Properties

Label 25410.2.a
Level $25410$
Weight $2$
Character orbit 25410.a
Rep. character $\chi_{25410}(1,\cdot)$
Character field $\Q$
Dimension $436$
Newform subspaces $171$
Sturm bound $12672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 25410 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 25410.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 171 \)
Sturm bound: \(12672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(25410))\).

Total New Old
Modular forms 6432 436 5996
Cusp forms 6241 436 5805
Eisenstein series 191 0 191

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(7\)\(11\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(+\)\(186\)\(17\)\(169\)\(181\)\(17\)\(164\)\(5\)\(0\)\(5\)
\(+\)\(+\)\(+\)\(+\)\(-\)\(-\)\(213\)\(10\)\(203\)\(207\)\(10\)\(197\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(+\)\(-\)\(+\)\(-\)\(210\)\(12\)\(198\)\(204\)\(12\)\(192\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(+\)\(194\)\(15\)\(179\)\(188\)\(15\)\(173\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(-\)\(+\)\(+\)\(-\)\(204\)\(13\)\(191\)\(198\)\(13\)\(185\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(+\)\(199\)\(15\)\(184\)\(193\)\(15\)\(178\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(+\)\(198\)\(12\)\(186\)\(192\)\(12\)\(180\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(-\)\(-\)\(-\)\(-\)\(202\)\(15\)\(187\)\(196\)\(15\)\(181\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(+\)\(+\)\(-\)\(198\)\(13\)\(185\)\(192\)\(13\)\(179\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(+\)\(204\)\(15\)\(189\)\(198\)\(15\)\(183\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(+\)\(204\)\(12\)\(192\)\(198\)\(12\)\(186\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(-\)\(-\)\(199\)\(15\)\(184\)\(193\)\(15\)\(178\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(+\)\(204\)\(11\)\(193\)\(198\)\(11\)\(187\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(-\)\(-\)\(200\)\(15\)\(185\)\(194\)\(15\)\(179\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(-\)\(+\)\(-\)\(204\)\(18\)\(186\)\(198\)\(18\)\(180\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(+\)\(197\)\(10\)\(187\)\(191\)\(10\)\(181\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(+\)\(+\)\(+\)\(-\)\(198\)\(12\)\(186\)\(192\)\(12\)\(180\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(+\)\(202\)\(15\)\(187\)\(196\)\(15\)\(181\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(+\)\(204\)\(13\)\(191\)\(198\)\(13\)\(185\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(+\)\(-\)\(-\)\(-\)\(201\)\(15\)\(186\)\(195\)\(15\)\(180\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(+\)\(210\)\(12\)\(198\)\(204\)\(12\)\(192\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(-\)\(+\)\(-\)\(-\)\(194\)\(15\)\(179\)\(188\)\(15\)\(173\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(-\)\(-\)\(+\)\(-\)\(198\)\(17\)\(181\)\(192\)\(17\)\(175\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(+\)\(203\)\(10\)\(193\)\(197\)\(10\)\(187\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(+\)\(198\)\(12\)\(186\)\(192\)\(12\)\(180\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(+\)\(+\)\(-\)\(-\)\(203\)\(15\)\(188\)\(197\)\(15\)\(182\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(+\)\(-\)\(+\)\(-\)\(198\)\(17\)\(181\)\(192\)\(17\)\(175\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(+\)\(204\)\(10\)\(194\)\(198\)\(10\)\(188\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(-\)\(+\)\(+\)\(-\)\(210\)\(18\)\(192\)\(204\)\(18\)\(186\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(+\)\(193\)\(10\)\(183\)\(187\)\(10\)\(177\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(+\)\(192\)\(7\)\(185\)\(186\)\(7\)\(179\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(-\)\(-\)\(-\)\(-\)\(208\)\(20\)\(188\)\(202\)\(20\)\(182\)\(6\)\(0\)\(6\)
Plus space\(+\)\(3192\)\(196\)\(2996\)\(3097\)\(196\)\(2901\)\(95\)\(0\)\(95\)
Minus space\(-\)\(3240\)\(240\)\(3000\)\(3144\)\(240\)\(2904\)\(96\)\(0\)\(96\)

Trace form

\( 436 q + 436 q^{4} + 436 q^{9} + 16 q^{13} + 436 q^{16} - 16 q^{19} + 16 q^{23} + 436 q^{25} + 16 q^{26} - 16 q^{29} + 4 q^{30} + 56 q^{31} + 8 q^{34} + 436 q^{36} - 8 q^{37} + 8 q^{39} - 16 q^{41} - 4 q^{42}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(25410))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 7 11
25410.2.a.a 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(-1\) \(-1\) $+$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.b 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(-1\) \(-1\) $+$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.c 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(-1\) \(-1\) $+$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.d 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(-1\) \(-1\) $+$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.e 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(-1\) \(-1\) $+$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.f 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(-1\) \(-1\) $+$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.g 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(-1\) \(-1\) $+$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.h 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(-1\) \(1\) $+$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\)
25410.2.a.i 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(-1\) \(1\) $+$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\)
