Properties

Label 255.2.a.b.1.1
Level 255255
Weight 22
Character 255.1
Self dual yes
Analytic conductor 2.0362.036
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [255,2,Mod(1,255)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("255.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(255, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: N N == 255=3517 255 = 3 \cdot 5 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 255.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 2.036185251542.03618525154
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ10)+\Q(\zeta_{10})^+
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x1 x^{2} - x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 0.618034-0.618034 of defining polynomial
Character χ\chi == 255.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+0.381966q21.00000q31.85410q4+1.00000q50.381966q6+2.23607q71.47214q8+1.00000q9+0.381966q10+5.47214q11+1.85410q12+5.23607q13+0.854102q141.00000q15+3.14590q161.00000q17+0.381966q188.23607q191.85410q202.23607q21+2.09017q22+2.76393q23+1.47214q24+1.00000q25+2.00000q261.00000q274.14590q28+4.70820q290.381966q302.76393q31+4.14590q325.47214q330.381966q34+2.23607q351.85410q36+0.527864q373.14590q385.23607q391.47214q406.70820q410.854102q4210.4721q4310.1459q44+1.00000q45+1.05573q46+11.9443q473.14590q482.00000q49+0.381966q50+1.00000q519.70820q52+7.76393q530.381966q54+5.47214q553.29180q56+8.23607q57+1.79837q58+3.23607q59+1.85410q609.23607q611.05573q62+2.23607q634.70820q64+5.23607q652.09017q660.763932q67+1.85410q682.76393q69+0.854102q7011.4164q711.47214q72+13.9443q73+0.201626q741.00000q75+15.2705q76+12.2361q772.00000q7813.4164q79+3.14590q80+1.00000q812.56231q8211.4164q83+4.14590q841.00000q854.00000q864.70820q878.05573q88+2.29180q89+0.381966q90+11.7082q915.12461q92+2.76393q93+4.56231q948.23607q954.14590q963.52786q970.763932q98+5.47214q99+O(q100)q+0.381966 q^{2} -1.00000 q^{3} -1.85410 q^{4} +1.00000 q^{5} -0.381966 q^{6} +2.23607 q^{7} -1.47214 q^{8} +1.00000 q^{9} +0.381966 q^{10} +5.47214 q^{11} +1.85410 q^{12} +5.23607 q^{13} +0.854102 q^{14} -1.00000 q^{15} +3.14590 q^{16} -1.00000 q^{17} +0.381966 q^{18} -8.23607 q^{19} -1.85410 q^{20} -2.23607 q^{21} +2.09017 q^{22} +2.76393 q^{23} +1.47214 q^{24} +1.00000 q^{25} +2.00000 q^{26} -1.00000 q^{27} -4.14590 q^{28} +4.70820 q^{29} -0.381966 q^{30} -2.76393 q^{31} +4.14590 q^{32} -5.47214 q^{33} -0.381966 q^{34} +2.23607 q^{35} -1.85410 q^{36} +0.527864 q^{37} -3.14590 q^{38} -5.23607 q^{39} -1.47214 q^{40} -6.70820 q^{41} -0.854102 q^{42} -10.4721 q^{43} -10.1459 q^{44} +1.00000 q^{45} +1.05573 q^{46} +11.9443 q^{47} -3.14590 q^{48} -2.00000 q^{49} +0.381966 q^{50} +1.00000 q^{51} -9.70820 q^{52} +7.76393 q^{53} -0.381966 q^{54} +5.47214 q^{55} -3.29180 q^{56} +8.23607 q^{57} +1.79837 q^{58} +3.23607 q^{59} +1.85410 q^{60} -9.23607 q^{61} -1.05573 q^{62} +2.23607 q^{63} -4.70820 q^{64} +5.23607 q^{65} -2.09017 q^{66} -0.763932 q^{67} +1.85410 q^{68} -2.76393 q^{69} +0.854102 q^{70} -11.4164 q^{71} -1.47214 q^{72} +13.9443 q^{73} +0.201626 q^{74} -1.00000 q^{75} +15.2705 q^{76} +12.2361 q^{77} -2.00000 q^{78} -13.4164 q^{79} +3.14590 q^{80} +1.00000 q^{81} -2.56231 q^{82} -11.4164 q^{83} +4.14590 q^{84} -1.00000 q^{85} -4.00000 q^{86} -4.70820 q^{87} -8.05573 q^{88} +2.29180 q^{89} +0.381966 q^{90} +11.7082 q^{91} -5.12461 q^{92} +2.76393 q^{93} +4.56231 q^{94} -8.23607 q^{95} -4.14590 q^{96} -3.52786 q^{97} -0.763932 q^{98} +5.47214 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+3q22q3+3q4+2q53q6+6q8+2q9+3q10+2q113q12+6q135q142q15+13q162q17+3q1812q19+3q207q22++2q99+O(q100) 2 q + 3 q^{2} - 2 q^{3} + 3 q^{4} + 2 q^{5} - 3 q^{6} + 6 q^{8} + 2 q^{9} + 3 q^{10} + 2 q^{11} - 3 q^{12} + 6 q^{13} - 5 q^{14} - 2 q^{15} + 13 q^{16} - 2 q^{17} + 3 q^{18} - 12 q^{19} + 3 q^{20} - 7 q^{22}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.381966 0.270091 0.135045 0.990839i 0.456882π-0.456882\pi
0.135045 + 0.990839i 0.456882π0.456882\pi
33 −1.00000 −0.577350
44 −1.85410 −0.927051
55 1.00000 0.447214
66 −0.381966 −0.155937
77 2.23607 0.845154 0.422577 0.906327i 0.361126π-0.361126\pi
0.422577 + 0.906327i 0.361126π0.361126\pi
88 −1.47214 −0.520479
99 1.00000 0.333333
1010 0.381966 0.120788
1111 5.47214 1.64991 0.824956 0.565198i 0.191200π-0.191200\pi
0.824956 + 0.565198i 0.191200π0.191200\pi
1212 1.85410 0.535233
1313 5.23607 1.45222 0.726112 0.687576i 0.241325π-0.241325\pi
0.726112 + 0.687576i 0.241325π0.241325\pi
1414 0.854102 0.228268
1515 −1.00000 −0.258199
1616 3.14590 0.786475
1717 −1.00000 −0.242536
1818 0.381966 0.0900303
1919 −8.23607 −1.88948 −0.944742 0.327815i 0.893688π-0.893688\pi
−0.944742 + 0.327815i 0.893688π0.893688\pi
2020 −1.85410 −0.414590
2121 −2.23607 −0.487950
2222 2.09017 0.445626
2323 2.76393 0.576320 0.288160 0.957582i 0.406957π-0.406957\pi
0.288160 + 0.957582i 0.406957π0.406957\pi
2424 1.47214 0.300498
2525 1.00000 0.200000
2626 2.00000 0.392232
2727 −1.00000 −0.192450
2828 −4.14590 −0.783501
2929 4.70820 0.874292 0.437146 0.899391i 0.355989π-0.355989\pi
0.437146 + 0.899391i 0.355989π0.355989\pi
3030 −0.381966 −0.0697371
3131 −2.76393 −0.496417 −0.248208 0.968707i 0.579842π-0.579842\pi
−0.248208 + 0.968707i 0.579842π0.579842\pi
3232 4.14590 0.732898
3333 −5.47214 −0.952577
3434 −0.381966 −0.0655066
3535 2.23607 0.377964
3636 −1.85410 −0.309017
3737 0.527864 0.0867803 0.0433902 0.999058i 0.486184π-0.486184\pi
