Properties

Label 256.2.i.a.241.7
Level $256$
Weight $2$
Character 256.241
Analytic conductor $2.044$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [256,2,Mod(17,256)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("256.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(256, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 256.i (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04417029174\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(7\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 64)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 241.7
Character \(\chi\) \(=\) 256.241
Dual form 256.2.i.a.17.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.77714 - 2.65968i) q^{3} +(-0.159018 + 0.799435i) q^{5} +(0.742008 - 1.79137i) q^{7} +(-2.76763 - 6.68165i) q^{9} +(-1.29226 + 0.863458i) q^{11} +(1.07211 + 5.38985i) q^{13} +(1.84365 + 1.84365i) q^{15} +(1.43298 - 1.43298i) q^{17} +(-0.0883441 + 0.0175727i) q^{19} +(-3.44581 - 5.15702i) q^{21} +(-3.31519 + 1.37320i) q^{23} +(4.00559 + 1.65917i) q^{25} +(-13.2776 - 2.64108i) q^{27} +(-1.04042 - 0.695186i) q^{29} -2.58743i q^{31} +4.97148i q^{33} +(1.31409 + 0.878046i) q^{35} +(1.60572 + 0.319397i) q^{37} +(16.2406 + 6.72707i) q^{39} +(0.605183 - 0.250675i) q^{41} +(5.04263 + 7.54683i) q^{43} +(5.78164 - 1.15004i) q^{45} +(3.86580 - 3.86580i) q^{47} +(2.29133 + 2.29133i) q^{49} +(-1.26466 - 6.35787i) q^{51} +(-8.70867 + 5.81895i) q^{53} +(-0.484787 - 1.17038i) q^{55} +(-0.110262 + 0.266197i) q^{57} +(-1.17041 + 5.88407i) q^{59} +(3.52821 - 5.28034i) q^{61} -14.0229 q^{63} -4.47932 q^{65} +(-3.15404 + 4.72036i) q^{67} +(-2.23930 + 11.2577i) q^{69} +(-5.01419 + 12.1053i) q^{71} +(-1.75399 - 4.23450i) q^{73} +(11.5314 - 7.70502i) q^{75} +(0.587905 + 2.95560i) q^{77} +(-7.46021 - 7.46021i) q^{79} +(-15.2789 + 15.2789i) q^{81} +(2.65306 - 0.527725i) q^{83} +(0.917704 + 1.37344i) q^{85} +(-3.69795 + 1.53174i) q^{87} +(7.09322 + 2.93811i) q^{89} +(10.4507 + 2.07877i) q^{91} +(-6.88175 - 4.59824i) q^{93} -0.0734197i q^{95} -11.4524i q^{97} +(9.34580 + 6.24466i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{3} - 8 q^{5} + 8 q^{7} - 8 q^{9} + 8 q^{11} - 8 q^{13} + 8 q^{15} - 8 q^{17} + 8 q^{19} - 8 q^{21} + 8 q^{23} - 8 q^{25} + 8 q^{27} - 8 q^{29} + 8 q^{35} - 8 q^{37} + 8 q^{39} - 8 q^{41} + 8 q^{43}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(e\left(\frac{9}{16}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.77714 2.65968i 1.02603 1.53557i 0.193880 0.981025i \(-0.437893\pi\)
0.832154 0.554544i \(-0.187107\pi\)
\(4\) 0 0
\(5\) −0.159018 + 0.799435i −0.0711148 + 0.357518i −0.999915 0.0130634i \(-0.995842\pi\)
0.928800 + 0.370582i \(0.120842\pi\)
\(6\) 0 0
\(7\) 0.742008 1.79137i 0.280453 0.677073i −0.719394 0.694603i \(-0.755580\pi\)
0.999846 + 0.0175299i \(0.00558022\pi\)
\(8\) 0 0
\(9\) −2.76763 6.68165i −0.922543 2.22722i
\(10\) 0 0
\(11\) −1.29226 + 0.863458i −0.389630 + 0.260342i −0.734920 0.678154i \(-0.762780\pi\)
0.345290 + 0.938496i \(0.387780\pi\)
\(12\) 0 0
\(13\) 1.07211 + 5.38985i 0.297349 + 1.49487i 0.783716 + 0.621119i \(0.213322\pi\)
−0.486367 + 0.873755i \(0.661678\pi\)
\(14\) 0 0
\(15\) 1.84365 + 1.84365i 0.476028 + 0.476028i
\(16\) 0 0
\(17\) 1.43298 1.43298i 0.347548 0.347548i −0.511648 0.859195i \(-0.670965\pi\)
0.859195 + 0.511648i \(0.170965\pi\)
\(18\) 0 0
\(19\) −0.0883441 + 0.0175727i −0.0202675 + 0.00403146i −0.205214 0.978717i \(-0.565789\pi\)
0.184946 + 0.982749i \(0.440789\pi\)
\(20\) 0 0
\(21\) −3.44581 5.15702i −0.751938 1.12535i
\(22\) 0 0
\(23\) −3.31519 + 1.37320i −0.691266 + 0.286332i −0.700527 0.713625i \(-0.747052\pi\)
0.00926165 + 0.999957i \(0.497052\pi\)
\(24\) 0 0
\(25\) 4.00559 + 1.65917i 0.801118 + 0.331834i
\(26\) 0 0
\(27\) −13.2776 2.64108i −2.55528 0.508276i
\(28\) 0 0
\(29\) −1.04042 0.695186i −0.193201 0.129093i 0.455207 0.890385i \(-0.349565\pi\)
−0.648409 + 0.761293i \(0.724565\pi\)
\(30\) 0 0
\(31\) 2.58743i 0.464717i −0.972630 0.232358i \(-0.925356\pi\)
0.972630 0.232358i \(-0.0746442\pi\)
\(32\) 0 0
\(33\) 4.97148i 0.865424i
\(34\) 0 0
\(35\) 1.31409 + 0.878046i 0.222122 + 0.148417i
\(36\) 0 0
\(37\) 1.60572 + 0.319397i 0.263979 + 0.0525086i 0.325305 0.945609i \(-0.394533\pi\)
−0.0613263 + 0.998118i \(0.519533\pi\)
\(38\) 0 0
\(39\) 16.2406 + 6.72707i 2.60057 + 1.07719i
\(40\) 0 0
\(41\) 0.605183 0.250675i 0.0945137 0.0391488i −0.334926 0.942245i \(-0.608711\pi\)
0.429439 + 0.903096i \(0.358711\pi\)
\(42\) 0 0
\(43\) 5.04263 + 7.54683i 0.768994 + 1.15088i 0.984672 + 0.174416i \(0.0558039\pi\)
−0.215678 + 0.976465i \(0.569196\pi\)
\(44\) 0 0
\(45\) 5.78164 1.15004i 0.861877 0.171438i
\(46\) 0 0
\(47\) 3.86580 3.86580i 0.563885 0.563885i −0.366524 0.930409i \(-0.619452\pi\)
0.930409 + 0.366524i \(0.119452\pi\)
\(48\) 0 0
\(49\) 2.29133 + 2.29133i 0.327333 + 0.327333i
\(50\) 0 0
\(51\) −1.26466 6.35787i −0.177088 0.890280i
\(52\) 0 0
\(53\) −8.70867 + 5.81895i −1.19623 + 0.799294i −0.984042 0.177935i \(-0.943058\pi\)
−0.212186 + 0.977229i \(0.568058\pi\)
\(54\) 0 0
\(55\) −0.484787 1.17038i −0.0653687 0.157814i
\(56\) 0 0
\(57\) −0.110262 + 0.266197i −0.0146046 + 0.0352586i
\(58\) 0 0
\(59\) −1.17041 + 5.88407i −0.152375 + 0.766040i 0.826716 + 0.562619i \(0.190206\pi\)
−0.979091 + 0.203421i \(0.934794\pi\)
\(60\) 0 0
\(61\) 3.52821 5.28034i 0.451741 0.676078i −0.533782 0.845622i \(-0.679230\pi\)
0.985523 + 0.169544i \(0.0542296\pi\)
\(62\) 0 0
\(63\) −14.0229 −1.76672
\(64\) 0 0
\(65\) −4.47932 −0.555591
\(66\) 0 0
