0
\(415\) 5.00744i 0.245806i
\(416\) 0 0
\(417\) 12.2513i 0.599951i
\(418\) 0 0
\(419\) 34.0450 + 6.77197i 1.66321 + 0.330832i 0.935033 0.354560i \(-0.115369\pi\)
0.728174 + 0.685392i \(0.240369\pi\)
\(420\) 0 0
\(421\) −4.93933 + 7.39223i −0.240728 + 0.360275i −0.932086 0.362238i \(-0.882013\pi\)
0.691358 + 0.722513i \(0.257013\pi\)
\(422\) 0 0
\(423\) −8.35183 20.1631i −0.406080 0.980364i
\(424\) 0 0
\(425\) 7.46328 18.0180i 0.362022 0.873999i
\(426\) 0 0
\(427\) −0.535826 2.69378i −0.0259304 0.130361i
\(428\) 0 0
\(429\) −0.0609330 0.0911926i −0.00294187 0.00440282i
\(430\) 0 0
\(431\) 23.1336 + 23.1336i 1.11431 + 1.11431i 0.992561 + 0.121745i \(0.0388490\pi\)
0.121745 + 0.992561i \(0.461151\pi\)
\(432\) 0 0
\(433\) −0.961924 + 0.961924i −0.0462271 + 0.0462271i −0.729842 0.683615i \(-0.760407\pi\)
0.683615 + 0.729842i \(0.260407\pi\)
\(434\) 0 0
\(435\) 3.72338 2.48788i 0.178522 0.119285i
\(436\) 0 0
\(437\) 48.4610 9.63950i 2.31820 0.461120i
\(438\) 0 0
\(439\) −20.8397 8.63209i −0.994625 0.411987i −0.174802 0.984604i \(-0.555928\pi\)
−0.819823 + 0.572616i \(0.805928\pi\)
\(440\) 0 0
\(441\) −14.7259 + 6.09965i −0.701232 + 0.290460i
\(442\) 0 0
\(443\) −30.4748 20.3626i −1.44790 0.967458i −0.997200 0.0747837i \(-0.976173\pi\)
−0.450703 0.892674i \(-0.648827\pi\)
\(444\) 0 0
\(445\) 1.20893 6.07770i 0.0573088 0.288111i
\(446\) 0 0
\(447\) −5.31177 −0.251238
\(448\) 0 0
\(449\) −15.6259 −0.737431 −0.368715 0.929542i \(-0.620202\pi\)
−0.368715 + 0.929542i \(0.620202\pi\)
\(450\) 0 0
\(451\) 0.0951761 0.478483i 0.00448167 0.0225309i
\(452\) 0 0
\(453\) −3.41012 2.27857i −0.160221 0.107057i
\(454\) 0 0
\(455\) −1.51062 + 0.625721i −0.0708192 + 0.0293343i
\(456\) 0 0
\(457\) −34.6599 14.3566i −1.62132 0.671574i −0.627103 0.778936i \(-0.715760\pi\)
−0.994220 + 0.107362i \(0.965760\pi\)
\(458\) 0 0
\(459\) −15.5275 + 3.08860i −0.724759 + 0.144164i
\(460\) 0 0
\(461\) 2.18684 1.46120i 0.101851 0.0680548i −0.503602 0.863936i \(-0.667992\pi\)
0.605453 + 0.795881i \(0.292992\pi\)
\(462\) 0 0
\(463\) −10.3078 + 10.3078i −0.479045 + 0.479045i −0.904826 0.425781i \(-0.859999\pi\)
0.425781 + 0.904826i \(0.359999\pi\)
\(464\) 0 0
\(465\) −1.49046 1.49046i −0.0691183 0.0691183i
\(466\) 0 0
\(467\) 6.02523 + 9.01739i 0.278814 + 0.417275i 0.944275 0.329158i \(-0.106765\pi\)
−0.665461 + 0.746433i \(0.731765\pi\)
\(468\) 0 0
\(469\) −1.68602 8.47620i −0.0778532 0.391394i
\(470\) 0 0
\(471\) −3.75657 + 9.06916i −0.173094 + 0.417885i
\(472\) 0 0
\(473\) −0.0731626 0.176630i −0.00336402 0.00812146i
\(474\) 0 0
\(475\) 16.0515 24.0228i 0.736493 1.10224i
\(476\) 0 0
\(477\) −3.60626 0.717330i −0.165119 0.0328443i
\(478\) 0 0
\(479\) 31.1948i 1.42533i 0.701506 + 0.712663i \(0.252511\pi\)
−0.701506 + 0.712663i \(0.747489\pi\)
\(480\) 0 0
\(481\) 10.7925i 0.492094i
\(482\) 0 0
\(483\) 4.32106 + 0.859511i 0.196615 + 0.0391091i
\(484\) 0 0
\(485\) 3.26601 4.88793i 0.148302 0.221950i
\(486\) 0 0
\(487\) 10.8455 + 26.1834i 0.491458 + 1.18648i 0.953978 + 0.299876i \(0.0969453\pi\)