0.0433902 + 0.999058i 0.486184π0.486184\pi
3838 −3.14590 −0.510332
3939 −5.23607 −0.838442
4040 −1.47214 −0.232765
4141 −6.70820 −1.04765 −0.523823 0.851827i 0.675495π-0.675495\pi
−0.523823 + 0.851827i 0.675495π0.675495\pi
4242 −0.854102 −0.131791
4343 −10.4721 −1.59699 −0.798493 0.602004i 0.794369π-0.794369\pi
−0.798493 + 0.602004i 0.794369π0.794369\pi
4444 −10.1459 −1.52955
4545 1.00000 0.149071
4646 1.05573 0.155659
4747 11.9443 1.74225 0.871126 0.491060i 0.163391π-0.163391\pi
0.871126 + 0.491060i 0.163391π0.163391\pi
4848 −3.14590 −0.454071
4949 −2.00000 −0.285714
5050 0.381966 0.0540182
5151 1.00000 0.140028
5252 −9.70820 −1.34629
5353 7.76393 1.06646 0.533229 0.845971i 0.320978π-0.320978\pi
0.533229 + 0.845971i 0.320978π0.320978\pi
5454 −0.381966 −0.0519790
5555 5.47214 0.737863
5656 −3.29180 −0.439885
5757 8.23607 1.09089
5858 1.79837 0.236138
5959 3.23607 0.421300 0.210650 0.977562i 0.432442π-0.432442\pi
0.210650 + 0.977562i 0.432442π0.432442\pi
6060 1.85410 0.239364
6161 −9.23607 −1.18256 −0.591279 0.806467i 0.701377π-0.701377\pi
−0.591279 + 0.806467i 0.701377π0.701377\pi
6262 −1.05573 −0.134078
6363 2.23607 0.281718
6464 −4.70820 −0.588525
6565 5.23607 0.649454
6666 −2.09017 −0.257282
6767 −0.763932 −0.0933292 −0.0466646 0.998911i 0.514859π-0.514859\pi
−0.0466646 + 0.998911i 0.514859π0.514859\pi
6868 1.85410 0.224843
6969 −2.76393 −0.332738
7070 0.854102 0.102085
7171 −11.4164 −1.35488 −0.677439 0.735579i 0.736910π-0.736910\pi
−0.677439 + 0.735579i 0.736910π0.736910\pi
7272 −1.47214 −0.173493
7373 13.9443 1.63205 0.816027 0.578014i 0.196172π-0.196172\pi
0.816027 + 0.578014i 0.196172π0.196172\pi
7474 0.201626 0.0234386
7575 −1.00000 −0.115470
7676 15.2705 1.75165
7777 12.2361 1.39443
7878 −2.00000 −0.226455
7979 −13.4164 −1.50946 −0.754732 0.656033i 0.772233π-0.772233\pi
−0.754732 + 0.656033i 0.772233π0.772233\pi
8080 3.14590 0.351722
8181 1.00000 0.111111
8282 −2.56231 −0.282959
8383 −11.4164 −1.25311 −0.626557 0.779376i 0.715536π-0.715536\pi
−0.626557 + 0.779376i 0.715536π0.715536\pi
8484 4.14590 0.452355
8585 −1.00000 −0.108465
8686 −4.00000 −0.431331
8787 −4.70820 −0.504772
8888 −8.05573 −0.858743
8989 2.29180 0.242930 0.121465 0.992596i 0.461241π-0.461241\pi
0.121465 + 0.992596i 0.461241π0.461241\pi
9090 0.381966 0.0402628
9191 11.7082 1.22735
9292 −5.12461 −0.534278
9393 2.76393 0.286606
9494 4.56231 0.470566
9595 −8.23607 −0.845003
9696 −4.14590 −0.423139
9797 −3.52786 −0.358200 −0.179100 0.983831i 0.557319π-0.557319\pi
−0.179100 + 0.983831i 0.557319π0.557319\pi
9898 −0.763932 −0.0771688
9999 5.47214 0.549970
100100 −1.85410 −0.185410
101101 0.472136 0.0469793 0.0234896 0.999724i 0.492522π-0.492522\pi
0.0234896 + 0.999724i 0.492522π0.492522\pi
102102 0.381966 0.0378203
103103 4.00000 0.394132 0.197066 0.980390i 0.436859π-0.436859\pi
0.197066 + 0.980390i 0.436859π0.436859\pi
104104 −7.70820 −0.755852
105105 −2.23607 −0.218218
106106 2.96556 0.288040
107107 2.47214 0.238990 0.119495 0.992835i 0.461872π-0.461872\pi
0.119495 + 0.992835i 0.461872π0.461872\pi
108108 1.85410 0.178411
109109 8.47214 0.811483 0.405742 0.913988i 0.367013π-0.367013\pi
0.405742 + 0.913988i 0.367013π0.367013\pi
110110 2.09017 0.199290
111111 −0.527864 −0.0501026
112112 7.03444 0.664692
113113 0.291796 0.0274499 0.0137249 0.999906i 0.495631π-0.495631\pi
0.0137249 + 0.999906i 0.495631π0.495631\pi
114114 3.14590 0.294640
115115 2.76393 0.257738
116116 −8.72949 −0.810513
117117 5.23607 0.484075
118118 1.23607 0.113789
119119 −2.23607 −0.204980
120120 1.47214 0.134387
121121 18.9443 1.72221
122122 −3.52786 −0.319398
123123 6.70820 0.604858
124124 5.12461 0.460204
125125 1.00000 0.0894427
126126 0.854102 0.0760895
127127 −5.23607 −0.464626 −0.232313 0.972641i 0.574629π-0.574629\pi
−0.232313 + 0.972641i 0.574629π0.574629\pi
128128 −10.0902 −0.891853
129129 10.4721 0.922020
130130 2.00000 0.175412
131131 −15.4164 −1.34694 −0.673469 0.739216i 0.735196π-0.735196\pi
−0.673469 + 0.739216i 0.735196π0.735196\pi
132132 10.1459 0.883087
133133 −18.4164 −1.59691
134134 −0.291796 −0.0252073
135135 −1.00000 −0.0860663
136136 1.47214 0.126235
137137 1.76393 0.150703 0.0753514 0.997157i 0.475992π-0.475992\pi
0.0753514 + 0.997157i 0.475992π0.475992\pi
138138 −1.05573 −0.0898695
139139 −14.0000 −1.18746 −0.593732 0.804663i 0.702346π-0.702346\pi
−0.593732 + 0.804663i 0.702346π0.702346\pi
140140 −4.14590 −0.350392
141141 −11.9443 −1.00589
142142 −4.36068 −0.365940
143143 28.6525 2.39604
144144 3.14590 0.262158
145145 4.70820 0.390995
146146 5.32624 0.440803
147147 2.00000 0.164957
148148 −0.978714 −0.0804498
149149 18.1803 1.48939 0.744696 0.667404i 0.232595π-0.232595\pi
0.744696 + 0.667404i 0.232595π0.232595\pi
150150 −0.381966 −0.0311874
151151 3.18034 0.258812 0.129406 0.991592i 0.458693π-0.458693\pi
0.129406 + 0.991592i 0.458693π0.458693\pi
152152 12.1246 0.983436
153153 −1.00000 −0.0808452
154154 4.67376 0.376622
155155 −2.76393 −0.222004
156156 9.70820 0.777278
157157 4.00000 0.319235 0.159617 0.987179i 0.448974π-0.448974\pi
0.159617 + 0.987179i 0.448974π0.448974\pi
158158 −5.12461 −0.407692
159159 −7.76393 −0.615720
160160 4.14590 0.327762
161161 6.18034 0.487079
162162 0.381966 0.0300101
163163 −15.1803 −1.18902 −0.594508 0.804090i 0.702653π-0.702653\pi
−0.594508 + 0.804090i 0.702653π0.702653\pi
164164 12.4377 0.971221
165165 −5.47214 −0.426005
166166 −4.36068 −0.338454
167167 −18.9443 −1.46595 −0.732976 0.680255i 0.761869π-0.761869\pi