\(67\) −3.15404 + 4.72036i −0.385328 + 0.576684i −0.972536 0.232752i \(-0.925227\pi\)
0.587208 + 0.809436i \(0.300227\pi\)
\(68\) 0 0
\(69\) −2.23930 + 11.2577i −0.269581 + 1.35527i
\(70\) 0 0
\(71\) −5.01419 + 12.1053i −0.595075 + 1.43664i 0.283471 + 0.958981i \(0.408514\pi\)
−0.878546 + 0.477657i \(0.841486\pi\)
\(72\) 0 0
\(73\) −1.75399 4.23450i −0.205289 0.495611i 0.787381 0.616466i \(-0.211436\pi\)
−0.992670 + 0.120855i \(0.961436\pi\)
\(74\) 0 0
\(75\) 11.5314 7.70502i 1.33153 0.889699i
\(76\) 0 0
\(77\) 0.587905 + 2.95560i 0.0669979 + 0.336821i
\(78\) 0 0
\(79\) −7.46021 7.46021i −0.839340 0.839340i 0.149432 0.988772i \(-0.452255\pi\)
−0.988772 + 0.149432i \(0.952255\pi\)
\(80\) 0 0
\(81\) −15.2789 + 15.2789i −1.69766 + 1.69766i
\(82\) 0 0
\(83\) 2.65306 0.527725i 0.291211 0.0579254i −0.0473232 0.998880i \(-0.515069\pi\)
0.338534 + 0.940954i \(0.390069\pi\)
\(84\) 0 0
\(85\) 0.917704 + 1.37344i 0.0995389 + 0.148971i
\(86\) 0 0
\(87\) −3.69795 + 1.53174i −0.396462 + 0.164220i
\(88\) 0 0
\(89\) 7.09322 + 2.93811i 0.751880 + 0.311439i 0.725508 0.688213i \(-0.241605\pi\)
0.0263716 + 0.999652i \(0.491605\pi\)
\(90\) 0 0
\(91\) 10.4507 + 2.07877i 1.09553 + 0.217915i
\(92\) 0 0
\(93\) −6.88175 4.59824i −0.713605 0.476815i
\(94\) 0 0
\(95\) 0.0734197i 0.00753271i
\(96\) 0 0
\(97\) 11.4524i 1.16281i −0.813614 0.581406i \(-0.802503\pi\)
0.813614 0.581406i \(-0.197497\pi\)
\(98\) 0 0
\(99\) 9.34580 + 6.24466i 0.939288 + 0.627612i
\(100\) 0 0
\(101\) −11.4055 2.26869i −1.13489 0.225743i −0.408319 0.912839i \(-0.633885\pi\)
−0.726566 + 0.687097i \(0.758885\pi\)
\(102\) 0 0
\(103\) −12.3890 5.13170i −1.22073 0.505641i −0.323086 0.946370i \(-0.604720\pi\)
−0.897640 + 0.440729i \(0.854720\pi\)
\(104\) 0 0
\(105\) 4.67065 1.93465i 0.455809 0.188802i
\(106\) 0 0
\(107\) −5.26269 7.87617i −0.508764 0.761419i 0.484808 0.874620i \(-0.338889\pi\)
−0.993572 + 0.113202i \(0.963889\pi\)
\(108\) 0 0
\(109\) 16.8083 3.34339i 1.60995 0.320238i 0.693519 0.720438i \(-0.256059\pi\)
0.916428 + 0.400200i \(0.131059\pi\)
\(110\) 0 0
\(111\) 3.70309 3.70309i 0.351482 0.351482i
\(112\) 0 0
\(113\) −9.98074 9.98074i −0.938909 0.938909i 0.0593295 0.998238i \(-0.481104\pi\)
−0.998238 + 0.0593295i \(0.981104\pi\)
\(114\) 0 0
\(115\) −0.570609 2.86865i −0.0532096 0.267503i
\(116\) 0 0
\(117\) 33.0458 22.0805i 3.05509 2.04135i
\(118\) 0 0
\(119\) −1.50371 3.63027i −0.137844 0.332786i
\(120\) 0 0
\(121\) −3.28515 + 7.93106i −0.298650 + 0.721005i
\(122\) 0 0
\(123\) 0.408781 2.05508i 0.0368585 0.185300i
\(124\) 0 0
\(125\) −4.22757 + 6.32701i −0.378126 + 0.565905i
\(126\) 0 0
\(127\) 9.01235 0.799717 0.399858 0.916577i \(-0.369059\pi\)
0.399858 + 0.916577i \(0.369059\pi\)
\(128\) 0 0
\(129\) 29.0337 2.55627
\(130\) 0 0
\(131\) −4.77693 + 7.14918i −0.417362 + 0.624627i −0.979267 0.202575i \(-0.935069\pi\)
0.561904 + 0.827202i \(0.310069\pi\)
\(132\) 0 0
\(133\) −0.0340728 + 0.171296i −0.00295449 + 0.0148532i
\(134\) 0 0
\(135\) 4.22275 10.1946i 0.363436 0.877412i
\(136\) 0 0
\(137\) 1.16308 + 2.80792i 0.0993685 + 0.239897i 0.965744 0.259496i \(-0.0835564\pi\)
−0.866376 + 0.499393i \(0.833556\pi\)
\(138\) 0 0
\(139\) −6.85100 + 4.57769i −0.581094 + 0.388275i −0.811094 0.584916i \(-0.801127\pi\)
0.230000 + 0.973191i \(0.426127\pi\)
\(140\) 0 0
\(141\) −3.41173 17.1519i −0.287319 1.44445i
\(142\) 0 0
\(143\) −6.03934 6.03934i −0.505035 0.505035i
\(144\) 0 0
\(145\) 0.721201 0.721201i 0.0598925 0.0598925i
\(146\) 0 0
\(147\) 10.1662 2.02219i 0.838497 0.166788i
\(148\) 0 0
\(149\) −8.41009 12.5866i −0.688982 1.03113i −0.996819 0.0796950i \(-0.974605\pi\)
0.307838 0.951439i \(-0.400395\pi\)
\(150\) 0 0
\(151\) 15.1739 6.28523i 1.23483 0.511485i 0.332738 0.943019i \(-0.392028\pi\)
0.902096 + 0.431534i \(0.142028\pi\)
\(152\) 0 0
\(153\) −13.5406 5.60870i −1.09469 0.453436i
\(154\) 0 0
\(155\) 2.06848 + 0.411447i 0.166145 + 0.0330482i
\(156\) 0 0
\(157\) −3.65930 2.44507i −0.292044 0.195138i 0.400914 0.916116i \(-0.368693\pi\)
−0.692958 + 0.720978i \(0.743693\pi\)
\(158\) 0 0
\(159\) 33.5034i 2.65700i
\(160\) 0 0
\(161\) 6.95765i 0.548340i
\(162\) 0 0
\(163\) −3.89914 2.60532i −0.305404 0.204065i 0.393418 0.919360i \(-0.371292\pi\)
−0.698823 + 0.715295i \(0.746292\pi\)
\(164\) 0 0
\(165\) −3.97438 0.790553i −0.309405 0.0615444i
\(166\) 0 0
\(167\) −9.51475 3.94114i −0.736274 0.304975i −0.0171464 0.999853i \(-0.505458\pi\)
−0.719127 + 0.694878i \(0.755458\pi\)
\(168\) 0 0
\(169\) −15.8906 + 6.58210i −1.22235 + 0.506315i
\(170\) 0 0
\(171\) 0.361918 + 0.541649i 0.0276766 + 0.0414209i
\(172\) 0 0
\(173\) −10.2124 + 2.03137i −0.776434 + 0.154442i −0.567374 0.823460i \(-0.692040\pi\)
−0.209060 + 0.977903i \(0.567040\pi\)
\(174\) 0 0
\(175\) 5.94436 5.94436i 0.449351 0.449351i
\(176\) 0 0
\(177\) 13.5698 + 13.5698i 1.01997 + 1.01997i
\(178\) 0 0
\(179\) −4.62243 23.2385i −0.345497 1.73693i −0.628500 0.777810i \(-0.716331\pi\)
0.283003 0.959119i \(-0.408669\pi\)
\(180\) 0 0
\(181\) −6.85149 + 4.57802i −0.509267 + 0.340282i −0.783510 0.621379i \(-0.786573\pi\)
0.274243 + 0.961660i \(0.411573\pi\)
\(182\) 0 0
\(183\) −7.77390 18.7678i −0.574663 1.38736i
\(184\) 0 0
\(185\) −0.510675 + 1.23288i −0.0375456 + 0.0906431i
\(186\) 0 0
\(187\) −0.614458 + 3.08909i −0.0449336 + 0.225896i
\(188\) 0 0
\(189\) −14.5832 + 21.8254i −1.06077 + 1.58756i
\(190\) 0 0
\(191\) 2.15250 0.155750 0.0778748 0.996963i \(-0.475187\pi\)
0.0778748 + 0.996963i \(0.475187\pi\)
\(192\) 0 0
\(193\) −5.53246 −0.398236 −0.199118 0.979976i \(-0.563808\pi\)