−0.462520 + 0.886609i \(0.653055\pi\)
\(488\) 0 0
\(489\) 3.25804 7.86562i 0.147334 0.355695i
\(490\) 0 0
\(491\) −3.12805 15.7257i −0.141167 0.709693i −0.984927 0.172972i \(-0.944663\pi\)
0.843760 0.536721i \(-0.180337\pi\)
\(492\) 0 0
\(493\) −22.0678 33.0267i −0.993882 1.48745i
\(494\) 0 0
\(495\) 0.114356 + 0.114356i 0.00513992 + 0.00513992i
\(496\) 0 0
\(497\) −2.71019 + 2.71019i −0.121569 + 0.121569i
\(498\) 0 0
\(499\) 15.3516 10.2576i 0.687232 0.459194i −0.162293 0.986743i \(-0.551889\pi\)
0.849525 + 0.527549i \(0.176889\pi\)
\(500\) 0 0
\(501\) 5.69422 1.13265i 0.254399 0.0506031i
\(502\) 0 0
\(503\) 29.9129 + 12.3903i 1.33375 + 0.552457i 0.931723 0.363171i \(-0.118306\pi\)
0.402027 + 0.915628i \(0.368306\pi\)
\(504\) 0 0
\(505\) 9.25528 3.83366i 0.411855 0.170596i
\(506\) 0 0
\(507\) −4.27302 2.85514i −0.189771 0.126801i
\(508\) 0 0
\(509\) −6.36934 + 32.0209i −0.282316 + 1.41930i 0.535848 + 0.844315i \(0.319992\pi\)
−0.818164 + 0.574985i \(0.805008\pi\)
\(510\) 0 0
\(511\) 0.965400 0.0427068
\(512\) 0 0
\(513\) −23.4538 −1.03551
\(514\) 0 0
\(515\) −2.54825 + 12.8109i −0.112289 + 0.564516i
\(516\) 0 0
\(517\) −0.546916 0.365438i −0.0240533 0.0160719i
\(518\) 0 0
\(519\) 4.40184 1.82330i 0.193219 0.0800340i
\(520\) 0 0
\(521\) −18.6410 7.72136i −0.816677 0.338279i −0.0650626 0.997881i \(-0.520725\pi\)
−0.751615 + 0.659602i \(0.770725\pi\)
\(522\) 0 0
\(523\) 8.92581 1.77545i 0.390298 0.0776352i 0.00395965 0.999992i \(-0.498740\pi\)
0.386339 + 0.922357i \(0.373740\pi\)
\(524\) 0 0
\(525\) 2.14200 1.43124i 0.0934847 0.0624645i
\(526\) 0 0
\(527\) −13.2205 + 13.2205i −0.575895 + 0.575895i
\(528\) 0 0
\(529\) −23.2077 23.2077i −1.00903 1.00903i
\(530\) 0 0
\(531\) −17.6842 26.4663i −0.767431 1.14854i
\(532\) 0 0
\(533\) 2.68623 + 13.5046i 0.116354 + 0.584949i
\(534\) 0 0
\(535\) 2.35691 5.69007i 0.101898 0.246003i
\(536\) 0 0
\(537\) −1.22587 2.95951i −0.0529001 0.127712i
\(538\) 0 0
\(539\) −0.266893 + 0.399433i −0.0114959 + 0.0172048i
\(540\) 0 0
\(541\) 11.9947 + 2.38590i 0.515694 + 0.102578i 0.446075 0.894996i \(-0.352822\pi\)
0.0696193 + 0.997574i \(0.477822\pi\)
\(542\) 0 0
\(543\) 3.56611i 0.153036i
\(544\) 0 0
\(545\) 13.0475i 0.558895i
\(546\) 0 0
\(547\) −18.4104 3.66207i −0.787174 0.156579i −0.214894 0.976637i \(-0.568941\pi\)
−0.572279 + 0.820059i \(0.693941\pi\)
\(548\) 0 0
\(549\) 4.25965 6.37502i 0.181798 0.272079i
\(550\) 0 0
\(551\) −22.5188 54.3652i −0.959333 2.31603i
\(552\) 0 0
\(553\) −3.56924 + 8.61691i −0.151780 + 0.366428i
\(554\) 0 0
\(555\) 0.479344 + 2.40983i 0.0203470 + 0.102291i
\(556\) 0 0
\(557\) −13.1089 19.6188i −0.555442 0.831277i 0.442409 0.896814i \(-0.354124\pi\)
−0.997850 + 0.0655364i \(0.979124\pi\)
\(558\) 0 0
\(559\) 3.81548 + 3.81548i 0.161378 + 0.161378i
\(560\) 0 0
\(561\) −0.156610 + 0.156610i −0.00661206 + 0.00661206i
\(562\) 0 0
\(563\) −7.15885 + 4.78339i −0.301710 + 0.201596i −0.697205 0.716872i \(-0.745573\pi\)
0.395495 + 0.918468i \(0.370573\pi\)
\(564\) 0 0
\(565\) −7.89763 + 1.57094i −0.332256 + 0.0660898i