−0.732976 + 0.680255i 0.761869π0.761869\pi
168168 3.29180 0.253968
169169 14.4164 1.10895
170170 −0.381966 −0.0292955
171171 −8.23607 −0.629828
172172 19.4164 1.48049
173173 −0.763932 −0.0580807 −0.0290403 0.999578i 0.509245π-0.509245\pi
−0.0290403 + 0.999578i 0.509245π0.509245\pi
174174 −1.79837 −0.136334
175175 2.23607 0.169031
176176 17.2148 1.29761
177177 −3.23607 −0.243238
178178 0.875388 0.0656131
179179 −10.0000 −0.747435 −0.373718 0.927543i 0.621917π-0.621917\pi
−0.373718 + 0.927543i 0.621917π0.621917\pi
180180 −1.85410 −0.138197
181181 −11.7082 −0.870264 −0.435132 0.900367i 0.643298π-0.643298\pi
−0.435132 + 0.900367i 0.643298π0.643298\pi
182182 4.47214 0.331497
183183 9.23607 0.682750
184184 −4.06888 −0.299962
185185 0.527864 0.0388093
186186 1.05573 0.0774097
187187 −5.47214 −0.400162
188188 −22.1459 −1.61516
189189 −2.23607 −0.162650
190190 −3.14590 −0.228227
191191 −2.29180 −0.165829 −0.0829143 0.996557i 0.526423π-0.526423\pi
−0.0829143 + 0.996557i 0.526423π0.526423\pi
192192 4.70820 0.339785
193193 −6.94427 −0.499860 −0.249930 0.968264i 0.580408π-0.580408\pi
−0.249930 + 0.968264i 0.580408π0.580408\pi
194194 −1.34752 −0.0967466
195195 −5.23607 −0.374963
196196 3.70820 0.264872
197197 −9.52786 −0.678832 −0.339416 0.940636i 0.610229π-0.610229\pi
−0.339416 + 0.940636i 0.610229π0.610229\pi
198198 2.09017 0.148542
199199 19.8885 1.40986 0.704931 0.709276i 0.250978π-0.250978\pi
0.704931 + 0.709276i 0.250978π0.250978\pi
200200 −1.47214 −0.104096
201201 0.763932 0.0538836
202202 0.180340 0.0126887
203203 10.5279 0.738911
204204 −1.85410 −0.129813
205205 −6.70820 −0.468521
206206 1.52786 0.106451
207207 2.76393 0.192107
208208 16.4721 1.14214
209209 −45.0689 −3.11748
210210 −0.854102 −0.0589386
211211 23.4164 1.61205 0.806026 0.591880i 0.201614π-0.201614\pi
0.806026 + 0.591880i 0.201614π0.201614\pi
212212 −14.3951 −0.988661
213213 11.4164 0.782239
214214 0.944272 0.0645491
215215 −10.4721 −0.714194
216216 1.47214 0.100166
217217 −6.18034 −0.419549
218218 3.23607 0.219174
219219 −13.9443 −0.942267
220220 −10.1459 −0.684036
221221 −5.23607 −0.352216
222222 −0.201626 −0.0135323
223223 6.94427 0.465023 0.232511 0.972594i 0.425306π-0.425306\pi
0.232511 + 0.972594i 0.425306π0.425306\pi
224224 9.27051 0.619412
225225 1.00000 0.0666667
226226 0.111456 0.00741395
227227 −11.7082 −0.777101 −0.388550 0.921427i 0.627024π-0.627024\pi
−0.388550 + 0.921427i 0.627024π0.627024\pi
228228 −15.2705 −1.01131
229229 −12.4164 −0.820499 −0.410250 0.911973i 0.634558π-0.634558\pi
−0.410250 + 0.911973i 0.634558π0.634558\pi
230230 1.05573 0.0696126
231231 −12.2361 −0.805074
232232 −6.93112 −0.455050
233233 4.65248 0.304794 0.152397 0.988319i 0.451301π-0.451301\pi
0.152397 + 0.988319i 0.451301π0.451301\pi
234234 2.00000 0.130744
235235 11.9443 0.779158
236236 −6.00000 −0.390567
237237 13.4164 0.871489
238238 −0.854102 −0.0553632
239239 6.76393 0.437522 0.218761 0.975778i 0.429798π-0.429798\pi
0.218761 + 0.975778i 0.429798π0.429798\pi
240240 −3.14590 −0.203067
241241 −19.1246 −1.23192 −0.615962 0.787776i 0.711233π-0.711233\pi
−0.615962 + 0.787776i 0.711233π0.711233\pi
242242 7.23607 0.465152
243243 −1.00000 −0.0641500
244244 17.1246 1.09629
245245 −2.00000 −0.127775
246246 2.56231 0.163367
247247 −43.1246 −2.74395
248248 4.06888 0.258374
249249 11.4164 0.723485
250250 0.381966 0.0241577
251251 −18.6525 −1.17733 −0.588667 0.808376i 0.700347π-0.700347\pi
−0.588667 + 0.808376i 0.700347π0.700347\pi
252252 −4.14590 −0.261167
253253 15.1246 0.950876
254254 −2.00000 −0.125491
255255 1.00000 0.0626224
256256 5.56231 0.347644
257257 −2.00000 −0.124757 −0.0623783 0.998053i 0.519869π-0.519869\pi
−0.0623783 + 0.998053i 0.519869π0.519869\pi
258258 4.00000 0.249029
259259 1.18034 0.0733428
260260 −9.70820 −0.602077
261261 4.70820 0.291431
262262 −5.88854 −0.363795
263263 24.4164 1.50558 0.752790 0.658261i 0.228708π-0.228708\pi
0.752790 + 0.658261i 0.228708π0.228708\pi
264264 8.05573 0.495796
265265 7.76393 0.476935
266266 −7.03444 −0.431309
267267 −2.29180 −0.140256
268268 1.41641 0.0865209
269269 −9.29180 −0.566531 −0.283265 0.959042i 0.591418π-0.591418\pi
−0.283265 + 0.959042i 0.591418π0.591418\pi
270270 −0.381966 −0.0232457
271271 1.52786 0.0928111 0.0464056 0.998923i 0.485223π-0.485223\pi
0.0464056 + 0.998923i 0.485223π0.485223\pi
272272 −3.14590 −0.190748
273273 −11.7082 −0.708613
274274 0.673762 0.0407035
275275 5.47214 0.329982
276276 5.12461 0.308465
277277 −17.4164 −1.04645 −0.523225 0.852194i 0.675271π-0.675271\pi
−0.523225 + 0.852194i 0.675271π0.675271\pi
278278 −5.34752 −0.320723
279279 −2.76393 −0.165472
280280 −3.29180 −0.196722
281281 21.8885 1.30576 0.652881 0.757461i 0.273560π-0.273560\pi
0.652881 + 0.757461i 0.273560π0.273560\pi
282282 −4.56231 −0.271681
283283 4.70820 0.279874 0.139937 0.990160i 0.455310π-0.455310\pi
0.139937 + 0.990160i 0.455310π0.455310\pi
284284 21.1672 1.25604
285285 8.23607 0.487863
286286 10.9443 0.647148
287287 −15.0000 −0.885422
288288 4.14590 0.244299
289289 1.00000 0.0588235
290290 1.79837 0.105604
291291 3.52786 0.206807
292292 −25.8541 −1.51300
293293 −16.2361 −0.948521 −0.474261 0.880385i 0.657285π-0.657285\pi
−0.474261 + 0.880385i 0.657285π0.657285\pi
294294 0.763932 0.0445534
295295 3.23607 0.188411
296296 −0.777088 −0.0451673
297297 −5.47214 −0.317526
298298 6.94427 0.402271
299299 14.4721 0.836945
300300 1.85410 0.107047
301301 −23.4164 −1.34970
302302 1.21478 0.0699028
