Defining parameters
| Level: | \( N \) | \(=\) | \( 25410 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 25410.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 171 \) | ||
| Sturm bound: | \(12672\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(25410))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 6432 | 436 | 5996 |
| Cusp forms | 6241 | 436 | 5805 |
| Eisenstein series | 191 | 0 | 191 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | \(7\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(186\) | \(17\) | \(169\) | \(181\) | \(17\) | \(164\) | \(5\) | \(0\) | \(5\) | |||
| \(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(213\) | \(10\) | \(203\) | \(207\) | \(10\) | \(197\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(210\) | \(12\) | \(198\) | \(204\) | \(12\) | \(192\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(194\) | \(15\) | \(179\) | \(188\) | \(15\) | \(173\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(204\) | \(13\) | \(191\) | \(198\) | \(13\) | \(185\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(199\) | \(15\) | \(184\) | \(193\) | \(15\) | \(178\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(198\) | \(12\) | \(186\) | \(192\) | \(12\) | \(180\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(202\) | \(15\) | \(187\) | \(196\) | \(15\) | \(181\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(198\) | \(13\) | \(185\) | \(192\) | \(13\) | \(179\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(204\) | \(15\) | \(189\) | \(198\) | \(15\) | \(183\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(204\) | \(12\) | \(192\) | \(198\) | \(12\) | \(186\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(199\) | \(15\) | \(184\) | \(193\) | \(15\) | \(178\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(204\) | \(11\) | \(193\) | \(198\) | \(11\) | \(187\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(200\) | \(15\) | \(185\) | \(194\) | \(15\) | \(179\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(204\) | \(18\) | \(186\) | \(198\) | \(18\) | \(180\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(197\) | \(10\) | \(187\) | \(191\) | \(10\) | \(181\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(198\) | \(12\) | \(186\) | \(192\) | \(12\) | \(180\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(202\) | \(15\) | \(187\) | \(196\) | \(15\) | \(181\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(204\) | \(13\) | \(191\) | \(198\) | \(13\) | \(185\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(201\) | \(15\) | \(186\) | \(195\) | \(15\) | \(180\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(210\) | \(12\) | \(198\) | \(204\) | \(12\) | \(192\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(194\) | \(15\) | \(179\) | \(188\) | \(15\) | \(173\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(198\) | \(17\) | \(181\) | \(192\) | \(17\) | \(175\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(203\) | \(10\) | \(193\) | \(197\) | \(10\) | \(187\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(198\) | \(12\) | \(186\) | \(192\) | \(12\) | \(180\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(203\) | \(15\) | \(188\) | \(197\) | \(15\) | \(182\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(198\) | \(17\) | \(181\) | \(192\) | \(17\) | \(175\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(204\) | \(10\) | \(194\) | \(198\) | \(10\) | \(188\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(210\) | \(18\) | \(192\) | \(204\) | \(18\) | \(186\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(193\) | \(10\) | \(183\) | \(187\) | \(10\) | \(177\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(192\) | \(7\) | \(185\) | \(186\) | \(7\) | \(179\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(208\) | \(20\) | \(188\) | \(202\) | \(20\) | \(182\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(3192\) | \(196\) | \(2996\) | \(3097\) | \(196\) | \(2901\) | \(95\) | \(0\) | \(95\) | |||||||
| Minus space | \(-\) | \(3240\) | \(240\) | \(3000\) | \(3144\) | \(240\) | \(2904\) | \(96\) | \(0\) | \(96\) | |||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(25410))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | 7 | 11 | |||||||
