Properties

Label 255.2.a
Level $255$
Weight $2$
Character orbit 255.a
Rep. character $\chi_{255}(1,\cdot)$
Character field $\Q$
Dimension $11$
Newform subspaces $4$
Sturm bound $72$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 255 = 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 255.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(72\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(255))\).

Total New Old
Modular forms 40 11 29
Cusp forms 33 11 22
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)\(17\)FrickeDim
\(+\)\(+\)\(-\)\(-\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(3\)
Plus space\(+\)\(0\)
Minus space\(-\)\(11\)

Trace form

\( 11 q + 5 q^{2} + 3 q^{3} + 17 q^{4} - q^{5} - 3 q^{6} + 8 q^{7} + 9 q^{8} + 11 q^{9} + q^{10} + 12 q^{11} + 5 q^{12} + 2 q^{13} - 8 q^{14} - q^{15} + 17 q^{16} - q^{17} + 5 q^{18} - 4 q^{19} - 7 q^{20}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(255))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5 17
255.2.a.a 255.a 1.a $2$ $2.036$ \(\Q(\sqrt{13}) \) None 255.2.a.a \(1\) \(-2\) \(-2\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-q^{3}+(1+\beta )q^{4}-q^{5}-\beta q^{6}+\cdots\)
255.2.a.b 255.a 1.a $2$ $2.036$ \(\Q(\sqrt{5}) \) None 255.2.a.b \(3\) \(-2\) \(2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}-q^{3}+3\beta q^{4}+q^{5}+(-1+\cdots)q^{6}+\cdots\)
255.2.a.c 255.a 1.a $3$ $2.036$ 3.3.229.1 None 255.2.a.c \(0\) \(3\) \(3\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+q^{3}+(1+\beta _{2})q^{4}+q^{5}-\beta _{1}q^{6}+\cdots\)
255.2.a.d 255.a 1.a $4$ $2.036$ 4.4.13768.1 None 255.2.a.d \(1\) \(4\) \(-4\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{3}q^{2}+q^{3}+(2-\beta _{1})q^{4}-q^{5}-\beta _{3}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(255))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(255)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 2}\)