−0.199118 + 0.979976i \(0.563808\pi\)
\(194\) 0 0
\(195\) −7.96039 + 11.9136i −0.570055 + 0.853148i
\(196\) 0 0
\(197\) 2.86767 14.4167i 0.204313 1.02715i −0.733415 0.679781i \(-0.762075\pi\)
0.937728 0.347370i \(-0.112925\pi\)
\(198\) 0 0
\(199\) −0.633559 + 1.52955i −0.0449118 + 0.108427i −0.944743 0.327811i \(-0.893689\pi\)
0.899832 + 0.436237i \(0.143689\pi\)
\(200\) 0 0
\(201\) 6.94948 + 16.7775i 0.490178 + 1.18339i
\(202\) 0 0
\(203\) −2.01733 + 1.34794i −0.141589 + 0.0946068i
\(204\) 0 0
\(205\) 0.104164 + 0.523666i 0.00727511 + 0.0365744i
\(206\) 0 0
\(207\) 18.3505 + 18.3505i 1.27544 + 1.27544i
\(208\) 0 0
\(209\) 0.0989898 0.0989898i 0.00684727 0.00684727i
\(210\) 0 0
\(211\) −8.05837 + 1.60291i −0.554761 + 0.110349i −0.464506 0.885570i \(-0.653768\pi\)
−0.0902547 + 0.995919i \(0.528768\pi\)
\(212\) 0 0
\(213\) 23.2854 + 34.8491i 1.59549 + 2.38782i
\(214\) 0 0
\(215\) −6.83507 + 2.83118i −0.466148 + 0.193085i
\(216\) 0 0
\(217\) −4.63504 1.91990i −0.314647 0.130331i
\(218\) 0 0
\(219\) −14.3795 2.86026i −0.971678 0.193279i
\(220\) 0 0
\(221\) 9.25983 + 6.18722i 0.622883 + 0.416197i
\(222\) 0 0
\(223\) 1.76595i 0.118256i −0.998250 0.0591282i \(-0.981168\pi\)
0.998250 0.0591282i \(-0.0188321\pi\)
\(224\) 0 0
\(225\) 31.3559i 2.09039i
\(226\) 0 0
\(227\) 6.55957 + 4.38296i 0.435374 + 0.290908i 0.753879 0.657014i \(-0.228181\pi\)
−0.318505 + 0.947921i \(0.603181\pi\)
\(228\) 0 0
\(229\) 22.3445 + 4.44460i 1.47657 + 0.293707i 0.866713 0.498807i \(-0.166228\pi\)
0.609853 + 0.792515i \(0.291228\pi\)
\(230\) 0 0
\(231\) 8.90574 + 3.68888i 0.585955 + 0.242710i
\(232\) 0 0
\(233\) 3.96025 1.64039i 0.259445 0.107466i −0.249170 0.968460i \(-0.580158\pi\)
0.508615 + 0.860994i \(0.330158\pi\)
\(234\) 0 0
\(235\) 2.47573 + 3.70519i 0.161499 + 0.241700i
\(236\) 0 0
\(237\) −33.0997 + 6.58394i −2.15006 + 0.427673i
\(238\) 0 0
\(239\) 2.96983 2.96983i 0.192103 0.192103i −0.604501 0.796604i \(-0.706628\pi\)
0.796604 + 0.604501i \(0.206628\pi\)
\(240\) 0 0
\(241\) −16.9923 16.9923i −1.09457 1.09457i −0.995034 0.0995381i \(-0.968263\pi\)
−0.0995381 0.995034i \(-0.531737\pi\)
\(242\) 0 0
\(243\) 5.56103 + 27.9572i 0.356740 + 1.79345i
\(244\) 0 0
\(245\) −2.19613 + 1.46741i −0.140306 + 0.0937493i
\(246\) 0 0
\(247\) −0.189429 0.457321i −0.0120531 0.0290986i
\(248\) 0 0
\(249\) 3.31128 7.99413i 0.209844 0.506608i
\(250\) 0 0
\(251\) 1.88276 9.46528i 0.118839 0.597443i −0.874767 0.484543i \(-0.838986\pi\)
0.993606 0.112900i \(-0.0360141\pi\)
\(252\) 0 0
\(253\) 3.09838 4.63705i 0.194793 0.291529i
\(254\) 0 0
\(255\) 5.28381 0.330885
\(256\) 0 0
\(257\) −4.05808 −0.253136 −0.126568 0.991958i \(-0.540396\pi\)
−0.126568 + 0.991958i \(0.540396\pi\)
\(258\) 0 0
\(259\) 1.76361 2.63944i 0.109586 0.164007i
\(260\) 0 0
\(261\) −1.76549 + 8.87573i −0.109281 + 0.549394i
\(262\) 0 0
\(263\) −8.26702 + 19.9584i −0.509766 + 1.23068i 0.434252 + 0.900791i \(0.357013\pi\)
−0.944018 + 0.329893i \(0.892987\pi\)
\(264\) 0 0
\(265\) −3.26704 7.88734i −0.200693 0.484515i
\(266\) 0 0
\(267\) 20.4201 13.6443i 1.24969 0.835017i
\(268\) 0 0
\(269\) 4.65173 + 23.3858i 0.283621 + 1.42586i 0.815362 + 0.578952i \(0.196538\pi\)
−0.531741 + 0.846907i \(0.678462\pi\)
\(270\) 0 0
\(271\) 5.40955 + 5.40955i 0.328607 + 0.328607i 0.852057 0.523450i \(-0.175355\pi\)
−0.523450 + 0.852057i \(0.675355\pi\)
\(272\) 0 0
\(273\) 24.1013 24.1013i 1.45868 1.45868i
\(274\) 0 0
\(275\) −6.60887 + 1.31458i −0.398530 + 0.0792725i
\(276\) 0 0
\(277\) −10.2748 15.3773i −0.617351 0.923931i −1.00000 3.72366e-5i \(-0.999988\pi\)
0.382649 0.923894i \(-0.375012\pi\)
\(278\) 0 0
\(279\) −17.2883 + 7.16105i −1.03502 + 0.428721i
\(280\) 0 0
\(281\) 22.5624 + 9.34566i 1.34596 + 0.557515i 0.935165 0.354212i \(-0.115251\pi\)
0.410796 + 0.911727i \(0.365251\pi\)
\(282\) 0 0
\(283\) 30.7342 + 6.11341i 1.82696 + 0.363405i 0.984504 0.175362i \(-0.0561095\pi\)
0.842455 + 0.538767i \(0.181110\pi\)
\(284\) 0 0
\(285\) −0.195273 0.130477i −0.0115670 0.00772882i
\(286\) 0 0
\(287\) 1.27011i 0.0749720i
\(288\) 0 0
\(289\) 12.8932i 0.758421i
\(290\) 0 0
\(291\) −30.4597 20.3525i −1.78558 1.19308i
\(292\) 0 0
\(293\) 11.5609 + 2.29960i 0.675394 + 0.134344i 0.520858 0.853643i \(-0.325612\pi\)
0.154535 + 0.987987i \(0.450612\pi\)
\(294\) 0 0
\(295\) −4.51781 1.87134i −0.263037 0.108954i
\(296\) 0 0
\(297\) 19.4385 8.05170i 1.12794 0.467207i
\(298\) 0 0
\(299\) −10.9556 16.3962i −0.633577 0.948215i
\(300\) 0 0
\(301\) 17.2608 3.43339i 0.994897 0.197897i
\(302\) 0 0
\(303\) −26.3031 + 26.3031i −1.51108 + 1.51108i
\(304\) 0 0
\(305\) 3.66024 + 3.66024i 0.209585 + 0.209585i
\(306\) 0 0
\(307\) 3.01807 + 15.1728i 0.172250 + 0.865960i 0.966164 + 0.257929i \(0.0830402\pi\)
−0.793914 + 0.608031i \(0.791960\pi\)
\(308\) 0 0
\(309\) −35.6658 + 23.8311i −2.02895 + 1.35570i
\(310\) 0 0
\(311\) 11.7272 + 28.3120i 0.664989 + 1.60543i 0.789884 + 0.613256i \(0.210141\pi\)
−0.124895 + 0.992170i \(0.539859\pi\)
\(312\) 0 0
\(313\) −6.18242 + 14.9257i −0.349451 + 0.843649i 0.647234 + 0.762291i \(0.275926\pi\)
−0.996685 + 0.0813577i \(0.974074\pi\)
\(314\) 0 0
\(315\) 2.22988 11.2104i 0.125640 0.631633i
\(316\) 0 0
\(317\) 15.9809 23.9172i 0.897579 1.34332i −0.0413265 0.999146i \(-0.513158\pi\)
0.938905 0.344176i \(-0.111842\pi\)
\(318\) 0 0
\(319\) 1.94475 0.108885
\(320\) 0 0
\(321\) −30.3007 −1.69122
\(322\) 0 0
\(323\) −0.101414 + 0.151776i −0.00564281 + 0.00844506i
\(324\) 0 0
\(325\) −4.64824 + 23.3683i −0.257838 + 1.29624i
\(326\) 0 0
\(327\) 20.9785 50.6466i 1.16011 2.80076i