| 25410.2.a.a | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.b | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.c | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.d | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.e | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.f | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.g | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.h | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(1\) | $+$ | $+$ | $+$ | $-$ | $-$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.i | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(1\) | $+$ | $+$ | $+$ | $-$ | $-$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.j | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(-1\) | $+$ | $+$ | $-$ | $+$ | $+$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.k | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(-1\) | $+$ | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.l | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(-1\) | $+$ | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.m | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(-1\) | $+$ | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.n | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(-1\) | $+$ | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.o | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(-1\) | $+$ | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.p | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(-1\) | $+$ | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.q | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(-1\) | $+$ | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.r | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(1\) | $+$ | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.s | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(1\) | $+$ | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.t | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(1\) | $+$ | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.u | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(1\) | $+$ | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.v | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.w | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.x | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.y | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.z | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.ba | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bb | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bc | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bd | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.be | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bf | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bg | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bh | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(1\) | \(1\) | \(-1\) | $+$ | $-$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.bi | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(1\) | \(1\) | \(1\) | $+$ | $-$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bj | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(1\) | \(1\) | \(1\) | $+$ | $-$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bk | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(1\) | \(1\) | \(1\) | $+$ | $-$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bl | $1$ | $202.900$ | \(\Q\) | None | \(-1\) | \(1\) | \(1\) | \(1\) | $+$ | $-$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bm | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.bn | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.bo | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bp | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bq | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $+$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.br | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $+$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bs | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bt | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bu | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bv | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bw | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.bx | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $+$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.by | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(-1\) | $-$ | $+$ | $-$ | $+$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.bz | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(-1\) | $-$ | $+$ | $-$ | $+$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.ca | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(-1\) | $-$ | $+$ | $-$ | $+$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.cb | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(-1\) | $-$ | $+$ | $-$ | $+$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.cc | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(1\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.cd | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(1\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.ce | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(1\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.cf | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(1\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.cg | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(1\) | $-$ | $+$ | $-$ | $-$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.ch | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.ci | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.cj | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.ck | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.cl | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $+$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.cm | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $+$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.cn | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.co | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.cp | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.cq | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(1\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.cr | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(1\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.cs | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.ct | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.cu | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.cv | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\) | |
| 25410.2.a.cw | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(1\) | $-$ | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.cx | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(1\) | $-$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.cy | $1$ | $202.900$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(1\) | $-$ | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\) | |
| 25410.2.a.cz | $2$ | $202.900$ | \(\Q(\sqrt{3}) \) | None | \(-2\) | \(-2\) | \(-2\) | \(-2\) | $+$ | $+$ | $+$ | $+$ | $+$ | ||
| 25410.2.a.da | $2$ | $202.900$ | \(\Q(\sqrt{3}) \) | None | \(-2\) | \(-2\) | \(-2\) | \(-2\) | $+$ | $+$ | $+$ | $+$ | $-$ | ||
| 25410.2.a.db | $2$ | $202.900$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(-2\) | \(-2\) | \(-2\) | $+$ | $+$ | $+$ | $+$ | $+$ | ||
| 25410.2.a.dc | $2$ | $202.900$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(-2\) | \(-2\) | \(2\) | $+$ | $+$ | $+$ | $-$ | $+$ | ||
| 25410.2.a.dd | $2$ | $202.900$ | \(\Q(\sqrt{15}) \) | None | \(-2\) | \(-2\) | \(-2\) | \(2\) | $+$ | $+$ | $+$ | $-$ | $-$ | ||
| 25410.2.a.de | $2$ | $202.900$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(-2\) | \(-2\) | \(2\) | $+$ | $+$ | $+$ | $-$ | $-$ | ||
| 25410.2.a.df | $2$ | $202.900$ | \(\Q(\sqrt{33}) \) | None | \(-2\) | \(-2\) | \(2\) | \(-2\) | $+$ | $+$ | $-$ | $+$ | $+$ | ||
| 25410.2.a.dg | $2$ | $202.900$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(-2\) | \(2\) | \(-2\) | $+$ | $+$ | $-$ | $+$ | $-$ | ||
| 25410.2.a.dh | $2$ | $202.900$ | \(\Q(\sqrt{10}) \) | None | \(-2\) | \(-2\) | \(2\) | \(2\) | $+$ | $+$ | $-$ | $-$ | $-$ | ||