25410.2.a.j 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(1\) \(-1\) $+$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.k 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(1\) \(-1\) $+$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.l 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(1\) \(-1\) $+$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.m 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(1\) \(-1\) $+$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.n 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(1\) \(-1\) $+$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.o 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(1\) \(-1\) $+$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.p 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(1\) \(-1\) $+$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.q 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(1\) \(-1\) $+$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.r 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(1\) \(1\) $+$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\)
25410.2.a.s 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(1\) \(1\) $+$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\)
25410.2.a.t 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(1\) \(1\) $+$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\)
25410.2.a.u 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(-1\) \(1\) \(1\) $+$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\)
25410.2.a.v 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(1\) \(-1\) \(-1\) $+$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots\)
25410.2.a.w 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(1\) \(-1\) \(-1\) $+$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots\)
25410.2.a.x 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(1\) \(-1\) \(-1\) $+$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots\)
25410.2.a.y 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(1\) \(-1\) \(1\) $+$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.z 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(1\) \(-1\) \(1\) $+$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.ba 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(1\) \(-1\) \(1\) $+$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bb 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(1\) \(-1\) \(1\) $+$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bc 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(1\) \(-1\) \(1\) $+$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bd 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(1\) \(-1\) \(1\) $+$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.be 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(1\) \(-1\) \(1\) $+$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bf 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(1\) \(-1\) \(1\) $+$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bg 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(1\) \(-1\) \(1\) $+$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bh 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(1\) \(1\) \(-1\) $+$ $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\)
25410.2.a.bi 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(1\) \(1\) \(1\) $+$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bj 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(1\) \(1\) \(1\) $+$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bk 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(1\) \(1\) \(1\) $+$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bl 25410.a 1.a $1$ $202.900$ \(\Q\) None \(-1\) \(1\) \(1\) \(1\) $+$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bm 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(-1\) \(-1\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots\)
25410.2.a.bn 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(-1\) \(-1\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots\)
25410.2.a.bo 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(-1\) \(1\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bp 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(-1\) \(1\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bq 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(-1\) \(1\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.br 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(-1\) \(1\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bs 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(-1\) \(1\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bt 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(-1\) \(1\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bu 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(-1\) \(1\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bv 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(-1\) \(1\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bw 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(-1\) \(1\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.bx 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(-1\) \(1\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.by 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(1\) \(-1\) $-$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\)
25410.2.a.bz 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(1\) \(-1\) $-$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\)
25410.2.a.ca 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(1\) \(-1\) $-$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\)
25410.2.a.cb 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(1\) \(-1\) $-$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\)