\(566\) 0 0
\(567\) 4.77330 + 1.97716i 0.200460 + 0.0830331i
\(568\) 0 0
\(569\) −1.38195 + 0.572423i −0.0579344 + 0.0239972i −0.411462 0.911427i \(-0.634982\pi\)
0.353528 + 0.935424i \(0.384982\pi\)
\(570\) 0 0
\(571\) −4.83659 3.23171i −0.202405 0.135243i 0.450237 0.892909i \(-0.351339\pi\)
−0.652642 + 0.757666i \(0.726339\pi\)
\(572\) 0 0
\(573\) 0.160517 0.806971i 0.00670567 0.0337117i
\(574\) 0 0
\(575\) −32.6402 −1.36119
\(576\) 0 0
\(577\) 29.0642 1.20996 0.604980 0.796241i \(-0.293181\pi\)
0.604980 + 0.796241i \(0.293181\pi\)
\(578\) 0 0
\(579\) 0.0191768 0.0964081i 0.000796959 0.00400658i
\(580\) 0 0
\(581\) 4.87837 + 3.25962i 0.202389 + 0.135232i
\(582\) 0 0
\(583\) −0.102384 + 0.0424087i −0.00424030 + 0.00175639i
\(584\) 0 0
\(585\) −4.21701 1.74674i −0.174352 0.0722189i
\(586\) 0 0
\(587\) −23.8821 + 4.75045i −0.985720 + 0.196072i −0.661529 0.749920i \(-0.730092\pi\)
−0.324191 + 0.945992i \(0.605092\pi\)
\(588\) 0 0
\(589\) −23.0301 + 15.3882i −0.948939 + 0.634061i
\(590\) 0 0
\(591\) 5.42811 5.42811i 0.223283 0.223283i
\(592\) 0 0
\(593\) 14.2745 + 14.2745i 0.586184 + 0.586184i 0.936596 0.350412i \(-0.113958\pi\)
−0.350412 + 0.936596i \(0.613958\pi\)
\(594\) 0 0
\(595\) 1.83443 + 2.74541i 0.0752042 + 0.112551i
\(596\) 0 0
\(597\) −2.99544 15.0591i −0.122595 0.616329i
\(598\) 0 0
\(599\) −4.20762 + 10.1581i −0.171919 + 0.415048i −0.986230 0.165380i \(-0.947115\pi\)
0.814311 + 0.580428i \(0.197115\pi\)
\(600\) 0 0
\(601\) −3.87269 9.34950i −0.157970 0.381374i 0.825001 0.565131i \(-0.191174\pi\)
−0.982972 + 0.183756i \(0.941174\pi\)
\(602\) 0 0
\(603\) 13.4034 20.0595i 0.545827 0.816888i
\(604\) 0 0
\(605\) −8.56705 1.70409i −0.348300 0.0692812i
\(606\) 0 0
\(607\) 11.7468i 0.476790i −0.971168 0.238395i \(-0.923379\pi\)
0.971168 0.238395i \(-0.0766212\pi\)
\(608\) 0 0
\(609\) 5.24690i 0.212615i
\(610\) 0 0
\(611\) 18.2081 + 3.62181i 0.736619 + 0.146523i
\(612\) 0 0
\(613\) −4.23332 + 6.33562i −0.170982 + 0.255893i −0.907058 0.421007i \(-0.861677\pi\)
0.736075 + 0.676900i \(0.236677\pi\)
\(614\) 0 0
\(615\) 1.19961 + 2.89611i 0.0483728 + 0.116782i
\(616\) 0 0
\(617\) 5.69105 13.7394i 0.229113 0.553128i −0.766957 0.641699i \(-0.778230\pi\)
0.996070 + 0.0885706i \(0.0282299\pi\)
\(618\) 0 0
\(619\) −6.79342 34.1528i −0.273051 1.37272i −0.837133 0.546999i \(-0.815770\pi\)
0.564083 0.825718i \(-0.309230\pi\)
\(620\) 0 0
\(621\) 14.7207 + 22.0310i 0.590720 + 0.884076i
\(622\) 0 0
\(623\) −5.13408 5.13408i −0.205693 0.205693i
\(624\) 0 0
\(625\) −11.2638 + 11.2638i −0.450553 + 0.450553i
\(626\) 0 0
\(627\) −0.272814 + 0.182288i −0.0108951 + 0.00727989i
\(628\) 0 0
\(629\) 21.3754 4.25184i 0.852294 0.169532i
\(630\) 0 0
\(631\) −22.6667 9.38886i −0.902348 0.373765i −0.117225 0.993105i \(-0.537400\pi\)
−0.785122 + 0.619341i \(0.787400\pi\)
\(632\) 0 0
\(633\) 5.27506 2.18500i 0.209665 0.0868460i
\(634\) 0 0
\(635\) 8.35558 + 5.58302i 0.331581 + 0.221555i
\(636\) 0 0
\(637\) 2.64514 13.2980i 0.104804 0.526887i
\(638\) 0 0