\(328\) 0 0
\(329\) −4.05661 9.79352i −0.223648 0.539934i
\(330\) 0 0
\(331\) −17.2884 + 11.5517i −0.950256 + 0.634941i −0.931057 0.364875i \(-0.881112\pi\)
−0.0191998 + 0.999816i \(0.506112\pi\)
\(332\) 0 0
\(333\) −2.30993 11.6128i −0.126584 0.636379i
\(334\) 0 0
\(335\) −3.27207 3.27207i −0.178772 0.178772i
\(336\) 0 0
\(337\) −0.552793 + 0.552793i −0.0301125 + 0.0301125i −0.722003 0.691890i \(-0.756778\pi\)
0.691890 + 0.722003i \(0.256778\pi\)
\(338\) 0 0
\(339\) −44.2828 + 8.80840i −2.40511 + 0.478407i
\(340\) 0 0
\(341\) 2.23414 + 3.34362i 0.120985 + 0.181067i
\(342\) 0 0
\(343\) 18.3444 7.59848i 0.990502 0.410280i
\(344\) 0 0
\(345\) −8.64375 3.58036i −0.465364 0.192760i
\(346\) 0 0
\(347\) −20.3020 4.03831i −1.08987 0.216788i −0.382726 0.923862i \(-0.625015\pi\)
−0.707140 + 0.707074i \(0.750015\pi\)
\(348\) 0 0
\(349\) −24.9728 16.6863i −1.33676 0.893195i −0.337913 0.941177i \(-0.609721\pi\)
−0.998848 + 0.0479825i \(0.984721\pi\)
\(350\) 0 0
\(351\) 74.3958i 3.97095i
\(352\) 0 0
\(353\) 14.1087i 0.750928i 0.926837 + 0.375464i \(0.122517\pi\)
−0.926837 + 0.375464i \(0.877483\pi\)
\(354\) 0 0
\(355\) −8.88008 5.93348i −0.471306 0.314916i
\(356\) 0 0
\(357\) −12.3277 2.45212i −0.652449 0.129780i
\(358\) 0 0
\(359\) 21.9299 + 9.08367i 1.15742 + 0.479418i 0.877014 0.480465i \(-0.159532\pi\)
0.280403 + 0.959882i \(0.409532\pi\)
\(360\) 0 0
\(361\) −17.5462 + 7.26788i −0.923485 + 0.382520i
\(362\) 0 0
\(363\) 15.2559 + 22.8321i 0.800728 + 1.19837i
\(364\) 0 0
\(365\) 3.66412 0.728839i 0.191789 0.0381492i
\(366\) 0 0
\(367\) −11.6037 + 11.6037i −0.605711 + 0.605711i −0.941822 0.336111i \(-0.890888\pi\)
0.336111 + 0.941822i \(0.390888\pi\)
\(368\) 0 0
\(369\) −3.34984 3.34984i −0.174386 0.174386i
\(370\) 0 0
\(371\) 3.96196 + 19.9181i 0.205695 + 1.03410i
\(372\) 0 0
\(373\) 12.5475 8.38398i 0.649685 0.434106i −0.186573 0.982441i \(-0.559738\pi\)
0.836259 + 0.548335i \(0.184738\pi\)
\(374\) 0 0
\(375\) 9.31485 + 22.4880i 0.481017 + 1.16128i
\(376\) 0 0
\(377\) 2.63150 6.35301i 0.135529 0.327197i
\(378\) 0 0
\(379\) 0.563697 2.83390i 0.0289552 0.145567i −0.963603 0.267336i \(-0.913857\pi\)
0.992559 + 0.121769i \(0.0388566\pi\)
\(380\) 0 0
\(381\) 16.0162 23.9700i 0.820537 1.22802i
\(382\) 0 0
\(383\) 34.7104 1.77362 0.886808 0.462137i \(-0.152917\pi\)
0.886808 + 0.462137i \(0.152917\pi\)
\(384\) 0 0
\(385\) −2.45629 −0.125184
\(386\) 0 0
\(387\) 36.4691 54.5799i 1.85383 2.77445i
\(388\) 0 0
\(389\) 6.28614 31.6026i 0.318720 1.60231i −0.406403 0.913694i \(-0.633217\pi\)
0.725123 0.688619i \(-0.241783\pi\)
\(390\) 0 0
\(391\) −2.78283 + 6.71836i −0.140734 + 0.339762i
\(392\) 0 0
\(393\) 10.5253 + 25.4103i 0.530930 + 1.28178i
\(394\) 0 0
\(395\) 7.15026 4.77765i 0.359769 0.240390i
\(396\) 0 0
\(397\) −0.587551 2.95382i −0.0294883 0.148248i 0.963236 0.268656i \(-0.0865796\pi\)
−0.992724 + 0.120408i \(0.961580\pi\)
\(398\) 0 0
\(399\) 0.395040 + 0.395040i 0.0197767 + 0.0197767i
\(400\) 0 0
\(401\) 14.8685 14.8685i 0.742498 0.742498i −0.230560 0.973058i \(-0.574056\pi\)
0.973058 + 0.230560i \(0.0740558\pi\)
\(402\) 0 0
\(403\) 13.9459 2.77400i 0.694693 0.138183i
\(404\) 0 0
\(405\) −9.78490 14.6441i −0.486215 0.727673i
\(406\) 0 0
\(407\) −2.35079 + 0.973727i −0.116524 + 0.0482659i
\(408\) 0 0
\(409\) 14.6721 + 6.07739i 0.725490 + 0.300508i 0.714697 0.699434i \(-0.246565\pi\)
0.0107925 + 0.999942i \(0.496565\pi\)
\(410\) 0 0
\(411\) 9.53514 + 1.89666i 0.470334 + 0.0935552i
\(412\) 0 0
\(413\) 9.67206 + 6.46266i 0.475931 + 0.318007i
\(414\) 0 0
\(415\) 2.20486i 0.108232i
\(416\) 0 0
\(417\) 26.3567i 1.29069i
\(418\) 0 0
\(419\) 21.4066 + 14.3034i 1.04578 + 0.698768i 0.954850 0.297090i \(-0.0960160\pi\)
0.0909301 + 0.995857i \(0.471016\pi\)
\(420\) 0 0
\(421\) 11.3448 + 2.25662i 0.552911 + 0.109981i 0.463635 0.886026i \(-0.346545\pi\)
0.0892757 + 0.996007i \(0.471545\pi\)
\(422\) 0 0
\(423\) −36.5290 15.1308i −1.77610 0.735686i
\(424\) 0 0
\(425\) 8.11746 3.36236i 0.393755 0.163099i
\(426\) 0 0
\(427\) −6.84106 10.2384i −0.331062 0.495469i
\(428\) 0 0
\(429\) −26.7955 + 5.32996i −1.29370 + 0.257333i
\(430\) 0 0
\(431\) 16.7738 16.7738i 0.807965 0.807965i −0.176361 0.984326i \(-0.556433\pi\)
0.984326 + 0.176361i \(0.0564326\pi\)
\(432\) 0 0
\(433\) 14.5447 + 14.5447i 0.698975 + 0.698975i 0.964189 0.265215i \(-0.0854428\pi\)
−0.265215 + 0.964189i \(0.585443\pi\)
\(434\) 0 0
\(435\) −0.636489 3.19985i −0.0305173 0.153421i
\(436\) 0 0
\(437\) 0.268747 0.179571i 0.0128559 0.00859004i
\(438\) 0 0
\(439\) −5.28898 12.7687i −0.252429 0.609418i 0.745970 0.665980i \(-0.231986\pi\)
−0.998399 + 0.0565614i \(0.981986\pi\)
\(440\) 0 0
\(441\) 8.96831 21.6514i 0.427062 1.03102i
\(442\) 0 0
\(443\) 2.91450 14.6522i 0.138472 0.696147i −0.847707 0.530465i \(-0.822017\pi\)
0.986179 0.165682i \(-0.0529826\pi\)
\(444\) 0 0
\(445\) −3.47677 + 5.20336i −0.164815 + 0.246663i
\(446\) 0 0
\(447\) −48.4223 −2.29030
\(448\) 0 0
\(449\) −32.7646 −1.54626 −0.773130 0.634248i \(-0.781310\pi\)
−0.773130 + 0.634248i \(0.781310\pi\)
\(450\) 0 0
\(451\) −0.565604 + 0.846486i −0.0266332 + 0.0398595i
\(452\) 0 0
\(453\) 10.2495 51.5275i 0.481562 2.42097i
\(454\) 0 0
\(455\) −3.32369 + 8.02409i −0.155817 + 0.376175i
\(456\) 0 0
\(457\) −10.4684 25.2729i −0.489691 1.18222i −0.954876 0.297005i \(-0.904012\pi\)
0.465185 0.885213i \(-0.345988\pi\)
\(458\) 0 0
\(459\) −22.8111 + 15.2419i −1.06473 + 0.711431i
\(460\) 0 0
\(461\) 1.87909 + 9.44683i 0.0875181 + 0.439983i 0.999554 + 0.0298721i \(0.00951000\pi\)
−0.912036 + 0.410111i \(0.865490\pi\)