| 25410.2.a.di | $2$ | $202.900$ | \(\Q(\sqrt{17}) \) | None | \(-2\) | \(-2\) | \(2\) | \(2\) | $+$ | $+$ | $-$ | $-$ | $-$ | ||
| 25410.2.a.dj | $2$ | $202.900$ | \(\Q(\sqrt{7}) \) | None | \(-2\) | \(2\) | \(-2\) | \(-2\) | $+$ | $-$ | $+$ | $+$ | $-$ | ||
| 25410.2.a.dk | $2$ | $202.900$ | \(\Q(\sqrt{3}) \) | None | \(-2\) | \(2\) | \(-2\) | \(-2\) | $+$ | $-$ | $+$ | $+$ | $-$ | ||
| 25410.2.a.dl | $2$ | $202.900$ | \(\Q(\sqrt{97}) \) | None | \(-2\) | \(2\) | \(-2\) | \(2\) | $+$ | $-$ | $+$ | $-$ | $-$ | ||
| 25410.2.a.dm | $2$ | $202.900$ | \(\Q(\sqrt{3}) \) | None | \(-2\) | \(2\) | \(-2\) | \(2\) | $+$ | $-$ | $+$ | $-$ | $+$ | ||
| 25410.2.a.dn | $2$ | $202.900$ | \(\Q(\sqrt{3}) \) | None | \(-2\) | \(2\) | \(-2\) | \(2\) | $+$ | $-$ | $+$ | $-$ | $+$ | ||
| 25410.2.a.do | $2$ | $202.900$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(2\) | \(-2\) | \(2\) | $+$ | $-$ | $+$ | $-$ | $+$ | ||
| 25410.2.a.dp | $2$ | $202.900$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(2\) | \(-2\) | \(2\) | $+$ | $-$ | $+$ | $-$ | $-$ | ||
| 25410.2.a.dq | $2$ | $202.900$ | \(\Q(\sqrt{3}) \) | None | \(-2\) | \(2\) | \(2\) | \(-2\) | $+$ | $-$ | $-$ | $+$ | $+$ | ||
| 25410.2.a.dr | $2$ | $202.900$ | \(\Q(\sqrt{3}) \) | None | \(2\) | \(-2\) | \(-2\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | $-$ | ||
| 25410.2.a.ds | $2$ | $202.900$ | \(\Q(\sqrt{15}) \) | None | \(2\) | \(-2\) | \(-2\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | $-$ | ||
| 25410.2.a.dt | $2$ | $202.900$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(-2\) | \(-2\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | $+$ | ||
| 25410.2.a.du | $2$ | $202.900$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(-2\) | \(-2\) | \(2\) | $-$ | $+$ | $+$ | $-$ | $-$ | ||
| 25410.2.a.dv | $2$ | $202.900$ | \(\Q(\sqrt{3}) \) | None | \(2\) | \(-2\) | \(-2\) | \(2\) | $-$ | $+$ | $+$ | $-$ | $+$ | ||
| 25410.2.a.dw | $2$ | $202.900$ | \(\Q(\sqrt{33}) \) | None | \(2\) | \(-2\) | \(2\) | \(-2\) | $-$ | $+$ | $-$ | $+$ | $-$ | ||
| 25410.2.a.dx | $2$ | $202.900$ | \(\Q(\sqrt{10}) \) | None | \(2\) | \(-2\) | \(2\) | \(-2\) | $-$ | $+$ | $-$ | $+$ | $-$ | ||
| 25410.2.a.dy | $2$ | $202.900$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(-2\) | \(2\) | \(2\) | $-$ | $+$ | $-$ | $-$ | $+$ | ||
| 25410.2.a.dz | $2$ | $202.900$ | \(\Q(\sqrt{33}) \) | None | \(2\) | \(-2\) | \(2\) | \(2\) | $-$ | $+$ | $-$ | $-$ | $+$ | ||
| 25410.2.a.ea | $2$ | $202.900$ | \(\Q(\sqrt{33}) \) | None | \(2\) | \(-2\) | \(2\) | \(2\) | $-$ | $+$ | $-$ | $-$ | $-$ | ||
| 25410.2.a.eb | $2$ | $202.900$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(2\) | \(-2\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
| 25410.2.a.ec | $2$ | $202.900$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(2\) | \(-2\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | $-$ | ||
| 25410.2.a.ed | $2$ | $202.900$ | \(\Q(\sqrt{3}) \) | None | \(2\) | \(2\) | \(-2\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
| 25410.2.a.ee | $2$ | $202.900$ | \(\Q(\sqrt{3}) \) | None | \(2\) | \(2\) | \(-2\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
| 25410.2.a.ef | $2$ | $202.900$ | \(\Q(\sqrt{97}) \) | None | \(2\) | \(2\) | \(-2\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | $-$ | ||
| 25410.2.a.eg | $2$ | $202.900$ | \(\Q(\sqrt{3}) \) | None | \(2\) | \(2\) | \(-2\) | \(2\) | $-$ | $-$ | $+$ | $-$ | $-$ | ||
| 25410.2.a.eh | $2$ | $202.900$ | \(\Q(\sqrt{7}) \) | None | \(2\) | \(2\) | \(-2\) | \(2\) | $-$ | $-$ | $+$ | $-$ | $-$ | ||
| 25410.2.a.ei | $2$ | $202.900$ | \(\Q(\sqrt{3}) \) | None | \(2\) | \(2\) | \(2\) | \(2\) | $-$ | $-$ | $-$ | $-$ | $+$ | ||
| 25410.2.a.ej | $2$ | $202.900$ | \(\Q(\sqrt{3}) \) | None | \(2\) | \(2\) | \(2\) | \(2\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
| 25410.2.a.ek | $3$ | $202.900$ | 3.3.2636.1 | None | \(-3\) | \(-3\) | \(-3\) | \(3\) | $+$ | $+$ | $+$ | $-$ | $-$ | ||
| 25410.2.a.el | $3$ | $202.900$ | 3.3.2024.1 | None | \(-3\) | \(-3\) | \(3\) | \(3\) | $+$ | $+$ | $-$ | $-$ | $-$ | ||
| 25410.2.a.em | $3$ | $202.900$ | 3.3.568.1 | None | \(-3\) | \(3\) | \(-3\) | \(-3\) | $+$ | $-$ | $+$ | $+$ | $+$ | ||
| 25410.2.a.en | $3$ | $202.900$ | 3.3.148.1 | None | \(-3\) | \(3\) | \(3\) | \(-3\) | $+$ | $-$ | $-$ | $+$ | $-$ | ||
