gp:[N,k,chi] = [25410,2,Mod(1,25410)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("25410.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(25410, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage:traces = [1,-1,1,1,-1,-1,1,-1,1,1,0,1,-1,-1,-1,1,6,-1,8,-1,1,0,-3,-1,1,
1,1,1,3,1,5,-1,0,-6,-1,1,8,-8,-1,1,9,-1,5,0,-1,3,6,1,1,-1,6,-1,6,-1,0,
-1,8,-3,3,-1,-1,-5,1,1,1,0,-7,6,-3,1,3,-1,-4,-8,1,8,0,1,8,-1,1,-9,3,1,
-6,-5,3,0,3,1,-1,-3,5,-6,-8,-1,8,-1,0,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
gp:f = lf[1] \\ Warning: the index may be different
sage:f.q_expansion() # note that sage often uses an isomorphic number field
gp:mfcoefs(f, 20)
\( p \) |
Sign
|
\(2\) |
\( +1 \) |
\(3\) |
\( -1 \) |
\(5\) |
\( +1 \) |
\(7\) |
\( -1 \) |
\(11\) |
\( -1 \) |
Inner twists of this newform have not been computed.
Twists of this newform have not been computed.