\(462\) 0 0
\(463\) 2.57440 + 2.57440i 0.119643 + 0.119643i 0.764393 0.644751i \(-0.223039\pi\)
−0.644751 + 0.764393i \(0.723039\pi\)
\(464\) 0 0
\(465\) 4.77032 4.77032i 0.221218 0.221218i
\(466\) 0 0
\(467\) 29.4251 5.85303i 1.36163 0.270846i 0.540386 0.841417i \(-0.318278\pi\)
0.821248 + 0.570572i \(0.193278\pi\)
\(468\) 0 0
\(469\) 6.11557 + 9.15259i 0.282391 + 0.422627i
\(470\) 0 0
\(471\) −13.0062 + 5.38735i −0.599294 + 0.248236i
\(472\) 0 0
\(473\) −13.0327 5.39834i −0.599246 0.248216i
\(474\) 0 0
\(475\) −0.383026 0.0761886i −0.0175744 0.00349577i
\(476\) 0 0
\(477\) 62.9825 + 42.0836i 2.88377 + 1.92687i
\(478\) 0 0
\(479\) 13.1017i 0.598630i 0.954154 + 0.299315i \(0.0967582\pi\)
−0.954154 + 0.299315i \(0.903242\pi\)
\(480\) 0 0
\(481\) 8.99701i 0.410228i
\(482\) 0 0
\(483\) 18.5052 + 12.3647i 0.842014 + 0.562616i
\(484\) 0 0
\(485\) 9.15542 + 1.82113i 0.415726 + 0.0826931i
\(486\) 0 0
\(487\) −8.42271 3.48880i −0.381670 0.158093i 0.183596 0.983002i \(-0.441226\pi\)
−0.565265 + 0.824909i \(0.691226\pi\)
\(488\) 0 0
\(489\) −13.8587 + 5.74045i −0.626711 + 0.259592i
\(490\) 0 0
\(491\) 6.91581 + 10.3502i 0.312106 + 0.467100i 0.954048 0.299654i \(-0.0968711\pi\)
−0.641942 + 0.766753i \(0.721871\pi\)
\(492\) 0 0
\(493\) −2.48708 + 0.494711i −0.112013 + 0.0222807i
\(494\) 0 0
\(495\) −6.47835 + 6.47835i −0.291180 + 0.291180i
\(496\) 0 0
\(497\) 17.9645 + 17.9645i 0.805818 + 0.805818i
\(498\) 0 0
\(499\) 0.940281 + 4.72711i 0.0420927 + 0.211615i 0.996108 0.0881445i \(-0.0280937\pi\)
−0.954015 + 0.299759i \(0.903094\pi\)
\(500\) 0 0
\(501\) −27.3913 + 18.3023i −1.22375 + 0.817685i
\(502\) 0 0
\(503\) −10.6536 25.7202i −0.475022 1.14680i −0.961916 0.273344i \(-0.911870\pi\)
0.486894 0.873461i \(-0.338130\pi\)
\(504\) 0 0
\(505\) 3.62734 8.75716i 0.161414 0.389689i
\(506\) 0 0
\(507\) −10.7336 + 53.9613i −0.476694 + 2.39650i
\(508\) 0 0
\(509\) −13.0686 + 19.5585i −0.579256 + 0.866917i −0.999174 0.0406446i \(-0.987059\pi\)
0.419918 + 0.907562i \(0.362059\pi\)
\(510\) 0 0
\(511\) −8.88701 −0.393138
\(512\) 0 0
\(513\) 1.21941 0.0538382
\(514\) 0 0
\(515\) 6.07253 9.08818i 0.267588 0.400473i
\(516\) 0 0
\(517\) −1.65765 + 8.33356i −0.0729033 + 0.366510i
\(518\) 0 0
\(519\) −12.7461 + 30.7718i −0.559491 + 1.35073i
\(520\) 0 0
\(521\) 7.67162 + 18.5209i 0.336100 + 0.811417i 0.998083 + 0.0618976i \(0.0197152\pi\)
−0.661983 + 0.749519i \(0.730285\pi\)
\(522\) 0 0
\(523\) −23.7322 + 15.8574i −1.03774 + 0.693394i −0.952988 0.303008i \(-0.902009\pi\)
−0.0847500 + 0.996402i \(0.527009\pi\)
\(524\) 0 0
\(525\) −5.24613 26.3741i −0.228960 1.15106i
\(526\) 0 0
\(527\) −3.70773 3.70773i −0.161511 0.161511i
\(528\) 0 0
\(529\) −7.15862 + 7.15862i −0.311244 + 0.311244i
\(530\) 0 0
\(531\) 42.5545 8.46462i 1.84671 0.367333i
\(532\) 0 0
\(533\) 1.99992 + 2.99309i 0.0866261 + 0.129645i
\(534\) 0 0
\(535\) 7.13335 2.95473i 0.308402 0.127744i
\(536\) 0 0
\(537\) −70.0219 29.0040i −3.02167 1.25161i
\(538\) 0 0
\(539\) −4.93945 0.982518i −0.212757 0.0423201i
\(540\) 0 0
\(541\) 9.15217 + 6.11529i 0.393483 + 0.262917i 0.736535 0.676400i \(-0.236461\pi\)
−0.343052 + 0.939316i \(0.611461\pi\)
\(542\) 0 0
\(543\) 26.3586i 1.13116i
\(544\) 0 0
\(545\) 13.9688i 0.598359i
\(546\) 0 0
\(547\) −22.1909 14.8275i −0.948813 0.633976i −0.0181423 0.999835i \(-0.505775\pi\)
−0.930670 + 0.365859i \(0.880775\pi\)
\(548\) 0 0
\(549\) −45.0461 8.96023i −1.92252 0.382413i
\(550\) 0 0
\(551\) 0.104131 + 0.0431326i 0.00443614 + 0.00183751i
\(552\) 0 0
\(553\) −18.8995 + 7.82843i −0.803689 + 0.332899i
\(554\) 0 0
\(555\) 2.37152 + 3.54924i 0.100666 + 0.150657i
\(556\) 0 0
\(557\) −3.07874 + 0.612399i −0.130450 + 0.0259482i −0.259884 0.965640i \(-0.583684\pi\)
0.129433 + 0.991588i \(0.458684\pi\)
\(558\) 0 0
\(559\) −35.2700 + 35.2700i −1.49176 + 1.49176i
\(560\) 0 0
\(561\) 7.12402 + 7.12402i 0.300776 + 0.300776i
\(562\) 0 0
\(563\) −3.12631 15.7170i −0.131758 0.662394i −0.989052 0.147566i \(-0.952856\pi\)
0.857294 0.514827i \(-0.172144\pi\)
\(564\) 0 0
\(565\) 9.56607 6.39184i 0.402447 0.268907i
\(566\) 0 0
\(567\) 16.0331 + 38.7073i 0.673326 + 1.62555i
\(568\) 0 0
\(569\) 9.52243 22.9892i 0.399201 0.963756i −0.588655 0.808384i \(-0.700342\pi\)
0.987856 0.155372i \(-0.0496576\pi\)
\(570\) 0 0
\(571\) 1.30200 6.54559i 0.0544870 0.273924i −0.943932 0.330141i \(-0.892904\pi\)
0.998419 + 0.0562165i \(0.0179037\pi\)
\(572\) 0 0
\(573\) 3.82531 5.72498i 0.159805 0.239164i
\(574\) 0 0
\(575\) −15.5577 −0.648800
\(576\) 0 0
\(577\) 41.6755 1.73497 0.867487 0.497460i \(-0.165734\pi\)
0.867487 + 0.497460i \(0.165734\pi\)
\(578\) 0 0
\(579\) −9.83199 + 14.7146i −0.408603 + 0.611518i
\(580\) 0 0
\(581\) 1.02324 5.14417i 0.0424511 0.213416i
\(582\) 0 0
\(583\) 6.22942 15.0391i 0.257996 0.622858i
\(584\) 0 0
\(585\) 12.3971 + 29.9292i 0.512556 + 1.23742i
\(586\) 0 0
\(587\) −8.51613 + 5.69029i −0.351498 + 0.234864i −0.718767 0.695251i \(-0.755293\pi\)
0.367268 + 0.930115i \(0.380293\pi\)
\(588\) 0 0
\(589\) 0.0454683 + 0.228584i 0.00187349 + 0.00941865i
\(590\) 0 0
\(591\) −33.2477 33.2477i −1.36763 1.36763i
\(592\) 0 0
\(593\) −17.7593 + 17.7593i −0.729285 + 0.729285i −0.970477 0.241192i \(-0.922462\pi\)
0.241192 + 0.970477i \(0.422462\pi\)
\(594\) 0 0
\(595\) 3.14128 0.624839i 0.128780 0.0256159i
\(596\) 0 0
\(597\) 2.94219 + 4.40329i 0.120416 + 0.180215i
\(598\) 0 0
\(599\) 23.1403 9.58504i 0.945488 0.391634i 0.143955 0.989584i \(-0.454018\pi\)
0.801533 + 0.597950i \(0.204018\pi\)
\(600\) 0 0