| 25410.2.a.eo | $3$ | $202.900$ | 3.3.2636.1 | None | \(3\) | \(-3\) | \(-3\) | \(-3\) | $-$ | $+$ | $+$ | $+$ | $-$ | ||
| 25410.2.a.ep | $3$ | $202.900$ | 3.3.2024.1 | None | \(3\) | \(-3\) | \(3\) | \(-3\) | $-$ | $+$ | $-$ | $+$ | $-$ | ||
| 25410.2.a.eq | $3$ | $202.900$ | 3.3.568.1 | None | \(3\) | \(3\) | \(-3\) | \(3\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
| 25410.2.a.er | $4$ | $202.900$ | 4.4.440208.1 | None | \(-4\) | \(-4\) | \(-4\) | \(-4\) | $+$ | $+$ | $+$ | $+$ | $+$ | ||
| 25410.2.a.es | $4$ | $202.900$ | 4.4.725.1 | None | \(-4\) | \(-4\) | \(-4\) | \(-4\) | $+$ | $+$ | $+$ | $+$ | $-$ | ||
| 25410.2.a.et | $4$ | $202.900$ | 4.4.13968.1 | None | \(-4\) | \(-4\) | \(-4\) | \(4\) | $+$ | $+$ | $+$ | $-$ | $+$ | ||
| 25410.2.a.eu | $4$ | $202.900$ | 4.4.725.1 | None | \(-4\) | \(-4\) | \(4\) | \(-4\) | $+$ | $+$ | $-$ | $+$ | $+$ | ||
| 25410.2.a.ev | $4$ | $202.900$ | 4.4.25488.1 | None | \(-4\) | \(-4\) | \(4\) | \(4\) | $+$ | $+$ | $-$ | $-$ | $+$ | ||
| 25410.2.a.ew | $4$ | $202.900$ | 4.4.2525.1 | None | \(-4\) | \(4\) | \(-4\) | \(-4\) | $+$ | $-$ | $+$ | $+$ | $+$ | ||
| 25410.2.a.ex | $4$ | $202.900$ | 4.4.8525.1 | None | \(-4\) | \(4\) | \(-4\) | \(4\) | $+$ | $-$ | $+$ | $-$ | $+$ | ||
| 25410.2.a.ey | $4$ | $202.900$ | 4.4.8525.1 | None | \(-4\) | \(4\) | \(-4\) | \(4\) | $+$ | $-$ | $+$ | $-$ | $-$ | ||
| 25410.2.a.ez | $4$ | $202.900$ | 4.4.570904.1 | None | \(-4\) | \(4\) | \(4\) | \(-4\) | $+$ | $-$ | $-$ | $+$ | $-$ | ||
| 25410.2.a.fa | $4$ | $202.900$ | 4.4.4552584.1 | None | \(-4\) | \(4\) | \(4\) | \(-4\) | $+$ | $-$ | $-$ | $+$ | $-$ | ||
| 25410.2.a.fb | $4$ | $202.900$ | 4.4.725.1 | None | \(-4\) | \(4\) | \(4\) | \(-4\) | $+$ | $-$ | $-$ | $+$ | $-$ | ||
| 25410.2.a.fc | $4$ | $202.900$ | 4.4.48389.1 | None | \(-4\) | \(4\) | \(4\) | \(4\) | $+$ | $-$ | $-$ | $-$ | $+$ | ||
| 25410.2.a.fd | $4$ | $202.900$ | 4.4.13968.1 | None | \(4\) | \(-4\) | \(-4\) | \(-4\) | $-$ | $+$ | $+$ | $+$ | $+$ | ||
| 25410.2.a.fe | $4$ | $202.900$ | 4.4.725.1 | None | \(4\) | \(-4\) | \(-4\) | \(4\) | $-$ | $+$ | $+$ | $-$ | $+$ | ||
| 25410.2.a.ff | $4$ | $202.900$ | 4.4.440208.1 | None | \(4\) | \(-4\) | \(-4\) | \(4\) | $-$ | $+$ | $+$ | $-$ | $+$ | ||
| 25410.2.a.fg | $4$ | $202.900$ | 4.4.25488.1 | None | \(4\) | \(-4\) | \(4\) | \(-4\) | $-$ | $+$ | $-$ | $+$ | $+$ | ||
| 25410.2.a.fh | $4$ | $202.900$ | 4.4.725.1 | None | \(4\) | \(-4\) | \(4\) | \(4\) | $-$ | $+$ | $-$ | $-$ | $-$ | ||
| 25410.2.a.fi | $4$ | $202.900$ | 4.4.8525.1 | None | \(4\) | \(4\) | \(-4\) | \(-4\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
| 25410.2.a.fj | $4$ | $202.900$ | 4.4.8525.1 | None | \(4\) | \(4\) | \(-4\) | \(-4\) | $-$ | $-$ | $+$ | $+$ | $-$ | ||
| 25410.2.a.fk | $4$ | $202.900$ | 4.4.2525.1 | None | \(4\) | \(4\) | \(-4\) | \(4\) | $-$ | $-$ | $+$ | $-$ | $-$ | ||
| 25410.2.a.fl | $4$ | $202.900$ | 4.4.48389.1 | None | \(4\) | \(4\) | \(4\) | \(-4\) | $-$ | $-$ | $-$ | $+$ | $+$ | ||
| 25410.2.a.fm | $4$ | $202.900$ | 4.4.725.1 | None | \(4\) | \(4\) | \(4\) | \(4\) | $-$ | $-$ | $-$ | $-$ | $+$ | ||
| 25410.2.a.fn | $4$ | $202.900$ | 4.4.4552584.1 | None | \(4\) | \(4\) | \(4\) | \(4\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
| 25410.2.a.fo | $4$ | $202.900$ | 4.4.570904.1 | None | \(4\) | \(4\) | \(4\) | \(4\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
| 25410.2.a.fp | $6$ | $202.900$ | 6.6.2014930625.1 | None | \(-6\) | \(-6\) | \(-6\) | \(-6\) | $+$ | $+$ | $+$ | $+$ | $+$ | ||
| 25410.2.a.fq | $6$ | $202.900$ | 6.6.143233625.1 | None | \(-6\) | \(-6\) | \(-6\) | \(6\) | $+$ | $+$ | $+$ | $-$ | $-$ | ||
| 25410.2.a.fr | $6$ | $202.900$ | 6.6.80638625.1 | None | \(-6\) | \(-6\) | \(-6\) | \(6\) | $+$ | $+$ | $+$ | $-$ | $+$ | ||
| 25410.2.a.fs | $6$ | $202.900$ | 6.6.1744180625.1 | None | \(-6\) | \(-6\) | \(6\) | \(-6\) | $+$ | $+$ | $-$ | $+$ | $-$ | ||
| 25410.2.a.ft | $6$ | $202.900$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(-6\) | \(-6\) | \(6\) | \(-6\) | $+$ | $+$ | $-$ | $+$ | $+$ | ||
| 25410.2.a.fu | $6$ | $202.900$ | 6.6.32928625.1 | None | \(-6\) | \(-6\) | \(6\) | \(6\) | $+$ | $+$ | $-$ | $-$ | $-$ | ||