\(639\) −10.6995 −0.423265
\(640\) 0 0
\(641\) 8.35272 0.329913 0.164956 0.986301i \(-0.447252\pi\)
0.164956 + 0.986301i \(0.447252\pi\)
\(642\) 0 0
\(643\) −6.43579 + 32.3549i −0.253803 + 1.27595i 0.618032 + 0.786153i \(0.287930\pi\)
−0.871835 + 0.489800i \(0.837070\pi\)
\(644\) 0 0
\(645\) 1.02142 + 0.682488i 0.0402182 + 0.0268729i
\(646\) 0 0
\(647\) 28.0926 11.6363i 1.10443 0.457471i 0.245416 0.969418i \(-0.421076\pi\)
0.859017 + 0.511947i \(0.171076\pi\)
\(648\) 0 0
\(649\) −0.886330 0.367130i −0.0347915 0.0144111i
\(650\) 0 0
\(651\) −2.42226 + 0.481818i −0.0949359 + 0.0188839i
\(652\) 0 0
\(653\) 0.322282 0.215342i 0.0126119 0.00842699i −0.549248 0.835659i \(-0.685086\pi\)
0.561860 + 0.827232i \(0.310086\pi\)
\(654\) 0 0
\(655\) 0.874738 0.874738i 0.0341789 0.0341789i
\(656\) 0 0
\(657\) 1.90564 + 1.90564i 0.0743460 + 0.0743460i
\(658\) 0 0
\(659\) 9.34933 + 13.9923i 0.364198 + 0.545061i 0.967636 0.252349i \(-0.0812030\pi\)
−0.603438 + 0.797410i \(0.706203\pi\)
\(660\) 0 0
\(661\) −4.92746 24.7720i −0.191656 0.963520i −0.950139 0.311827i \(-0.899059\pi\)
0.758483 0.651693i \(-0.225941\pi\)
\(662\) 0 0
\(663\) 2.39215 5.77516i 0.0929034 0.224289i
\(664\) 0 0
\(665\) 1.87192 + 4.51922i 0.0725900 + 0.175248i
\(666\) 0 0
\(667\) −36.9335 + 55.2749i −1.43007 + 2.14025i
\(668\) 0 0
\(669\) 8.92154 + 1.77461i 0.344927 + 0.0686102i
\(670\) 0 0
\(671\) 0.231083i 0.00892086i
\(672\) 0 0
\(673\) 0.530719i 0.0204577i 0.999948 + 0.0102289i \(0.00325600\pi\)
−0.999948 + 0.0102289i \(0.996744\pi\)
\(674\) 0 0
\(675\) 15.1957 + 3.02261i 0.584883 + 0.116340i
\(676\) 0 0
\(677\) −3.06951 + 4.59384i −0.117971 + 0.176556i −0.885755 0.464152i \(-0.846359\pi\)
0.767785 + 0.640708i \(0.221359\pi\)
\(678\) 0 0
\(679\) −2.63591 6.36365i −0.101157 0.244215i
\(680\) 0 0
\(681\) 0.374516 0.904160i 0.0143515 0.0346475i
\(682\) 0 0
\(683\) 2.76547 + 13.9029i 0.105818 + 0.531981i 0.996937 + 0.0782118i \(0.0249210\pi\)
−0.891119 + 0.453769i \(0.850079\pi\)
\(684\) 0 0
\(685\) 2.53460 + 3.79330i 0.0968421 + 0.144934i
\(686\) 0 0
\(687\) −8.73263 8.73263i −0.333171 0.333171i
\(688\) 0 0
\(689\) 2.21165 2.21165i 0.0842570 0.0842570i
\(690\) 0 0
\(691\) 11.1224 7.43176i 0.423117 0.282717i −0.325727 0.945464i \(-0.605609\pi\)
0.748844 + 0.662746i \(0.230609\pi\)
\(692\) 0 0
\(693\) 0.185849 0.0369676i 0.00705982 0.00140428i
\(694\) 0 0
\(695\) 14.1973 + 5.88073i 0.538536 + 0.223069i
\(696\) 0 0
\(697\) 25.6888 10.6406i 0.973031 0.403043i
\(698\) 0 0
\(699\) 1.31551 + 0.878997i 0.0497572 + 0.0332467i
\(700\) 0 0
\(701\) 0.624967 3.14192i 0.0236047 0.118669i −0.967187 0.254067i \(-0.918232\pi\)
0.990791 + 0.135399i \(0.0432315\pi\)
\(702\) 0 0
\(703\) 32.2869 1.21773
\(704\) 0 0
\(705\) 4.22650 0.159179
\(706\) 0 0
\(707\) 2.28993 11.5123i 0.0861217 0.432963i
\(708\) 0 0
\(709\) −2.84972 1.90412i −0.107023 0.0715107i 0.500907 0.865501i \(-0.333000\pi\)
−0.607930 + 0.793991i \(0.708000\pi\)
\(710\) 0 0
\(711\) −24.0547 + 9.96377i −0.902121 + 0.373671i
\(712\) 0 0