\(601\) 10.7219 + 4.44117i 0.437356 + 0.181159i 0.590487 0.807047i \(-0.298936\pi\)
−0.153131 + 0.988206i \(0.548936\pi\)
\(602\) 0 0
\(603\) 40.2690 + 8.01000i 1.63988 + 0.326192i
\(604\) 0 0
\(605\) −5.81797 3.88744i −0.236534 0.158047i
\(606\) 0 0
\(607\) 23.5570i 0.956147i −0.878320 0.478074i \(-0.841335\pi\)
0.878320 0.478074i \(-0.158665\pi\)
\(608\) 0 0
\(609\) 7.76095i 0.314490i
\(610\) 0 0
\(611\) 24.9806 + 16.6915i 1.01061 + 0.675267i
\(612\) 0 0
\(613\) −7.55995 1.50377i −0.305343 0.0607366i 0.0400405 0.999198i \(-0.487251\pi\)
−0.345384 + 0.938461i \(0.612251\pi\)
\(614\) 0 0
\(615\) 1.57790 + 0.653588i 0.0636271 + 0.0263552i
\(616\) 0 0
\(617\) 41.1541 17.0466i 1.65680 0.686270i 0.658975 0.752165i \(-0.270990\pi\)
0.997827 + 0.0658956i \(0.0209904\pi\)
\(618\) 0 0
\(619\) −25.0137 37.4356i −1.00538 1.50466i −0.856723 0.515777i \(-0.827503\pi\)
−0.148662 0.988888i \(-0.547497\pi\)
\(620\) 0 0
\(621\) 47.6446 9.47710i 1.91191 0.380303i
\(622\) 0 0
\(623\) 10.5265 10.5265i 0.421734 0.421734i
\(624\) 0 0
\(625\) 10.9429 + 10.9429i 0.437718 + 0.437718i
\(626\) 0 0
\(627\) −0.0873625 0.439201i −0.00348892 0.0175400i
\(628\) 0 0
\(629\) 2.75865 1.84327i 0.109994 0.0734960i
\(630\) 0 0
\(631\) 14.4914 + 34.9853i 0.576893 + 1.39274i 0.895587 + 0.444886i \(0.146756\pi\)
−0.318694 + 0.947858i \(0.603244\pi\)
\(632\) 0 0
\(633\) −10.0576 + 24.2813i −0.399756 + 0.965095i
\(634\) 0 0
\(635\) −1.43312 + 7.20479i −0.0568717 + 0.285913i
\(636\) 0 0
\(637\) −9.89337 + 14.8065i −0.391989 + 0.586654i
\(638\) 0 0
\(639\) 94.7609 3.74868
\(640\) 0 0
\(641\) −7.36049 −0.290722 −0.145361 0.989379i \(-0.546434\pi\)
−0.145361 + 0.989379i \(0.546434\pi\)
\(642\) 0 0
\(643\) −5.65643 + 8.46545i −0.223068 + 0.333845i −0.926076 0.377337i \(-0.876840\pi\)
0.703008 + 0.711182i \(0.251840\pi\)
\(644\) 0 0
\(645\) −4.61686 + 23.2105i −0.181789 + 0.913914i
\(646\) 0 0
\(647\) 15.0418 36.3142i 0.591356 1.42766i −0.290838 0.956772i \(-0.593934\pi\)
0.882194 0.470886i \(-0.156066\pi\)
\(648\) 0 0
\(649\) −3.56817 8.61432i −0.140063 0.338142i
\(650\) 0 0
\(651\) −13.3435 + 8.91581i −0.522971 + 0.349438i
\(652\) 0 0
\(653\) 0.411603 + 2.06927i 0.0161073 + 0.0809767i 0.988003 0.154436i \(-0.0493559\pi\)
−0.971896 + 0.235412i \(0.924356\pi\)
\(654\) 0 0
\(655\) −4.95569 4.95569i −0.193635 0.193635i
\(656\) 0 0
\(657\) −23.4390 + 23.4390i −0.914444 + 0.914444i
\(658\) 0 0
\(659\) 13.9933 2.78344i 0.545101 0.108427i 0.0851445 0.996369i \(-0.472865\pi\)
0.459957 + 0.887941i \(0.347865\pi\)
\(660\) 0 0
\(661\) −2.17698 3.25808i −0.0846746 0.126724i 0.786715 0.617317i \(-0.211780\pi\)
−0.871389 + 0.490593i \(0.836780\pi\)
\(662\) 0 0
\(663\) 32.9121 13.6326i 1.27820 0.529448i
\(664\) 0 0
\(665\) −0.131522 0.0544780i −0.00510019 0.00211257i
\(666\) 0 0
\(667\) 4.40382 + 0.875975i 0.170517 + 0.0339179i
\(668\) 0 0
\(669\) −4.69686 3.13834i −0.181591 0.121335i
\(670\) 0 0
\(671\) 9.87001i 0.381027i
\(672\) 0 0
\(673\) 36.5991i 1.41079i −0.708813 0.705397i \(-0.750769\pi\)
0.708813 0.705397i \(-0.249231\pi\)
\(674\) 0 0
\(675\) −48.8026 32.6089i −1.87841 1.25512i
\(676\) 0 0
\(677\) −16.1895 3.22028i −0.622211 0.123766i −0.126090 0.992019i \(-0.540243\pi\)
−0.496121 + 0.868253i \(0.665243\pi\)
\(678\) 0 0
\(679\) −20.5154 8.49775i −0.787308 0.326114i
\(680\) 0 0
\(681\) 23.3146 9.65722i 0.893417 0.370066i
\(682\) 0 0
\(683\) −13.9637 20.8982i −0.534307 0.799647i 0.461875 0.886945i \(-0.347177\pi\)
−0.996182 + 0.0872981i \(0.972177\pi\)
\(684\) 0 0
\(685\) −2.42970 + 0.483297i −0.0928341 + 0.0184658i
\(686\) 0 0
\(687\) 51.5306 51.5306i 1.96602 1.96602i
\(688\) 0 0
\(689\) −40.6999 40.6999i −1.55054 1.55054i
\(690\) 0 0
\(691\) 0.174353 + 0.876532i 0.00663270 + 0.0333449i 0.983960 0.178390i \(-0.0570888\pi\)
−0.977327 + 0.211735i \(0.932089\pi\)
\(692\) 0 0
\(693\) 18.1211 12.1082i 0.688365 0.459951i
\(694\) 0 0
\(695\) −2.57014 6.20486i −0.0974909 0.235364i
\(696\) 0 0
\(697\) 0.508002 1.22642i 0.0192419 0.0464541i
\(698\) 0 0
\(699\) 2.67502 13.4482i 0.101179 0.508659i
\(700\) 0 0
\(701\) −2.15514 + 3.22540i −0.0813986 + 0.121822i −0.869935 0.493167i \(-0.835839\pi\)
0.788536 + 0.614988i \(0.210839\pi\)
\(702\) 0 0
\(703\) −0.147468 −0.00556188
\(704\) 0 0
\(705\) 14.2544 0.536850
\(706\) 0 0
\(707\) −12.5270 + 18.7480i −0.471126 + 0.705090i
\(708\) 0 0
\(709\) −2.60789 + 13.1108i −0.0979414 + 0.492385i 0.900413 + 0.435036i \(0.143265\pi\)
−0.998354 + 0.0573482i \(0.981735\pi\)
\(710\) 0 0
\(711\) −29.1994 + 70.4936i −1.09506 + 2.64372i
\(712\) 0 0
\(713\) 3.55306 + 8.57784i 0.133063 + 0.321243i
\(714\) 0 0
\(715\) 5.78842 3.86770i 0.216475 0.144644i
\(716\) 0 0
\(717\) −2.62100 13.1766i −0.0978830 0.492091i
\(718\) 0 0
\(719\) −5.54087 5.54087i −0.206640 0.206640i 0.596198 0.802838i \(-0.296677\pi\)
−0.802838 + 0.596198i \(0.796677\pi\)
\(720\) 0 0
\(721\) −18.3855 + 18.3855i −0.684712 + 0.684712i
\(722\) 0 0
\(723\) −75.3920 + 14.9964i −2.80386 + 0.557722i
\(724\) 0 0
\(725\) −3.01406 4.51086i −0.111939 0.167529i
\(726\) 0 0
\(727\) 1.51607 0.627975i 0.0562278 0.0232903i −0.354392 0.935097i \(-0.615312\pi\)
0.410620 + 0.911807i \(0.365312\pi\)
\(728\) 0 0
\(729\) 24.3513 + 10.0867i 0.901901 + 0.373580i
\(730\) 0 0
\(731\) 18.0404 + 3.58846i 0.667248 + 0.132724i
\(732\) 0 0
\(733\) −35.6822 23.8421i −1.31795 0.880628i −0.320182 0.947356i \(-0.603744\pi\)
−0.997771 + 0.0667277i \(0.978744\pi\)
\(734\) 0 0
\(735\) 8.44882i 0.311639i
\(736\) 0 0
\(737\) 8.82329i 0.325010i
\(738\) 0 0
\(739\) −2.79111 1.86496i −0.102673 0.0686036i 0.503174 0.864185i \(-0.332165\pi\)