| 25410.2.a.fv | $6$ | $202.900$ | 6.6.122153625.1 | None | \(-6\) | \(-6\) | \(6\) | \(6\) | $+$ | $+$ | $-$ | $-$ | $+$ | ||
| 25410.2.a.fw | $6$ | $202.900$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(-6\) | \(6\) | \(-6\) | \(-6\) | $+$ | $-$ | $+$ | $+$ | $+$ | ||
| 25410.2.a.fx | $6$ | $202.900$ | 6.6.55130625.1 | None | \(-6\) | \(6\) | \(6\) | \(6\) | $+$ | $-$ | $-$ | $-$ | $-$ | ||
| 25410.2.a.fy | $6$ | $202.900$ | 6.6.29175625.1 | None | \(-6\) | \(6\) | \(6\) | \(6\) | $+$ | $-$ | $-$ | $-$ | $+$ | ||
| 25410.2.a.fz | $6$ | $202.900$ | 6.6.80638625.1 | None | \(6\) | \(-6\) | \(-6\) | \(-6\) | $-$ | $+$ | $+$ | $+$ | $-$ | ||
| 25410.2.a.ga | $6$ | $202.900$ | 6.6.143233625.1 | None | \(6\) | \(-6\) | \(-6\) | \(-6\) | $-$ | $+$ | $+$ | $+$ | $+$ | ||
| 25410.2.a.gb | $6$ | $202.900$ | 6.6.2014930625.1 | None | \(6\) | \(-6\) | \(-6\) | \(6\) | $-$ | $+$ | $+$ | $-$ | $-$ | ||
| 25410.2.a.gc | $6$ | $202.900$ | 6.6.122153625.1 | None | \(6\) | \(-6\) | \(6\) | \(-6\) | $-$ | $+$ | $-$ | $+$ | $-$ | ||
| 25410.2.a.gd | $6$ | $202.900$ | 6.6.32928625.1 | None | \(6\) | \(-6\) | \(6\) | \(-6\) | $-$ | $+$ | $-$ | $+$ | $+$ | ||
| 25410.2.a.ge | $6$ | $202.900$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(6\) | \(-6\) | \(6\) | \(6\) | $-$ | $+$ | $-$ | $-$ | $+$ | ||
| 25410.2.a.gf | $6$ | $202.900$ | 6.6.1744180625.1 | None | \(6\) | \(-6\) | \(6\) | \(6\) | $-$ | $+$ | $-$ | $-$ | $+$ | ||
| 25410.2.a.gg | $6$ | $202.900$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(6\) | \(6\) | \(-6\) | \(6\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
| 25410.2.a.gh | $6$ | $202.900$ | 6.6.29175625.1 | None | \(6\) | \(6\) | \(6\) | \(-6\) | $-$ | $-$ | $-$ | $+$ | $-$ | ||
| 25410.2.a.gi | $6$ | $202.900$ | 6.6.55130625.1 | None | \(6\) | \(6\) | \(6\) | \(-6\) | $-$ | $-$ | $-$ | $+$ | $+$ | ||
| 25410.2.a.gj | $8$ | $202.900$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(-8\) | \(8\) | \(-8\) | \(-8\) | $+$ | $-$ | $+$ | $+$ | $-$ | ||
| 25410.2.a.gk | $8$ | $202.900$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(-8\) | \(8\) | \(8\) | \(-8\) | $+$ | $-$ | $-$ | $+$ | $+$ | ||
| 25410.2.a.gl | $8$ | $202.900$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(-8\) | \(8\) | \(8\) | \(8\) | $+$ | $-$ | $-$ | $-$ | $+$ | ||
| 25410.2.a.gm | $8$ | $202.900$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(8\) | \(8\) | \(-8\) | \(8\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
| 25410.2.a.gn | $8$ | $202.900$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(8\) | \(8\) | \(8\) | \(-8\) | $-$ | $-$ | $-$ | $+$ | $+$ | ||
| 25410.2.a.go | $8$ | $202.900$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(8\) | \(8\) | \(8\) | \(8\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(25410))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(25410)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 32}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(165))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(231))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(242))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(330))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(363))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(385))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(462))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(605))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(726))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(770))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(847))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1155))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1210))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1694))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1815))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2310))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2541))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3630))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4235))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5082))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(8470))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(12705))\)\(^{\oplus 2}\)