\(713\) 28.9095 + 11.9747i 1.08267 + 0.448457i
\(714\) 0 0
\(715\) −0.134926 + 0.0268384i −0.00504594 + 0.00100370i
\(716\) 0 0
\(717\) 4.42254 2.95505i 0.165163 0.110358i
\(718\) 0 0
\(719\) −9.77983 + 9.77983i −0.364726 + 0.364726i −0.865549 0.500823i \(-0.833031\pi\)
0.500823 + 0.865549i \(0.333031\pi\)
\(720\) 0 0
\(721\) 10.8219 + 10.8219i 0.403028 + 0.403028i
\(722\) 0 0
\(723\) 3.71000 + 5.55240i 0.137976 + 0.206496i
\(724\) 0 0
\(725\) 7.58360 + 38.1253i 0.281648 + 1.41594i
\(726\) 0 0
\(727\) 10.3584 25.0074i 0.384172 0.927474i −0.606977 0.794720i \(-0.707618\pi\)
0.991149 0.132754i \(-0.0423821\pi\)
\(728\) 0 0
\(729\) 2.94038 + 7.09871i 0.108903 + 0.262915i
\(730\) 0 0
\(731\) 6.05374 9.06006i 0.223906 0.335099i
\(732\) 0 0
\(733\) −28.0369 5.57688i −1.03557 0.205987i −0.352094 0.935964i \(-0.614530\pi\)
−0.683471 + 0.729978i \(0.739530\pi\)
\(734\) 0 0
\(735\) 3.08677i 0.113857i
\(736\) 0 0
\(737\) 0.727122i 0.0267839i
\(738\) 0 0
\(739\) −17.0617 3.39378i −0.627624 0.124842i −0.128977 0.991648i \(-0.541169\pi\)
−0.498647 + 0.866805i \(0.666169\pi\)
\(740\) 0 0
\(741\) 5.14487 7.69984i 0.189001 0.282861i
\(742\) 0 0
\(743\) 11.8271 + 28.5530i 0.433893 + 1.04751i 0.978021 + 0.208507i \(0.0668605\pi\)
−0.544128 + 0.839002i \(0.683139\pi\)
\(744\) 0 0
\(745\) −2.54969 + 6.15549i −0.0934134 + 0.225520i
\(746\) 0 0
\(747\) 3.19530 + 16.0638i 0.116910 + 0.587746i
\(748\) 0 0
\(749\) −4.00916 6.00014i −0.146492 0.219240i
\(750\) 0 0
\(751\) 4.92726 + 4.92726i 0.179798 + 0.179798i 0.791268 0.611470i \(-0.209421\pi\)
−0.611470 + 0.791268i \(0.709421\pi\)
\(752\) 0 0
\(753\) −7.15611 + 7.15611i −0.260783 + 0.260783i
\(754\) 0 0
\(755\) −4.27738 + 2.85805i −0.155670 + 0.104015i
\(756\) 0 0
\(757\) −41.6002 + 8.27479i −1.51198 + 0.300752i −0.880279 0.474456i \(-0.842645\pi\)
−0.631705 + 0.775209i \(0.717645\pi\)
\(758\) 0 0
\(759\) 0.342461 + 0.141852i 0.0124306 + 0.00514890i
\(760\) 0 0
\(761\) −29.3553 + 12.1594i −1.06413 + 0.440777i −0.844915 0.534900i \(-0.820349\pi\)
−0.219214 + 0.975677i \(0.570349\pi\)
\(762\) 0 0
\(763\) 12.7112 + 8.49337i 0.460177 + 0.307481i
\(764\) 0 0
\(765\) −1.79823 + 9.04030i −0.0650151 + 0.326853i
\(766\) 0 0
\(767\) 27.0767 0.977682
\(768\) 0 0
\(769\) 27.7099 0.999245 0.499623 0.866243i \(-0.333472\pi\)
0.499623 + 0.866243i \(0.333472\pi\)
\(770\) 0 0
\(771\) −0.0621330 + 0.312364i −0.00223767 + 0.0112495i
\(772\) 0 0
\(773\) −4.99174 3.33537i −0.179540 0.119965i 0.462553 0.886592i \(-0.346934\pi\)
−0.642093 + 0.766627i \(0.721934\pi\)
\(774\) 0 0
\(775\) 16.9044 7.00202i 0.607223 0.251520i
\(776\) 0 0
\(777\) 2.65974 + 1.10170i 0.0954177 + 0.0395233i
\(778\) 0 0
\(779\) 40.4006 8.03618i 1.44750 0.287926i
\(780\) 0 0
\(781\) −0.268127 + 0.179157i −0.00959435 + 0.00641074i
\(782\) 0 0
\(783\) 22.3131 22.3131i 0.797406 0.797406i
\(784\) 0 0
\(785\) 8.70652 + 8.70652i 0.310749 + 0.310749i
\(786\) 0 0
\(787\) 21.3968 + 32.0226i 0.762714 + 1.14148i 0.986003 + 0.166730i \(0.0533209\pi\)
−0.223288 + 0.974752i \(0.571679\pi\)
\(788\) 0 0