−0.605847 + 0.795581i \(0.707165\pi\)
\(740\) 0 0
\(741\) −1.55297 0.308905i −0.0570498 0.0113479i
\(742\) 0 0
\(743\) 5.81769 + 2.40977i 0.213430 + 0.0884058i 0.486837 0.873493i \(-0.338151\pi\)
−0.273407 + 0.961899i \(0.588151\pi\)
\(744\) 0 0
\(745\) 11.3995 4.72184i 0.417646 0.172995i
\(746\) 0 0
\(747\) −10.8687 16.2662i −0.397667 0.595150i
\(748\) 0 0
\(749\) −18.0141 + 3.58322i −0.658220 + 0.130928i
\(750\) 0 0
\(751\) −24.4261 + 24.4261i −0.891321 + 0.891321i −0.994648 0.103326i \(-0.967051\pi\)
0.103326 + 0.994648i \(0.467051\pi\)
\(752\) 0 0
\(753\) −21.8287 21.8287i −0.795483 0.795483i
\(754\) 0 0
\(755\) 2.61172 + 13.1300i 0.0950503 + 0.477850i
\(756\) 0 0
\(757\) −14.3344 + 9.57795i −0.520993 + 0.348116i −0.788097 0.615551i \(-0.788933\pi\)
0.267104 + 0.963668i \(0.413933\pi\)
\(758\) 0 0
\(759\) −6.82683 16.4814i −0.247798 0.598238i
\(760\) 0 0
\(761\) 14.8711 35.9019i 0.539076 1.30144i −0.386293 0.922376i \(-0.626245\pi\)
0.925369 0.379068i \(-0.123755\pi\)
\(762\) 0 0
\(763\) 6.48269 32.5907i 0.234689 1.17986i
\(764\) 0 0
\(765\) 6.63698 9.93294i 0.239961 0.359126i
\(766\) 0 0
\(767\) −32.9690 −1.19044
\(768\) 0 0
\(769\) 13.8807 0.500550 0.250275 0.968175i \(-0.419479\pi\)
0.250275 + 0.968175i \(0.419479\pi\)
\(770\) 0 0
\(771\) −7.21180 + 10.7932i −0.259727 + 0.388708i
\(772\) 0 0
\(773\) 0.0884866 0.444852i 0.00318264 0.0160002i −0.979161 0.203084i \(-0.934904\pi\)
0.982344 + 0.187084i \(0.0599036\pi\)
\(774\) 0 0
\(775\) 4.29299 10.3642i 0.154209 0.372293i
\(776\) 0 0
\(777\) −3.88587 9.38132i −0.139405 0.336553i
\(778\) 0 0
\(779\) −0.0490593 + 0.0327804i −0.00175773 + 0.00117448i
\(780\) 0 0
\(781\) −3.97282 19.9727i −0.142159 0.714680i
\(782\) 0 0
\(783\) 11.9782 + 11.9782i 0.428067 + 0.428067i
\(784\) 0 0
\(785\) 2.53656 2.53656i 0.0905339 0.0905339i
\(786\) 0 0
\(787\) 9.18877 1.82776i 0.327544 0.0651526i −0.0285792 0.999592i \(-0.509098\pi\)
0.356123 + 0.934439i \(0.384098\pi\)
\(788\) 0 0
\(789\) 38.3912 + 57.4565i 1.36676 + 2.04551i
\(790\) 0 0
\(791\) −25.2849 + 10.4734i −0.899029 + 0.372390i
\(792\) 0 0
\(793\) 32.2428 + 13.3554i 1.14498 + 0.474265i
\(794\) 0 0
\(795\) −26.7838 5.32763i −0.949924 0.188952i
\(796\) 0 0
\(797\) 14.6345 + 9.77843i 0.518379 + 0.346370i 0.787077 0.616855i \(-0.211593\pi\)
−0.268698 + 0.963224i \(0.586593\pi\)
\(798\) 0 0
\(799\) 11.0792i 0.391954i
\(800\) 0 0
\(801\) 55.5260i 1.96191i
\(802\) 0 0
\(803\) 5.92291 + 3.95756i 0.209015 + 0.139659i
\(804\) 0 0
\(805\) −5.56219 1.10639i −0.196041 0.0389951i
\(806\) 0 0
\(807\) 70.4657 + 29.1879i 2.48051 + 1.02746i
\(808\) 0 0
\(809\) 4.53116 1.87687i 0.159307 0.0659871i −0.301605 0.953433i \(-0.597522\pi\)
0.460912 + 0.887446i \(0.347522\pi\)
\(810\) 0 0
\(811\) 21.6476 + 32.3980i 0.760151 + 1.13765i 0.986526 + 0.163606i \(0.0523126\pi\)
−0.226375 + 0.974040i \(0.572687\pi\)
\(812\) 0 0
\(813\) 24.0013 4.77415i 0.841761 0.167437i
\(814\) 0 0
\(815\) 2.70282 2.70282i 0.0946756 0.0946756i
\(816\) 0 0
\(817\) −0.578105 0.578105i −0.0202253 0.0202253i
\(818\) 0 0
\(819\) −15.0340 75.5811i −0.525331 2.64102i
\(820\) 0 0
\(821\) 15.4667 10.3345i 0.539792 0.360678i −0.255590 0.966785i \(-0.582270\pi\)
0.795383 + 0.606107i \(0.207270\pi\)
\(822\) 0 0
\(823\) 1.39014 + 3.35609i 0.0484571 + 0.116986i 0.946255 0.323423i \(-0.104834\pi\)
−0.897797 + 0.440409i \(0.854834\pi\)
\(824\) 0 0
\(825\) −8.24852 + 19.9137i −0.287177 + 0.693306i
\(826\) 0 0
\(827\) −7.68456 + 38.6329i −0.267218 + 1.34340i 0.581066 + 0.813857i \(0.302636\pi\)
−0.848284 + 0.529541i \(0.822364\pi\)
\(828\) 0 0
\(829\) −6.04482 + 9.04671i −0.209945 + 0.314205i −0.921465 0.388460i \(-0.873007\pi\)
0.711520 + 0.702666i \(0.248007\pi\)
\(830\) 0 0
\(831\) −59.1584 −2.05218
\(832\) 0 0
\(833\) 6.56685 0.227528
\(834\) 0 0
\(835\) 4.66370 6.97972i 0.161394 0.241543i
\(836\) 0 0
\(837\) −6.83362 + 34.3549i −0.236204 + 1.18748i
\(838\) 0 0
\(839\) −4.57390 + 11.0424i −0.157909 + 0.381225i −0.982957 0.183837i \(-0.941148\pi\)
0.825048 + 0.565063i \(0.191148\pi\)
\(840\) 0 0
\(841\) −10.4986 25.3459i −0.362022 0.873998i
\(842\) 0 0
\(843\) 64.9532 43.4003i 2.23711 1.49479i
\(844\) 0 0
\(845\) −2.73508 13.7502i −0.0940895 0.473020i
\(846\) 0 0
\(847\) 11.7698 + 11.7698i 0.404416 + 0.404416i
\(848\) 0 0
\(849\) 70.8789 70.8789i 2.43256 2.43256i
\(850\) 0 0
\(851\) −5.76187 + 1.14611i −0.197514 + 0.0392880i
\(852\) 0 0
\(853\) −15.0788 22.5670i −0.516287 0.772678i 0.478120 0.878294i \(-0.341318\pi\)
−0.994407 + 0.105617i \(0.966318\pi\)
\(854\) 0 0
\(855\) −0.490565 + 0.203199i −0.0167770 + 0.00694924i
\(856\) 0 0
\(857\) −36.9477 15.3043i −1.26211 0.522783i −0.351554 0.936168i \(-0.614347\pi\)
−0.910557 + 0.413384i \(0.864347\pi\)
\(858\) 0 0
\(859\) 4.65397 + 0.925733i 0.158792 + 0.0315856i 0.273846 0.961774i \(-0.411704\pi\)
−0.115054 + 0.993359i \(0.536704\pi\)
\(860\) 0 0
\(861\) −3.37808 2.25716i −0.115125 0.0769239i
\(862\) 0 0
\(863\) 10.4034i 0.354136i −0.984199 0.177068i \(-0.943339\pi\)
0.984199 0.177068i \(-0.0566612\pi\)
\(864\) 0 0
\(865\) 8.48717i 0.288572i
\(866\) 0 0
\(867\) 34.2917 + 22.9130i 1.16461 + 0.778166i
\(868\) 0 0
\(869\) 16.0821 + 3.19892i 0.545547 + 0.108516i
\(870\) 0 0
\(871\) −28.8235 11.9391i −0.976646 0.404540i
\(872\) 0 0
\(873\) −76.5206 + 31.6959i −2.58983 + 1.07274i
\(874\) 0 0
\(875\) 8.19710 + 12.2678i 0.277113 + 0.414728i
\(876\) 0 0
\(877\) −40.0008 + 7.95665i −1.35073 + 0.268677i −0.816834 0.576873i \(-0.804273\pi\)
−0.533896 + 0.845550i \(0.679273\pi\)