303303 −0.472136 −0.0271235
304304 −25.9098 −1.48603
305305 −9.23607 −0.528856
306306 −0.381966 −0.0218355
307307 −32.0000 −1.82634 −0.913168 0.407583i 0.866372π-0.866372\pi
−0.913168 + 0.407583i 0.866372π0.866372\pi
308308 −22.6869 −1.29271
309309 −4.00000 −0.227552
310310 −1.05573 −0.0599613
311311 14.4164 0.817479 0.408740 0.912651i 0.365968π-0.365968\pi
0.408740 + 0.912651i 0.365968π0.365968\pi
312312 7.70820 0.436391
313313 6.52786 0.368977 0.184488 0.982835i 0.440937π-0.440937\pi
0.184488 + 0.982835i 0.440937π0.440937\pi
314314 1.52786 0.0862224
315315 2.23607 0.125988
316316 24.8754 1.39935
317317 −3.70820 −0.208273 −0.104137 0.994563i 0.533208π-0.533208\pi
−0.104137 + 0.994563i 0.533208π0.533208\pi
318318 −2.96556 −0.166300
319319 25.7639 1.44250
320320 −4.70820 −0.263197
321321 −2.47214 −0.137981
322322 2.36068 0.131556
323323 8.23607 0.458267
324324 −1.85410 −0.103006
325325 5.23607 0.290445
326326 −5.79837 −0.321142
327327 −8.47214 −0.468510
328328 9.87539 0.545277
329329 26.7082 1.47247
330330 −2.09017 −0.115060
331331 −14.7082 −0.808436 −0.404218 0.914663i 0.632456π-0.632456\pi
−0.404218 + 0.914663i 0.632456π0.632456\pi
332332 21.1672 1.16170
333333 0.527864 0.0289268
334334 −7.23607 −0.395940
335335 −0.763932 −0.0417381
336336 −7.03444 −0.383760
337337 15.4721 0.842821 0.421410 0.906870i 0.361535π-0.361535\pi
0.421410 + 0.906870i 0.361535π0.361535\pi
338338 5.50658 0.299518
339339 −0.291796 −0.0158482
340340 1.85410 0.100553
341341 −15.1246 −0.819044
342342 −3.14590 −0.170111
343343 −20.1246 −1.08663
344344 15.4164 0.831197
345345 −2.76393 −0.148805
346346 −0.291796 −0.0156871
347347 22.6525 1.21605 0.608024 0.793918i 0.291962π-0.291962\pi
0.608024 + 0.793918i 0.291962π0.291962\pi
348348 8.72949 0.467950
349349 −11.4721 −0.614089 −0.307045 0.951695i 0.599340π-0.599340\pi
−0.307045 + 0.951695i 0.599340π0.599340\pi
350350 0.854102 0.0456537
351351 −5.23607 −0.279481
352352 22.6869 1.20922
353353 2.34752 0.124946 0.0624731 0.998047i 0.480101π-0.480101\pi
0.0624731 + 0.998047i 0.480101π0.480101\pi
354354 −1.23607 −0.0656963
355355 −11.4164 −0.605920
356356 −4.24922 −0.225208
357357 2.23607 0.118345
358358 −3.81966 −0.201875
359359 23.2361 1.22635 0.613176 0.789946i 0.289891π-0.289891\pi
0.613176 + 0.789946i 0.289891π0.289891\pi
360360 −1.47214 −0.0775884
361361 48.8328 2.57015
362362 −4.47214 −0.235050
363363 −18.9443 −0.994316
364364 −21.7082 −1.13782
365365 13.9443 0.729877
366366 3.52786 0.184404
367367 16.0000 0.835193 0.417597 0.908633i 0.362873π-0.362873\pi
0.417597 + 0.908633i 0.362873π0.362873\pi
368368 8.69505 0.453261
369369 −6.70820 −0.349215
370370 0.201626 0.0104820
371371 17.3607 0.901322
372372 −5.12461 −0.265699
373373 12.9443 0.670229 0.335114 0.942177i 0.391225π-0.391225\pi
0.335114 + 0.942177i 0.391225π0.391225\pi
374374 −2.09017 −0.108080
375375 −1.00000 −0.0516398
376376 −17.5836 −0.906805
377377 24.6525 1.26967
378378 −0.854102 −0.0439303
379379 8.94427 0.459436 0.229718 0.973257i 0.426220π-0.426220\pi
0.229718 + 0.973257i 0.426220π0.426220\pi
380380 15.2705 0.783361
381381 5.23607 0.268252
382382 −0.875388 −0.0447888
383383 24.4164 1.24762 0.623810 0.781576i 0.285584π-0.285584\pi
0.623810 + 0.781576i 0.285584π0.285584\pi
384384 10.0902 0.514912
385385 12.2361 0.623608
386386 −2.65248 −0.135007
387387 −10.4721 −0.532329
388388 6.54102 0.332070
389389 −15.0557 −0.763356 −0.381678 0.924295i 0.624654π-0.624654\pi
−0.381678 + 0.924295i 0.624654π0.624654\pi
390390 −2.00000 −0.101274
391391 −2.76393 −0.139778
392392 2.94427 0.148708
393393 15.4164 0.777655
394394 −3.63932 −0.183346
395395 −13.4164 −0.675053
396396 −10.1459 −0.509851
397397 3.00000 0.150566 0.0752828 0.997162i 0.476014π-0.476014\pi
0.0752828 + 0.997162i 0.476014π0.476014\pi
398398 7.59675 0.380791
399399 18.4164 0.921974
400400 3.14590 0.157295
401401 −8.70820 −0.434867 −0.217433 0.976075i 0.569769π-0.569769\pi
−0.217433 + 0.976075i 0.569769π0.569769\pi
402402 0.291796 0.0145535
403403 −14.4721 −0.720908
404404 −0.875388 −0.0435522
405405 1.00000 0.0496904
406406 4.02129 0.199573
407407 2.88854 0.143180
408408 −1.47214 −0.0728816
409409 29.9443 1.48065 0.740324 0.672250i 0.234672π-0.234672\pi
0.740324 + 0.672250i 0.234672π0.234672\pi
410410 −2.56231 −0.126543
411411 −1.76393 −0.0870084
412412 −7.41641 −0.365380
413413 7.23607 0.356064
414414 1.05573 0.0518862
415415 −11.4164 −0.560409
416416 21.7082 1.06433
417417 14.0000 0.685583
418418 −17.2148 −0.842002
419419 29.0000 1.41674 0.708371 0.705840i 0.249430π-0.249430\pi
0.708371 + 0.705840i 0.249430π0.249430\pi
420420 4.14590 0.202299
421421 −7.58359 −0.369602 −0.184801 0.982776i 0.559164π-0.559164\pi
−0.184801 + 0.982776i 0.559164π0.559164\pi
422422 8.94427 0.435400
423423 11.9443 0.580750
424424 −11.4296 −0.555069
425425 −1.00000 −0.0485071
426426 4.36068 0.211276
427427 −20.6525 −0.999443
428428 −4.58359 −0.221556
429429 −28.6525 −1.38335
430430 −4.00000 −0.192897
431431 −7.36068 −0.354551 −0.177276 0.984161i 0.556728π-0.556728\pi
−0.177276 + 0.984161i 0.556728π0.556728\pi
432432 −3.14590 −0.151357
433433 18.3607 0.882358 0.441179 0.897419i 0.354560π-0.354560\pi
0.441179 + 0.897419i 0.354560π0.354560\pi
434434 −2.36068 −0.113316
435435 −4.70820 −0.225741
436436 −15.7082 −0.752287
437437 −22.7639 −1.08895
438438 −5.32624 −0.254497
439439 22.7639 1.08646 0.543232 0.839583i 0.317201π-0.317201\pi
0.543232 + 0.839583i 0.317201π0.317201\pi
440440 −8.05573 −0.384042