\(789\) 3.50470 + 17.6193i 0.124771 + 0.627265i
\(790\) 0 0
\(791\) −3.61056 + 8.71667i −0.128377 + 0.309929i
\(792\) 0 0
\(793\) 2.49587 + 6.02557i 0.0886311 + 0.213974i
\(794\) 0 0
\(795\) 0.395604 0.592064i 0.0140306 0.0209983i
\(796\) 0 0
\(797\) 19.9075 + 3.95984i 0.705159 + 0.140265i 0.534628 0.845088i \(-0.320452\pi\)
0.170531 + 0.985352i \(0.445452\pi\)
\(798\) 0 0
\(799\) 37.4895i 1.32628i
\(800\) 0 0
\(801\) 20.2687i 0.716158i
\(802\) 0 0
\(803\) 0.0796639 + 0.0158461i 0.00281128 + 0.000559198i
\(804\) 0 0
\(805\) 3.07017 4.59484i 0.108209 0.161947i
\(806\) 0 0
\(807\) −1.68043 4.05693i −0.0591541 0.142811i
\(808\) 0 0
\(809\) 3.73336 9.01314i 0.131258 0.316885i −0.844563 0.535456i \(-0.820140\pi\)
0.975821 + 0.218571i \(0.0701396\pi\)
\(810\) 0 0
\(811\) 9.93194 + 49.9313i 0.348758 + 1.75332i 0.614156 + 0.789185i \(0.289496\pi\)
−0.265398 + 0.964139i \(0.585504\pi\)
\(812\) 0 0
\(813\) 0.856267 + 1.28149i 0.0300306 + 0.0449440i
\(814\) 0 0
\(815\) −7.55110 7.55110i −0.264504 0.264504i
\(816\) 0 0
\(817\) 11.4145 11.4145i 0.399342 0.399342i
\(818\) 0 0
\(819\) −4.44680 + 2.97126i −0.155384 + 0.103824i
\(820\) 0 0
\(821\) −41.5441 + 8.26364i −1.44990 + 0.288403i −0.856350 0.516395i \(-0.827274\pi\)
−0.593549 + 0.804798i \(0.702274\pi\)
\(822\) 0 0
\(823\) 15.1760 + 6.28610i 0.529001 + 0.219120i 0.631166 0.775648i \(-0.282577\pi\)
−0.102164 + 0.994768i \(0.532577\pi\)
\(824\) 0 0
\(825\) 0.200248 0.0829456i 0.00697176 0.00288780i
\(826\) 0 0
\(827\) −9.22561 6.16435i −0.320806 0.214356i 0.384731 0.923029i \(-0.374294\pi\)
−0.705537 + 0.708673i \(0.749294\pi\)
\(828\) 0 0
\(829\) −2.51090 + 12.6231i −0.0872070 + 0.438419i 0.912371 + 0.409365i \(0.134250\pi\)
−0.999578 + 0.0290546i \(0.990750\pi\)
\(830\) 0 0
\(831\) 12.1186 0.420388
\(832\) 0 0
\(833\) −27.3800 −0.948661
\(834\) 0 0
\(835\) 1.42071 7.14237i 0.0491655 0.247172i
\(836\) 0 0
\(837\) −12.3500 8.25199i −0.426878 0.285230i
\(838\) 0 0
\(839\) −40.8308 + 16.9127i −1.40963 + 0.583890i −0.952233 0.305371i \(-0.901220\pi\)
−0.457401 + 0.889261i \(0.651220\pi\)
\(840\) 0 0
\(841\) 46.3524 + 19.1998i 1.59836 + 0.662061i
\(842\) 0 0
\(843\) −4.54471 + 0.903999i −0.156528 + 0.0311354i
\(844\) 0 0
\(845\) −5.35973 + 3.58126i −0.184380 + 0.123199i
\(846\) 0 0
\(847\) −7.23694 + 7.23694i −0.248664 + 0.248664i
\(848\) 0 0
\(849\) −4.34613 4.34613i −0.149159 0.149159i
\(850\) 0 0
\(851\) −20.2648 30.3284i −0.694668 1.03964i
\(852\) 0 0
\(853\) −5.80574 29.1874i −0.198785 0.999359i −0.943347 0.331806i \(-0.892342\pi\)
0.744563 0.667553i \(-0.232658\pi\)
\(854\) 0 0
\(855\) −5.22559 + 12.6157i −0.178711 + 0.431447i
\(856\) 0 0
\(857\) 3.96712 + 9.57747i 0.135514 + 0.327160i 0.977040 0.213057i \(-0.0683421\pi\)
−0.841526 + 0.540217i \(0.818342\pi\)
\(858\) 0 0
\(859\) −10.3728 + 15.5239i −0.353914 + 0.529670i −0.965122 0.261800i \(-0.915684\pi\)
0.611208 + 0.791470i \(0.290684\pi\)
\(860\) 0 0
\(861\) 3.60234 + 0.716551i 0.122768 + 0.0244200i
\(862\) 0 0
\(863\) 6.37504i 0.217009i 0.994096 + 0.108504i \(0.0346062\pi\)
