Defining parameters
Level: | \( N \) | \(=\) | \( 255 = 3 \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 255.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(255))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 40 | 11 | 29 |
Cusp forms | 33 | 11 | 22 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(17\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(-\) | \(-\) | \(2\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(4\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(3\) |
Plus space | \(+\) | \(0\) | ||
Minus space | \(-\) | \(11\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(255))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 5 | 17 | |||||||
255.2.a.a | $2$ | $2.036$ | \(\Q(\sqrt{13}) \) | None | \(1\) | \(-2\) | \(-2\) | \(0\) | $+$ | $+$ | $-$ | \(q+\beta q^{2}-q^{3}+(1+\beta )q^{4}-q^{5}-\beta q^{6}+\cdots\) | |
255.2.a.b | $2$ | $2.036$ | \(\Q(\sqrt{5}) \) | None | \(3\) | \(-2\) | \(2\) | \(0\) | $+$ | $-$ | $+$ | \(q+(1+\beta )q^{2}-q^{3}+3\beta q^{4}+q^{5}+(-1+\cdots)q^{6}+\cdots\) | |
255.2.a.c | $3$ | $2.036$ | 3.3.229.1 | None | \(0\) | \(3\) | \(3\) | \(4\) | $-$ | $-$ | $-$ | \(q-\beta _{1}q^{2}+q^{3}+(1+\beta _{2})q^{4}+q^{5}-\beta _{1}q^{6}+\cdots\) | |
255.2.a.d | $4$ | $2.036$ | 4.4.13768.1 | None | \(1\) | \(4\) | \(-4\) | \(4\) | $-$ | $+$ | $+$ | \(q-\beta _{3}q^{2}+q^{3}+(2-\beta _{1})q^{4}-q^{5}-\beta _{3}q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(255))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(255)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 2}\)