441441 −2.00000 −0.0952381
442442 −2.00000 −0.0951303
443443 −0.944272 −0.0448637 −0.0224319 0.999748i 0.507141π-0.507141\pi
−0.0224319 + 0.999748i 0.507141π0.507141\pi
444444 0.978714 0.0464477
445445 2.29180 0.108642
446446 2.65248 0.125598
447447 −18.1803 −0.859901
448448 −10.5279 −0.497395
449449 −12.4721 −0.588596 −0.294298 0.955714i 0.595086π-0.595086\pi
−0.294298 + 0.955714i 0.595086π0.595086\pi
450450 0.381966 0.0180061
451451 −36.7082 −1.72852
452452 −0.541020 −0.0254474
453453 −3.18034 −0.149425
454454 −4.47214 −0.209888
455455 11.7082 0.548889
456456 −12.1246 −0.567787
457457 12.7639 0.597072 0.298536 0.954398i 0.403502π-0.403502\pi
0.298536 + 0.954398i 0.403502π0.403502\pi
458458 −4.74265 −0.221609
459459 1.00000 0.0466760
460460 −5.12461 −0.238936
461461 22.6525 1.05503 0.527515 0.849545i 0.323124π-0.323124\pi
0.527515 + 0.849545i 0.323124π0.323124\pi
462462 −4.67376 −0.217443
463463 −18.3607 −0.853293 −0.426647 0.904418i 0.640305π-0.640305\pi
−0.426647 + 0.904418i 0.640305π0.640305\pi
464464 14.8115 0.687608
465465 2.76393 0.128174
466466 1.77709 0.0823220
467467 1.94427 0.0899702 0.0449851 0.998988i 0.485676π-0.485676\pi
0.0449851 + 0.998988i 0.485676π0.485676\pi
468468 −9.70820 −0.448762
469469 −1.70820 −0.0788775
470470 4.56231 0.210443
471471 −4.00000 −0.184310
472472 −4.76393 −0.219278
473473 −57.3050 −2.63488
474474 5.12461 0.235381
475475 −8.23607 −0.377897
476476 4.14590 0.190027
477477 7.76393 0.355486
478478 2.58359 0.118171
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 −4.14590 −0.189233
481481 2.76393 0.126024
482482 −7.30495 −0.332731
483483 −6.18034 −0.281215
484484 −35.1246 −1.59657
485485 −3.52786 −0.160192
486486 −0.381966 −0.0173263
487487 12.0000 0.543772 0.271886 0.962329i 0.412353π-0.412353\pi
0.271886 + 0.962329i 0.412353π0.412353\pi
488488 13.5967 0.615496
489489 15.1803 0.686479
490490 −0.763932 −0.0345109
491491 35.8885 1.61963 0.809814 0.586687i 0.199568π-0.199568\pi
0.809814 + 0.586687i 0.199568π0.199568\pi
492492 −12.4377 −0.560735
493493 −4.70820 −0.212047
494494 −16.4721 −0.741116
495495 5.47214 0.245954
496496 −8.69505 −0.390419
497497 −25.5279 −1.14508
498498 4.36068 0.195407
499499 20.1803 0.903396 0.451698 0.892171i 0.350818π-0.350818\pi
0.451698 + 0.892171i 0.350818π0.350818\pi
500500 −1.85410 −0.0829180
501501 18.9443 0.846368
502502 −7.12461 −0.317987
503503 1.41641 0.0631545 0.0315773 0.999501i 0.489947π-0.489947\pi
0.0315773 + 0.999501i 0.489947π0.489947\pi
504504 −3.29180 −0.146628
505505 0.472136 0.0210098
506506 5.77709 0.256823
507507 −14.4164 −0.640255
508508 9.70820 0.430732
509509 −37.0132 −1.64058 −0.820290 0.571948i 0.806188π-0.806188\pi
−0.820290 + 0.571948i 0.806188π0.806188\pi
510510 0.381966 0.0169137
511511 31.1803 1.37934
512512 22.3050 0.985749
513513 8.23607 0.363631
514514 −0.763932 −0.0336956
515515 4.00000 0.176261
516516 −19.4164 −0.854760
517517 65.3607 2.87456
518518 0.450850 0.0198092
519519 0.763932 0.0335329
520520 −7.70820 −0.338027
521521 12.2361 0.536072 0.268036 0.963409i 0.413625π-0.413625\pi
0.268036 + 0.963409i 0.413625π0.413625\pi
522522 1.79837 0.0787127
523523 −14.9443 −0.653467 −0.326734 0.945116i 0.605948π-0.605948\pi
−0.326734 + 0.945116i 0.605948π0.605948\pi
524524 28.5836 1.24868
525525 −2.23607 −0.0975900
526526 9.32624 0.406643
527527 2.76393 0.120399
528528 −17.2148 −0.749177
529529 −15.3607 −0.667856
530530 2.96556 0.128816
531531 3.23607 0.140433
532532 34.1459 1.48041
533533 −35.1246 −1.52142
534534 −0.875388 −0.0378818
535535 2.47214 0.106880
536536 1.12461 0.0485758
537537 10.0000 0.431532
538538 −3.54915 −0.153015
539539 −10.9443 −0.471403
540540 1.85410 0.0797878
541541 −13.8197 −0.594154 −0.297077 0.954854i 0.596012π-0.596012\pi
−0.297077 + 0.954854i 0.596012π0.596012\pi
542542 0.583592 0.0250674
543543 11.7082 0.502447
544544 −4.14590 −0.177754
545545 8.47214 0.362906
546546 −4.47214 −0.191390
547547 16.7082 0.714391 0.357196 0.934030i 0.383733π-0.383733\pi
0.357196 + 0.934030i 0.383733π0.383733\pi
548548 −3.27051 −0.139709
549549 −9.23607 −0.394186
550550 2.09017 0.0891251
551551 −38.7771 −1.65196
552552 4.06888 0.173183
553553 −30.0000 −1.27573
554554 −6.65248 −0.282637
555555 −0.527864 −0.0224066
556556 25.9574 1.10084
557557 16.4721 0.697947 0.348973 0.937133i 0.386530π-0.386530\pi
0.348973 + 0.937133i 0.386530π0.386530\pi
558558 −1.05573 −0.0446925
559559 −54.8328 −2.31918
560560 7.03444 0.297259
561561 5.47214 0.231034
562562 8.36068 0.352674
563563 −19.8328 −0.835854 −0.417927 0.908481i 0.637243π-0.637243\pi
−0.417927 + 0.908481i 0.637243π0.637243\pi
564564 22.1459 0.932511
565565 0.291796 0.0122760
566566 1.79837 0.0755913
567567 2.23607 0.0939060
568568 16.8065 0.705185
569569 −39.4164 −1.65242 −0.826211 0.563361i 0.809508π-0.809508\pi
−0.826211 + 0.563361i 0.809508π0.809508\pi
570570 3.14590 0.131767
571571 −15.7082 −0.657368 −0.328684 0.944440i 0.606605π-0.606605\pi
−0.328684 + 0.944440i 0.606605π0.606605\pi
572572 −53.1246 −2.22125
573573 2.29180 0.0957412
574574 −5.72949 −0.239144
575575 2.76393 0.115264
576576 −4.70820 −0.196175
577577 −14.8328 −0.617498 −0.308749 0.951144i 0.599910π-0.599910\pi
−0.308749 + 0.951144i 0.599910π0.599910\pi
578578 0.381966 0.0158877
579579 6.94427 0.288594
580580 −8.72949 −0.362472
581581 −25.5279 −1.05907
582582 1.34752 0.0558567
583583 42.4853 1.75956
584584 −20.5279 −0.849449
585585 5.23607 0.216485
586586 −6.20163 −0.256187