−0.994096 + 0.108504i \(0.965394\pi\)
\(864\) 0 0
\(865\) 5.97622i 0.203198i
\(866\) 0 0
\(867\) −1.81922 0.361866i −0.0617841 0.0122896i
\(868\) 0 0
\(869\) −0.435969 + 0.652473i −0.0147892 + 0.0221336i
\(870\) 0 0
\(871\) 7.85348 + 18.9600i 0.266105 + 0.642434i
\(872\) 0 0
\(873\) 7.35831 17.7645i 0.249041 0.601239i
\(874\) 0 0
\(875\) −1.35190 6.79644i −0.0457024 0.229761i
\(876\) 0 0
\(877\) 7.14103 + 10.6873i 0.241136 + 0.360885i 0.932222 0.361887i \(-0.117868\pi\)
−0.691086 + 0.722772i \(0.742868\pi\)
\(878\) 0 0
\(879\) −4.03771 4.03771i −0.136188 0.136188i
\(880\) 0 0
\(881\) 9.31796 9.31796i 0.313930 0.313930i −0.532500 0.846430i \(-0.678747\pi\)
0.846430 + 0.532500i \(0.178747\pi\)
\(882\) 0 0
\(883\) −21.6540 + 14.4687i −0.728714 + 0.486911i −0.863744 0.503931i \(-0.831887\pi\)
0.135031 + 0.990841i \(0.456887\pi\)
\(884\) 0 0
\(885\) 6.04589 1.20260i 0.203231 0.0404251i
\(886\) 0 0
\(887\) −29.2410 12.1120i −0.981816 0.406681i −0.166718 0.986005i \(-0.553317\pi\)
−0.815098 + 0.579323i \(0.803317\pi\)
\(888\) 0 0
\(889\) 10.8782 4.50590i 0.364844 0.151123i
\(890\) 0 0
\(891\) 0.361434 + 0.241503i 0.0121085 + 0.00809065i
\(892\) 0 0
\(893\) 10.8351 54.4716i 0.362582 1.82282i
\(894\) 0 0
\(895\) −4.01802 −0.134308
\(896\) 0 0
\(897\) −10.4619 −0.349313
\(898\) 0 0
\(899\) 7.27023 36.5499i 0.242476 1.21901i
\(900\) 0 0
\(901\) −5.25167 3.50905i −0.174958 0.116903i
\(902\) 0 0
\(903\) 1.32979 0.550818i 0.0442527 0.0183301i
\(904\) 0 0
\(905\) −4.13255 1.71176i −0.137371 0.0569007i
\(906\) 0 0
\(907\) 40.1944 7.99517i 1.33463 0.265475i 0.524346 0.851506i \(-0.324310\pi\)
0.810289 + 0.586030i \(0.199310\pi\)
\(908\) 0 0
\(909\) 27.2446 18.2043i 0.903647 0.603797i
\(910\) 0 0
\(911\) 28.6254 28.6254i 0.948402 0.948402i −0.0503311 0.998733i \(-0.516028\pi\)
0.998733 + 0.0503311i \(0.0160276\pi\)
\(912\) 0 0
\(913\) 0.349054 + 0.349054i 0.0115520 + 0.0115520i
\(914\) 0 0
\(915\) 0.824923 + 1.23458i 0.0272711 + 0.0408141i
\(916\) 0 0
\(917\) −0.282775 1.42161i −0.00933806 0.0469456i
\(918\) 0 0
\(919\) 10.0585 24.2833i 0.331798 0.801031i −0.666652 0.745369i \(-0.732273\pi\)
0.998450 0.0556618i \(-0.0177269\pi\)
\(920\) 0 0
\(921\) 3.66364 + 8.84481i 0.120721 + 0.291446i
\(922\) 0 0
\(923\) 5.05649 7.56757i 0.166436 0.249090i
\(924\) 0 0
\(925\) −20.9187 4.16099i −0.687803 0.136813i
\(926\) 0 0
\(927\) 42.7234i 1.40322i
\(928\) 0 0
\(929\) 36.2888i 1.19060i −0.803505 0.595298i \(-0.797034\pi\)
0.803505 0.595298i \(-0.202966\pi\)
\(930\) 0 0
\(931\) −39.7826 7.91326i −1.30382 0.259347i
\(932\) 0 0
\(933\) −1.62379 + 2.43017i −0.0531605 + 0.0795603i
\(934\) 0 0
\(935\) 0.106312 + 0.256659i 0.00347677 + 0.00839365i
\(936\) 0 0
\(937\) −22.0385 + 53.2056i −0.719966 + 1.73815i −0.0465174 + 0.998917i \(0.514812\pi\)
−0.673449 + 0.739234i \(0.735188\pi\)
\(938\) 0 0
\(939\) 2.56047 + 12.8723i 0.0835577 + 0.420073i
\(940\) 0 0
\(941\) 32.5815 + 48.7616i 1.06213 + 1.58958i 0.775293 + 0.631602i \(0.217602\pi\)
0.286832 + 0.957981i \(0.407398\pi\)