\(878\) 0 0
\(879\) 26.6616 26.6616i 0.899272 0.899272i
\(880\) 0 0
\(881\) 26.7291 + 26.7291i 0.900526 + 0.900526i 0.995482 0.0949554i \(-0.0302708\pi\)
−0.0949554 + 0.995482i \(0.530271\pi\)
\(882\) 0 0
\(883\) 1.51668 + 7.62487i 0.0510404 + 0.256597i 0.997878 0.0651152i \(-0.0207415\pi\)
−0.946837 + 0.321713i \(0.895741\pi\)
\(884\) 0 0
\(885\) −13.0060 + 8.69032i −0.437191 + 0.292122i
\(886\) 0 0
\(887\) −7.40725 17.8827i −0.248711 0.600442i 0.749384 0.662136i \(-0.230350\pi\)
−0.998095 + 0.0616939i \(0.980350\pi\)
\(888\) 0 0
\(889\) 6.68724 16.1444i 0.224283 0.541466i
\(890\) 0 0
\(891\) 6.55158 32.9370i 0.219486 1.10343i
\(892\) 0 0
\(893\) −0.273588 + 0.409453i −0.00915527 + 0.0137018i
\(894\) 0 0
\(895\) 19.3127 0.645554
\(896\) 0 0
\(897\) −63.0783 −2.10612
\(898\) 0 0
\(899\) −1.79875 + 2.69202i −0.0599916 + 0.0897838i
\(900\) 0 0
\(901\) −4.14091 + 20.8177i −0.137954 + 0.693540i
\(902\) 0 0
\(903\) 21.5432 52.0099i 0.716913 1.73078i
\(904\) 0 0
\(905\) −2.57032 6.20531i −0.0854404 0.206271i
\(906\) 0 0
\(907\) 22.2411 14.8611i 0.738505 0.493453i −0.128527 0.991706i \(-0.541025\pi\)
0.867032 + 0.498253i \(0.166025\pi\)
\(908\) 0 0
\(909\) 16.4075 + 82.4861i 0.544203 + 2.73589i
\(910\) 0 0
\(911\) 0.418109 + 0.418109i 0.0138526 + 0.0138526i 0.713999 0.700147i \(-0.246882\pi\)
−0.700147 + 0.713999i \(0.746882\pi\)
\(912\) 0 0
\(913\) −2.97276 + 2.97276i −0.0983839 + 0.0983839i
\(914\) 0 0
\(915\) 16.2399 3.23031i 0.536873 0.106791i
\(916\) 0 0
\(917\) 9.26228 + 13.8620i 0.305868 + 0.457763i
\(918\) 0 0
\(919\) 12.8012 5.30244i 0.422274 0.174911i −0.161419 0.986886i \(-0.551607\pi\)
0.583693 + 0.811974i \(0.301607\pi\)
\(920\) 0 0
\(921\) 45.7185 + 18.9372i 1.50648 + 0.624003i
\(922\) 0 0
\(923\) −70.6216 14.0475i −2.32454 0.462379i
\(924\) 0 0
\(925\) 5.90192 + 3.94353i 0.194054 + 0.129663i
\(926\) 0 0
\(927\) 96.9816i 3.18530i
\(928\) 0 0
\(929\) 26.2072i 0.859830i 0.902869 + 0.429915i \(0.141456\pi\)
−0.902869 + 0.429915i \(0.858544\pi\)
\(930\) 0 0
\(931\) −0.242690 0.162161i −0.00795386 0.00531460i
\(932\) 0 0
\(933\) 96.1419 + 19.1238i 3.14755 + 0.626086i
\(934\) 0 0
\(935\) −2.37182 0.982438i −0.0775666 0.0321292i
\(936\) 0 0
\(937\) 15.5675 6.44825i 0.508567 0.210655i −0.113620 0.993524i \(-0.536245\pi\)
0.622186 + 0.782869i \(0.286245\pi\)
\(938\) 0 0
\(939\) 28.7105 + 42.9683i 0.936933 + 1.40222i
\(940\) 0 0
\(941\) 1.05016 0.208890i 0.0342342 0.00680961i −0.177944 0.984041i \(-0.556944\pi\)
0.212178 + 0.977231i \(0.431944\pi\)
\(942\) 0 0
\(943\) −1.66207 + 1.66207i −0.0541245 + 0.0541245i
\(944\) 0 0
\(945\) −15.1290 15.1290i −0.492145 0.492145i
\(946\) 0 0
\(947\) 5.64778 + 28.3933i 0.183528 + 0.922658i 0.957278 + 0.289168i \(0.0933785\pi\)
−0.773750 + 0.633491i \(0.781622\pi\)
\(948\) 0 0
\(949\) 20.9428 13.9936i 0.679833 0.454250i
\(950\) 0 0
\(951\) −35.2117 85.0085i −1.14182 2.75659i
\(952\) 0 0
\(953\) −17.8099 + 42.9968i −0.576918 + 1.39280i 0.318647 + 0.947873i \(0.396771\pi\)
−0.895565 + 0.444930i \(0.853229\pi\)
\(954\) 0 0
\(955\) −0.342286 + 1.72079i −0.0110761 + 0.0556834i
\(956\) 0 0
\(957\) 3.45610 5.17243i 0.111720 0.167201i
\(958\) 0 0
\(959\) 5.89303 0.190296
\(960\) 0 0
\(961\) 24.3052 0.784038
\(962\) 0 0
\(963\) −38.0606 + 56.9618i −1.22649 + 1.83557i
\(964\) 0 0
\(965\) 0.879759 4.42285i 0.0283204 0.142376i
\(966\) 0 0
\(967\) −4.72582 + 11.4091i −0.151972 + 0.366893i −0.981470 0.191617i \(-0.938627\pi\)
0.829498 + 0.558510i \(0.188627\pi\)
\(968\) 0 0
\(969\) 0.223450 + 0.539457i 0.00717826 + 0.0173298i
\(970\) 0 0
\(971\) 11.8130 7.89320i 0.379097 0.253305i −0.351393 0.936228i \(-0.614292\pi\)
0.730490 + 0.682923i \(0.239292\pi\)
\(972\) 0 0
\(973\) 3.11682 + 15.6693i 0.0999208 + 0.502336i
\(974\) 0 0
\(975\) 53.8917 + 53.8917i 1.72592 + 1.72592i
\(976\) 0 0
\(977\) 11.6219 11.6219i 0.371817 0.371817i −0.496322 0.868139i \(-0.665316\pi\)
0.868139 + 0.496322i \(0.165316\pi\)
\(978\) 0 0
\(979\) −11.7032 + 2.32791i −0.374035 + 0.0744003i
\(980\) 0 0
\(981\) −68.8586 103.054i −2.19848 3.29026i
\(982\) 0 0
\(983\) −52.2673 + 21.6498i −1.66707 + 0.690522i −0.998584 0.0532035i \(-0.983057\pi\)
−0.668485 + 0.743726i \(0.733057\pi\)
\(984\) 0 0
\(985\) 11.0692 + 4.58503i 0.352695 + 0.146091i
\(986\) 0 0
\(987\) −33.2569 6.61520i −1.05858 0.210564i
\(988\) 0 0
\(989\) −27.0806 18.0947i −0.861113 0.575377i
\(990\) 0 0
\(991\) 15.7589i 0.500597i −0.968169 0.250299i \(-0.919471\pi\)
0.968169 0.250299i \(-0.0805288\pi\)
\(992\) 0 0
\(993\) 66.5108i 2.11066i
\(994\) 0 0
\(995\) −1.12203 0.749715i −0.0355707 0.0237676i
\(996\) 0 0
\(997\) −28.9525 5.75900i −0.916934 0.182390i −0.286003 0.958229i \(-0.592327\pi\)
−0.630931 + 0.775839i \(0.717327\pi\)
\(998\) 0 0
\(999\) −20.4766 8.48167i −0.647850 0.268348i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.2.i.a.241.7 56
4.3 odd 2 64.2.i.a.37.3 56
8.3 odd 2 512.2.i.b.225.7 56
8.5 even 2 512.2.i.a.225.1 56
12.11 even 2 576.2.bd.a.37.5 56
64.13 even 16 512.2.i.a.289.1 56
64.19 odd 16 64.2.i.a.45.3 yes 56
64.45 even 16 inner 256.2.i.a.17.7 56
64.51 odd 16 512.2.i.b.289.7 56
192.83 even 16 576.2.bd.a.109.5 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
64.2.i.a.37.3 56 4.3 odd 2
64.2.i.a.45.3 yes 56 64.19 odd 16
256.2.i.a.17.7 56 64.45 even 16 inner
256.2.i.a.241.7 56 1.1 even 1 trivial
512.2.i.a.225.1 56 8.5 even 2
512.2.i.a.289.1 56 64.13 even 16
512.2.i.b.225.7 56 8.3 odd 2
512.2.i.b.289.7 56 64.51 odd 16
576.2.bd.a.37.5 56 12.11 even 2
576.2.bd.a.109.5 56 192.83 even 16