587587 −1.47214 −0.0607616 −0.0303808 0.999538i 0.509672π-0.509672\pi
−0.0303808 + 0.999538i 0.509672π0.509672\pi
588588 −3.70820 −0.152924
589589 22.7639 0.937971
590590 1.23607 0.0508881
591591 9.52786 0.391924
592592 1.66061 0.0682505
593593 45.1803 1.85533 0.927667 0.373408i 0.121811π-0.121811\pi
0.927667 + 0.373408i 0.121811π0.121811\pi
594594 −2.09017 −0.0857607
595595 −2.23607 −0.0916698
596596 −33.7082 −1.38074
597597 −19.8885 −0.813984
598598 5.52786 0.226051
599599 −21.4164 −0.875051 −0.437525 0.899206i 0.644145π-0.644145\pi
−0.437525 + 0.899206i 0.644145π0.644145\pi
600600 1.47214 0.0600997
601601 −33.5967 −1.37044 −0.685220 0.728336i 0.740294π-0.740294\pi
−0.685220 + 0.728336i 0.740294π0.740294\pi
602602 −8.94427 −0.364541
603603 −0.763932 −0.0311097
604604 −5.89667 −0.239932
605605 18.9443 0.770194
606606 −0.180340 −0.00732581
607607 3.18034 0.129086 0.0645430 0.997915i 0.479441π-0.479441\pi
0.0645430 + 0.997915i 0.479441π0.479441\pi
608608 −34.1459 −1.38480
609609 −10.5279 −0.426611
610610 −3.52786 −0.142839
611611 62.5410 2.53014
612612 1.85410 0.0749476
613613 −4.58359 −0.185130 −0.0925648 0.995707i 0.529507π-0.529507\pi
−0.0925648 + 0.995707i 0.529507π0.529507\pi
614614 −12.2229 −0.493277
615615 6.70820 0.270501
616616 −18.0132 −0.725771
617617 35.7082 1.43756 0.718779 0.695239i 0.244701π-0.244701\pi
0.718779 + 0.695239i 0.244701π0.244701\pi
618618 −1.52786 −0.0614597
619619 −26.3607 −1.05953 −0.529763 0.848146i 0.677719π-0.677719\pi
−0.529763 + 0.848146i 0.677719π0.677719\pi
620620 5.12461 0.205809
621621 −2.76393 −0.110913
622622 5.50658 0.220794
623623 5.12461 0.205313
624624 −16.4721 −0.659413
625625 1.00000 0.0400000
626626 2.49342 0.0996572
627627 45.0689 1.79988
628628 −7.41641 −0.295947
629629 −0.527864 −0.0210473
630630 0.854102 0.0340282
631631 1.87539 0.0746580 0.0373290 0.999303i 0.488115π-0.488115\pi
0.0373290 + 0.999303i 0.488115π0.488115\pi
632632 19.7508 0.785644
633633 −23.4164 −0.930719
634634 −1.41641 −0.0562527
635635 −5.23607 −0.207787
636636 14.3951 0.570804
637637 −10.4721 −0.414921
638638 9.84095 0.389607
639639 −11.4164 −0.451626
640640 −10.0902 −0.398849
641641 3.29180 0.130018 0.0650091 0.997885i 0.479292π-0.479292\pi
0.0650091 + 0.997885i 0.479292π0.479292\pi
642642 −0.944272 −0.0372674
643643 49.6525 1.95810 0.979051 0.203614i 0.0652687π-0.0652687\pi
0.979051 + 0.203614i 0.0652687π0.0652687\pi
644644 −11.4590 −0.451547
645645 10.4721 0.412340
646646 3.14590 0.123774
647647 8.58359 0.337456 0.168728 0.985663i 0.446034π-0.446034\pi
0.168728 + 0.985663i 0.446034π0.446034\pi
648648 −1.47214 −0.0578310
649649 17.7082 0.695108
650650 2.00000 0.0784465
651651 6.18034 0.242227
652652 28.1459 1.10228
653653 −10.5836 −0.414168 −0.207084 0.978323i 0.566397π-0.566397\pi
−0.207084 + 0.978323i 0.566397π0.566397\pi
654654 −3.23607 −0.126540
655655 −15.4164 −0.602369
656656 −21.1033 −0.823946
657657 13.9443 0.544018
658658 10.2016 0.397701
659659 18.9443 0.737964 0.368982 0.929437i 0.379706π-0.379706\pi
0.368982 + 0.929437i 0.379706π0.379706\pi
660660 10.1459 0.394929
661661 −21.9443 −0.853533 −0.426767 0.904362i 0.640347π-0.640347\pi
−0.426767 + 0.904362i 0.640347π0.640347\pi
662662 −5.61803 −0.218351
663663 5.23607 0.203352
664664 16.8065 0.652219
665665 −18.4164 −0.714158
666666 0.201626 0.00781285
667667 13.0132 0.503871
668668 35.1246 1.35901
669669 −6.94427 −0.268481
670670 −0.291796 −0.0112731
671671 −50.5410 −1.95111
672672 −9.27051 −0.357618
673673 10.0000 0.385472 0.192736 0.981251i 0.438264π-0.438264\pi
0.192736 + 0.981251i 0.438264π0.438264\pi
674674 5.90983 0.227638
675675 −1.00000 −0.0384900
676676 −26.7295 −1.02806
677677 −34.0000 −1.30673 −0.653363 0.757045i 0.726642π-0.726642\pi
−0.653363 + 0.757045i 0.726642π0.726642\pi
678678 −0.111456 −0.00428045
679679 −7.88854 −0.302735
680680 1.47214 0.0564538
681681 11.7082 0.448659
682682 −5.77709 −0.221216
683683 −15.0557 −0.576091 −0.288046 0.957617i 0.593006π-0.593006\pi
−0.288046 + 0.957617i 0.593006π0.593006\pi
684684 15.2705 0.583883
685685 1.76393 0.0673964
686686 −7.68692 −0.293488
687687 12.4164 0.473716
688688 −32.9443 −1.25599
689689 40.6525 1.54874
690690 −1.05573 −0.0401909
691691 21.5279 0.818959 0.409479 0.912319i 0.365710π-0.365710\pi
0.409479 + 0.912319i 0.365710π0.365710\pi
692692 1.41641 0.0538437
693693 12.2361 0.464810
694694 8.65248 0.328443
695695 −14.0000 −0.531050
696696 6.93112 0.262723
697697 6.70820 0.254091
698698 −4.38197 −0.165860
699699 −4.65248 −0.175973
700700 −4.14590 −0.156700
701701 −24.7639 −0.935321 −0.467660 0.883908i 0.654903π-0.654903\pi
−0.467660 + 0.883908i 0.654903π0.654903\pi
702702 −2.00000 −0.0754851
703703 −4.34752 −0.163970
704704 −25.7639 −0.971015
705705 −11.9443 −0.449847
706706 0.896674 0.0337468
707707 1.05573 0.0397047
708708 6.00000 0.225494
709709 15.3050 0.574790 0.287395 0.957812i 0.407211π-0.407211\pi
0.287395 + 0.957812i 0.407211π0.407211\pi
710710 −4.36068 −0.163653
711711 −13.4164 −0.503155
712712 −3.37384 −0.126440
713713 −7.63932 −0.286095
714714 0.854102 0.0319640
715715 28.6525 1.07154
716716 18.5410 0.692910
717717 −6.76393 −0.252604
718718 8.87539 0.331227
719719 −40.8885 −1.52489 −0.762443 0.647056i 0.776000π-0.776000\pi
−0.762443 + 0.647056i 0.776000π0.776000\pi
720720 3.14590 0.117241
721721 8.94427 0.333102
722722 18.6525 0.694173
723723 19.1246 0.711252
724724 21.7082 0.806779
725725 4.70820 0.174858
726726 −7.23607 −0.268556