\(942\) 0 0
\(943\) −32.9060 32.9060i −1.07157 1.07157i
\(944\) 0 0
\(945\) −1.85482 + 1.85482i −0.0603375 + 0.0603375i
\(946\) 0 0
\(947\) −23.3926 + 15.6304i −0.760156 + 0.507920i −0.874206 0.485555i \(-0.838618\pi\)
0.114050 + 0.993475i \(0.463618\pi\)
\(948\) 0 0
\(949\) −2.24842 + 0.447238i −0.0729867 + 0.0145180i
\(950\) 0 0
\(951\) −3.48405 1.44314i −0.112978 0.0467970i
\(952\) 0 0
\(953\) −23.8429 + 9.87605i −0.772347 + 0.319917i −0.733823 0.679341i \(-0.762266\pi\)
−0.0385243 + 0.999258i \(0.512266\pi\)
\(954\) 0 0
\(955\) −0.858101 0.573365i −0.0277675 0.0185536i
\(956\) 0 0
\(957\) 0.0861229 0.432969i 0.00278396 0.0139959i
\(958\) 0 0
\(959\) 5.34543 0.172613
\(960\) 0 0
\(961\) 13.4589 0.434158
\(962\) 0 0
\(963\) 3.93005 19.7577i 0.126644 0.636683i
\(964\) 0 0
\(965\) −0.102517 0.0684994i −0.00330012 0.00220507i
\(966\) 0 0
\(967\) −45.3076 + 18.7670i −1.45699 + 0.603507i −0.963851 0.266441i \(-0.914152\pi\)
−0.493143 + 0.869948i \(0.664152\pi\)
\(968\) 0 0
\(969\) −17.2771 7.15640i −0.555020 0.229897i
\(970\) 0 0
\(971\) −14.9013 + 2.96405i −0.478205 + 0.0951208i −0.428307 0.903634i \(-0.640890\pi\)
−0.0498981 + 0.998754i \(0.515890\pi\)
\(972\) 0 0
\(973\) 14.9710 10.0033i 0.479948 0.320691i
\(974\) 0 0
\(975\) −4.32568 + 4.32568i −0.138533 + 0.138533i
\(976\) 0 0
\(977\) −21.1839 21.1839i −0.677734 0.677734i 0.281753 0.959487i \(-0.409084\pi\)
−0.959487 + 0.281753i \(0.909084\pi\)
\(978\) 0 0
\(979\) −0.339388 0.507930i −0.0108469 0.0162335i
\(980\) 0 0
\(981\) 8.32577 + 41.8565i 0.265821 + 1.33637i
\(982\) 0 0
\(983\) 10.4133 25.1400i 0.332134 0.801842i −0.666289 0.745694i \(-0.732118\pi\)
0.998422 0.0561482i \(-0.0178819\pi\)
\(984\) 0 0
\(985\) −3.68478 8.89585i −0.117407 0.283445i
\(986\) 0 0
\(987\) 2.75126 4.11756i 0.0875737 0.131063i
\(988\) 0 0
\(989\) −17.8863 3.55781i −0.568752 0.113132i
\(990\) 0 0
\(991\) 11.9640i 0.380050i −0.981779 0.190025i \(-0.939143\pi\)
0.981779 0.190025i \(-0.0608569\pi\)
\(992\) 0 0
\(993\) 16.5090i 0.523899i
\(994\) 0 0
\(995\) −18.8889 3.75724i −0.598820 0.119113i
\(996\) 0 0
\(997\) −2.81043 + 4.20611i −0.0890073 + 0.133209i −0.873301 0.487180i \(-0.838025\pi\)
0.784294 + 0.620389i \(0.213025\pi\)
\(998\) 0 0
\(999\) 6.62578 + 15.9960i 0.209630 + 0.506092i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.2.i.a.81.4 56
4.3 odd 2 64.2.i.a.61.5 yes 56
8.3 odd 2 512.2.i.b.417.4 56
8.5 even 2 512.2.i.a.417.4 56
12.11 even 2 576.2.bd.a.253.3 56
64.11 odd 16 512.2.i.b.97.4 56
64.21 even 16 inner 256.2.i.a.177.4 56
64.43 odd 16 64.2.i.a.21.5 56
64.53 even 16 512.2.i.a.97.4 56
192.107 even 16 576.2.bd.a.469.3 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
64.2.i.a.21.5 56 64.43 odd 16
64.2.i.a.61.5 yes 56 4.3 odd 2
256.2.i.a.81.4 56 1.1 even 1 trivial
256.2.i.a.177.4 56 64.21 even 16 inner
512.2.i.a.97.4 56 64.53 even 16
512.2.i.a.417.4 56 8.5 even 2
512.2.i.b.97.4 56 64.11 odd 16
512.2.i.b.417.4 56 8.3 odd 2
576.2.bd.a.253.3 56 12.11 even 2
576.2.bd.a.469.3 56 192.107 even 16