727727 −22.5836 −0.837579 −0.418790 0.908083i 0.637545π-0.637545\pi
−0.418790 + 0.908083i 0.637545π0.637545\pi
728728 −17.2361 −0.638811
729729 1.00000 0.0370370
730730 5.32624 0.197133
731731 10.4721 0.387326
732732 −17.1246 −0.632944
733733 19.1246 0.706384 0.353192 0.935551i 0.385096π-0.385096\pi
0.353192 + 0.935551i 0.385096π0.385096\pi
734734 6.11146 0.225578
735735 2.00000 0.0737711
736736 11.4590 0.422384
737737 −4.18034 −0.153985
738738 −2.56231 −0.0943198
739739 36.0000 1.32428 0.662141 0.749380i 0.269648π-0.269648\pi
0.662141 + 0.749380i 0.269648π0.269648\pi
740740 −0.978714 −0.0359782
741741 43.1246 1.58422
742742 6.63119 0.243439
743743 −23.8885 −0.876386 −0.438193 0.898881i 0.644381π-0.644381\pi
−0.438193 + 0.898881i 0.644381π0.644381\pi
744744 −4.06888 −0.149173
745745 18.1803 0.666076
746746 4.94427 0.181023
747747 −11.4164 −0.417705
748748 10.1459 0.370971
749749 5.52786 0.201984
750750 −0.381966 −0.0139474
751751 20.0689 0.732324 0.366162 0.930551i 0.380672π-0.380672\pi
0.366162 + 0.930551i 0.380672π0.380672\pi
752752 37.5755 1.37024
753753 18.6525 0.679734
754754 9.41641 0.342925
755755 3.18034 0.115744
756756 4.14590 0.150785
757757 50.8328 1.84755 0.923775 0.382936i 0.125087π-0.125087\pi
0.923775 + 0.382936i 0.125087π0.125087\pi
758758 3.41641 0.124090
759759 −15.1246 −0.548989
760760 12.1246 0.439806
761761 −4.29180 −0.155577 −0.0777887 0.996970i 0.524786π-0.524786\pi
−0.0777887 + 0.996970i 0.524786π0.524786\pi
762762 2.00000 0.0724524
763763 18.9443 0.685829
764764 4.24922 0.153732
765765 −1.00000 −0.0361551
766766 9.32624 0.336971
767767 16.9443 0.611822
768768 −5.56231 −0.200712
769769 7.00000 0.252426 0.126213 0.992003i 0.459718π-0.459718\pi
0.126213 + 0.992003i 0.459718π0.459718\pi
770770 4.67376 0.168431
771771 2.00000 0.0720282
772772 12.8754 0.463395
773773 6.12461 0.220287 0.110143 0.993916i 0.464869π-0.464869\pi
0.110143 + 0.993916i 0.464869π0.464869\pi
774774 −4.00000 −0.143777
775775 −2.76393 −0.0992834
776776 5.19350 0.186436
777777 −1.18034 −0.0423445
778778 −5.75078 −0.206175
779779 55.2492 1.97951
780780 9.70820 0.347609
781781 −62.4721 −2.23543
782782 −1.05573 −0.0377528
783783 −4.70820 −0.168257
784784 −6.29180 −0.224707
785785 4.00000 0.142766
786786 5.88854 0.210037
787787 −27.6525 −0.985704 −0.492852 0.870113i 0.664046π-0.664046\pi
−0.492852 + 0.870113i 0.664046π0.664046\pi
788788 17.6656 0.629312
789789 −24.4164 −0.869247
790790 −5.12461 −0.182326
791791 0.652476 0.0231994
792792 −8.05573 −0.286248
793793 −48.3607 −1.71734
794794 1.14590 0.0406664
795795 −7.76393 −0.275358
796796 −36.8754 −1.30701
797797 0.236068 0.00836196 0.00418098 0.999991i 0.498669π-0.498669\pi
0.00418098 + 0.999991i 0.498669π0.498669\pi
798798 7.03444 0.249017
799799 −11.9443 −0.422558
800800 4.14590 0.146580
801801 2.29180 0.0809766
802802 −3.32624 −0.117454
803803 76.3050 2.69274
804804 −1.41641 −0.0499529
805805 6.18034 0.217828
806806 −5.52786 −0.194711
807807 9.29180 0.327087
808808 −0.695048 −0.0244517
809809 −38.9443 −1.36921 −0.684604 0.728915i 0.740025π-0.740025\pi
−0.684604 + 0.728915i 0.740025π0.740025\pi
810810 0.381966 0.0134209
811811 −24.1803 −0.849087 −0.424543 0.905408i 0.639565π-0.639565\pi
−0.424543 + 0.905408i 0.639565π0.639565\pi
812812 −19.5197 −0.685008
813813 −1.52786 −0.0535845
814814 1.10333 0.0386715
815815 −15.1803 −0.531744
816816 3.14590 0.110128
817817 86.2492 3.01748
818818 11.4377 0.399910
819819 11.7082 0.409118
820820 12.4377 0.434343
821821 −9.41641 −0.328635 −0.164317 0.986408i 0.552542π-0.552542\pi
−0.164317 + 0.986408i 0.552542π0.552542\pi
822822 −0.673762 −0.0235002
823823 −26.8197 −0.934875 −0.467437 0.884026i 0.654823π-0.654823\pi
−0.467437 + 0.884026i 0.654823π0.654823\pi
824824 −5.88854 −0.205137
825825 −5.47214 −0.190515
826826 2.76393 0.0961695
827827 13.7082 0.476681 0.238340 0.971182i 0.423397π-0.423397\pi
0.238340 + 0.971182i 0.423397π0.423397\pi
828828 −5.12461 −0.178093
829829 −9.47214 −0.328981 −0.164490 0.986379i 0.552598π-0.552598\pi
−0.164490 + 0.986379i 0.552598π0.552598\pi
830830 −4.36068 −0.151361
831831 17.4164 0.604168
832832 −24.6525 −0.854671
833833 2.00000 0.0692959
834834 5.34752 0.185170
835835 −18.9443 −0.655594
836836 83.5623 2.89006
837837 2.76393 0.0955355
838838 11.0770 0.382649
839839 −18.4164 −0.635805 −0.317903 0.948123i 0.602978π-0.602978\pi
−0.317903 + 0.948123i 0.602978π0.602978\pi
840840 3.29180 0.113578
841841 −6.83282 −0.235614
842842 −2.89667 −0.0998260
843843 −21.8885 −0.753881
844844 −43.4164 −1.49445
845845 14.4164 0.495940
846846 4.56231 0.156855
847847 42.3607 1.45553
848848 24.4245 0.838742
849849 −4.70820 −0.161585
850850 −0.381966 −0.0131013
851851 1.45898 0.0500132
852852 −21.1672 −0.725176
853853 −34.0000 −1.16414 −0.582069 0.813139i 0.697757π-0.697757\pi
−0.582069 + 0.813139i 0.697757π0.697757\pi
854854 −7.88854 −0.269940
855855 −8.23607 −0.281668
856856 −3.63932 −0.124389
857857 −51.1935 −1.74874 −0.874368 0.485263i 0.838724π-0.838724\pi
−0.874368 + 0.485263i 0.838724π0.838724\pi
858858 −10.9443 −0.373631
859859 1.18034 0.0402727 0.0201363 0.999797i 0.493590π-0.493590\pi
0.0201363 + 0.999797i 0.493590π0.493590\pi
860860 19.4164 0.662094
861861 15.0000 0.511199
862862 −2.81153 −0.0957611
863863 −35.7214 −1.21597 −0.607985 0.793949i 0.708022π-0.708022\pi
−0.607985 + 0.793949i 0.708022π0.708022\pi
864864 −4.14590 −0.141046
865865 −0.763932 −0.0259745
866866 7.01316 0.238317
867867 −1.00000 −0.0339618
868868 11.4590 0.388943
869869 −73.4164 −2.49048
870870 −1.79837 −0.0609706
871871 −4.00000 −0.135535
872872 −12.4721 −0.422360
873873 −3.52786 −0.119400
874874 −8.69505 −0.294114
875875 2.23607 0.0755929
876876 25.8541 0.873529
877877 −5.00000 −0.168838 −0.0844190 0.996430i 0.526903π-0.526903\pi
−0.0844190 + 0.996430i 0.526903π0.526903\pi
878878 8.69505 0.293444
879879 16.2361 0.547629
880880 17.2148 0.580310
881881 20.7082 0.697677 0.348839 0.937183i 0.386576π-0.386576\pi
0.348839 + 0.937183i 0.386576π0.386576\pi
882882 −0.763932 −0.0257229
883883 13.3475 0.449180 0.224590 0.974453i 0.427896π-0.427896\pi
0.224590 + 0.974453i 0.427896π0.427896\pi
884884 9.70820 0.326522
885885 −3.23607 −0.108779
886886 −0.360680 −0.0121173
887887 36.9443 1.24047 0.620234 0.784417i 0.287038π-0.287038\pi
0.620234 + 0.784417i 0.287038π0.287038\pi
888888 0.777088 0.0260774
889889 −11.7082 −0.392681
890890 0.875388 0.0293431
891891 5.47214 0.183323
892892 −12.8754 −0.431100
893893 −98.3738 −3.29195
894894 −6.94427 −0.232251
895895 −10.0000 −0.334263
896896 −22.5623 −0.753754
897897 −14.4721 −0.483211
898898 −4.76393 −0.158974
899899 −13.0132 −0.434013
900900 −1.85410 −0.0618034
901901 −7.76393 −0.258654
902902 −14.0213 −0.466858
903903 23.4164 0.779249
904904 −0.429563 −0.0142871
905905 −11.7082 −0.389194
906906 −1.21478 −0.0403584
907907 8.12461 0.269773 0.134887 0.990861i 0.456933π-0.456933\pi
0.134887 + 0.990861i 0.456933π0.456933\pi
908908 21.7082 0.720412
909909 0.472136 0.0156598
910910 4.47214 0.148250
911911 −6.16718 −0.204328 −0.102164 0.994768i 0.532577π-0.532577\pi
−0.102164 + 0.994768i 0.532577π0.532577\pi
912912 25.9098 0.857960
913913 −62.4721 −2.06753
914914 4.87539 0.161264
915915 9.23607 0.305335
916916 23.0213 0.760645
917917 −34.4721 −1.13837
918918 0.381966 0.0126068
919919 43.5410 1.43629 0.718143 0.695896i 0.244992π-0.244992\pi
0.718143 + 0.695896i 0.244992π0.244992\pi
920920 −4.06888 −0.134147
921921 32.0000 1.05444
922922 8.65248 0.284954
923923 −59.7771 −1.96759
924924 22.6869 0.746345
925925 0.527864 0.0173561
926926 −7.01316 −0.230467
927927 4.00000 0.131377
928928 19.5197 0.640767
929929 27.5410 0.903592 0.451796 0.892121i 0.350784π-0.350784\pi
0.451796 + 0.892121i 0.350784π0.350784\pi
930930 1.05573 0.0346187
931931 16.4721 0.539852
932932 −8.62616 −0.282559
933933 −14.4164 −0.471972
934934 0.742646 0.0243001
935935 −5.47214 −0.178958
936936 −7.70820 −0.251951
937937 −10.1803 −0.332577 −0.166289 0.986077i 0.553178π-0.553178\pi
−0.166289 + 0.986077i 0.553178π0.553178\pi
938938 −0.652476 −0.0213041
939939 −6.52786 −0.213029
940940 −22.1459 −0.722320
941941 2.36068 0.0769560 0.0384780 0.999259i 0.487749π-0.487749\pi
0.0384780 + 0.999259i 0.487749π0.487749\pi
942942 −1.52786 −0.0497805
943943 −18.5410 −0.603779
944944 10.1803 0.331342
945945 −2.23607 −0.0727393
946946 −21.8885 −0.711658
947947 −30.4721 −0.990211 −0.495106 0.868833i 0.664871π-0.664871\pi
−0.495106 + 0.868833i 0.664871π0.664871\pi
948948 −24.8754 −0.807915
949949 73.0132 2.37011
950950 −3.14590 −0.102066
951951 3.70820 0.120247
952952 3.29180 0.106688
953953 52.5967 1.70378 0.851888 0.523724i 0.175458π-0.175458\pi
0.851888 + 0.523724i 0.175458π0.175458\pi
954954 2.96556 0.0960135
955955 −2.29180 −0.0741608
956956 −12.5410 −0.405606
957957 −25.7639 −0.832830
958958 0 0
959959 3.94427 0.127367
960960 4.70820 0.151957
961961 −23.3607 −0.753570
962962 1.05573 0.0340380
963963 2.47214 0.0796635
964964 35.4590 1.14206
965965 −6.94427 −0.223544
966966 −2.36068 −0.0759536
967967 8.18034 0.263062 0.131531 0.991312i 0.458011π-0.458011\pi
0.131531 + 0.991312i 0.458011π0.458011\pi
968968 −27.8885 −0.896372
969969 −8.23607 −0.264581
970970 −1.34752 −0.0432664
971971 −1.70820 −0.0548189 −0.0274094 0.999624i 0.508726π-0.508726\pi
−0.0274094 + 0.999624i 0.508726π0.508726\pi
972972 1.85410 0.0594703
973973 −31.3050 −1.00359
974974 4.58359 0.146868
975975 −5.23607 −0.167688
976976 −29.0557 −0.930051
977977 34.3607 1.09930 0.549648 0.835397i 0.314762π-0.314762\pi
0.549648 + 0.835397i 0.314762π0.314762\pi
978978 5.79837 0.185412
979979 12.5410 0.400813
980980 3.70820 0.118454
981981 8.47214 0.270494
982982 13.7082 0.437446
983983 −24.0689 −0.767678 −0.383839 0.923400i 0.625398π-0.625398\pi
−0.383839 + 0.923400i 0.625398π0.625398\pi
984984 −9.87539 −0.314816
985985 −9.52786 −0.303583
986986 −1.79837 −0.0572719
987987 −26.7082 −0.850131
988988 79.9574 2.54378
989989 −28.9443 −0.920374
990990 2.09017 0.0664300
991991 11.3475 0.360466 0.180233 0.983624i 0.442315π-0.442315\pi
0.180233 + 0.983624i 0.442315π0.442315\pi
992992 −11.4590 −0.363823
993993 14.7082 0.466751
994994 −9.75078 −0.309276
995995 19.8885 0.630509
996996 −21.1672 −0.670708
997997 −17.8328 −0.564771 −0.282385 0.959301i 0.591126π-0.591126\pi
−0.282385 + 0.959301i 0.591126π0.591126\pi
998998 7.70820 0.243999
999999 −0.527864 −0.0167009
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 255.2.a.b.1.1 2
3.2 odd 2 765.2.a.d.1.2 2
4.3 odd 2 4080.2.a.bp.1.1 2
5.2 odd 4 1275.2.b.e.1174.3 4
5.3 odd 4 1275.2.b.e.1174.2 4
5.4 even 2 1275.2.a.h.1.2 2
15.14 odd 2 3825.2.a.z.1.1 2
17.16 even 2 4335.2.a.m.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
255.2.a.b.1.1 2 1.1 even 1 trivial
765.2.a.d.1.2 2 3.2 odd 2
1275.2.a.h.1.2 2 5.4 even 2
1275.2.b.e.1174.2 4 5.3 odd 4
1275.2.b.e.1174.3 4 5.2 odd 4
3825.2.a.z.1.1 2 15.14 odd 2
4080.2.a.bp.1.1 2 4.3 odd 2
4335.2.a.m.1.1 2 17.16 even 2