25410.2.a.cc 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(1\) \(1\) $-$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.cd 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(1\) \(1\) $-$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.ce 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(1\) \(1\) $-$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.cf 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(1\) \(1\) $-$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.cg 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(-1\) \(1\) \(1\) $-$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\)
25410.2.a.ch 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(-1\) \(-1\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.ci 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(-1\) \(-1\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.cj 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(-1\) \(-1\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.ck 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(-1\) \(-1\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.cl 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(-1\) \(-1\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.cm 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(-1\) \(-1\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.cn 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(-1\) \(-1\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.co 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(-1\) \(-1\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.cp 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(-1\) \(-1\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.cq 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(-1\) \(1\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\)
25410.2.a.cr 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(-1\) \(1\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\)
25410.2.a.cs 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(1\) \(-1\) $-$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.ct 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(1\) \(-1\) $-$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.cu 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(1\) \(-1\) $-$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.cv 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(1\) \(-1\) $-$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\)
25410.2.a.cw 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(1\) \(1\) $-$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\)
25410.2.a.cx 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(1\) \(1\) $-$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\)
25410.2.a.cy 25410.a 1.a $1$ $202.900$ \(\Q\) None \(1\) \(1\) \(1\) \(1\) $-$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\)
25410.2.a.cz 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{3}) \) None \(-2\) \(-2\) \(-2\) \(-2\) $+$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.da 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{3}) \) None \(-2\) \(-2\) \(-2\) \(-2\) $+$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.db 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{5}) \) None \(-2\) \(-2\) \(-2\) \(-2\) $+$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.dc 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{5}) \) None \(-2\) \(-2\) \(-2\) \(2\) $+$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.dd 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{15}) \) None \(-2\) \(-2\) \(-2\) \(2\) $+$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.de 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{2}) \) None \(-2\) \(-2\) \(-2\) \(2\) $+$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.df 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{33}) \) None \(-2\) \(-2\) \(2\) \(-2\) $+$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.dg 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{5}) \) None \(-2\) \(-2\) \(2\) \(-2\) $+$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.dh 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{10}) \) None \(-2\) \(-2\) \(2\) \(2\) $+$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.di 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{17}) \) None \(-2\) \(-2\) \(2\) \(2\) $+$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.dj 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{7}) \) None \(-2\) \(2\) \(-2\) \(-2\) $+$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.dk 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{3}) \) None \(-2\) \(2\) \(-2\) \(-2\) $+$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.dl 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{97}) \) None \(-2\) \(2\) \(-2\) \(2\) $+$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.dm 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{3}) \) None \(-2\) \(2\) \(-2\) \(2\) $+$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.dn 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{3}) \) None \(-2\) \(2\) \(-2\) \(2\) $+$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.do 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{5}) \) None \(-2\) \(2\) \(-2\) \(2\) $+$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.dp 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{5}) \) None \(-2\) \(2\) \(-2\) \(2\) $+$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.dq 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{3}) \) None \(-2\) \(2\) \(2\) \(-2\) $+$ $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.dr 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{3}) \) None \(2\) \(-2\) \(-2\) \(-2\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.ds 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{15}) \) None \(2\) \(-2\) \(-2\) \(-2\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.dt 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{5}) \) None \(2\) \(-2\) \(-2\) \(-2\) $-$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.du 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{5}) \) None \(2\) \(-2\) \(-2\) \(2\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.dv 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{3}) \) None \(2\) \(-2\) \(-2\) \(2\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.dw 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{33}) \) None \(2\) \(-2\) \(2\) \(-2\) $-$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.dx 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{10}) \) None \(2\) \(-2\) \(2\) \(-2\) $-$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.dy 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{5}) \) None \(2\) \(-2\) \(2\) \(2\) $-$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.dz 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{33}) \) None \(2\) \(-2\) \(2\) \(2\) $-$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.ea 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{33}) \) None \(2\) \(-2\) \(2\) \(2\) $-$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.eb 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{5}) \) None \(2\) \(2\) \(-2\) \(-2\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.ec 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{5}) \) None \(2\) \(2\) \(-2\) \(-2\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.ed 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{3}) \) None \(2\) \(2\) \(-2\) \(-2\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.ee 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{3}) \) None \(2\) \(2\) \(-2\) \(-2\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.ef 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{97}) \) None \(2\) \(2\) \(-2\) \(-2\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.eg 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{3}) \) None \(2\) \(2\) \(-2\) \(2\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.eh 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{7}) \) None \(2\) \(2\) \(-2\) \(2\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.ei 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{3}) \) None \(2\) \(2\) \(2\) \(2\) $-$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.ej 25410.a 1.a $2$ $202.900$ \(\Q(\sqrt{3}) \) None \(2\) \(2\) \(2\) \(2\) $-$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.ek 25410.a 1.a $3$ $202.900$ 3.3.2636.1 None \(-3\) \(-3\) \(-3\) \(3\) $+$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.el 25410.a 1.a $3$ $202.900$ 3.3.2024.1 None \(-3\) \(-3\) \(3\) \(3\) $+$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.em 25410.a 1.a $3$ $202.900$ 3.3.568.1 None \(-3\) \(3\) \(-3\) \(-3\) $+$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.en 25410.a 1.a $3$ $202.900$ 3.3.148.1 None \(-3\) \(3\) \(3\) \(-3\) $+$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.eo 25410.a 1.a $3$ $202.900$ 3.3.2636.1 None \(3\) \(-3\) \(-3\) \(-3\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.ep 25410.a 1.a $3$ $202.900$ 3.3.2024.1 None \(3\) \(-3\) \(3\) \(-3\) $-$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.eq 25410.a 1.a $3$ $202.900$ 3.3.568.1 None \(3\) \(3\) \(-3\) \(3\) $-$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.er 25410.a 1.a $4$ $202.900$ 4.4.440208.1 None \(-4\) \(-4\) \(-4\) \(-4\) $+$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.es 25410.a 1.a $4$ $202.900$ 4.4.725.1 None \(-4\) \(-4\) \(-4\) \(-4\) $+$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.et 25410.a 1.a $4$ $202.900$ 4.4.13968.1 None \(-4\) \(-4\) \(-4\) \(4\) $+$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.eu 25410.a 1.a $4$ $202.900$ 4.4.725.1 None \(-4\) \(-4\) \(4\) \(-4\) $+$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.ev 25410.a 1.a $4$ $202.900$ 4.4.25488.1 None \(-4\) \(-4\) \(4\) \(4\) $+$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.ew 25410.a 1.a $4$ $202.900$ 4.4.2525.1 None \(-4\) \(4\) \(-4\) \(-4\) $+$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.ex 25410.a 1.a $4$ $202.900$ 4.4.8525.1 None \(-4\) \(4\) \(-4\) \(4\) $+$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.ey 25410.a 1.a $4$ $202.900$ 4.4.8525.1 None \(-4\) \(4\) \(-4\) \(4\) $+$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.ez 25410.a 1.a $4$ $202.900$ 4.4.570904.1 None \(-4\) \(4\) \(4\) \(-4\) $+$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.fa 25410.a 1.a $4$ $202.900$ 4.4.4552584.1 None \(-4\) \(4\) \(4\) \(-4\) $+$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.fb 25410.a 1.a $4$ $202.900$ 4.4.725.1 None \(-4\) \(4\) \(4\) \(-4\) $+$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.fc 25410.a 1.a $4$ $202.900$ 4.4.48389.1 None \(-4\) \(4\) \(4\) \(4\) $+$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.fd 25410.a 1.a $4$ $202.900$ 4.4.13968.1 None \(4\) \(-4\) \(-4\) \(-4\) $-$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.fe 25410.a 1.a $4$ $202.900$ 4.4.725.1 None \(4\) \(-4\) \(-4\) \(4\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.ff 25410.a 1.a $4$ $202.900$ 4.4.440208.1 None \(4\) \(-4\) \(-4\) \(4\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.fg 25410.a 1.a $4$ $202.900$ 4.4.25488.1 None \(4\) \(-4\) \(4\) \(-4\) $-$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.fh 25410.a 1.a $4$ $202.900$ 4.4.725.1 None \(4\) \(-4\) \(4\) \(4\) $-$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.fi 25410.a 1.a $4$ $202.900$ 4.4.8525.1 None \(4\) \(4\) \(-4\) \(-4\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.fj 25410.a 1.a $4$ $202.900$ 4.4.8525.1 None \(4\) \(4\) \(-4\) \(-4\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.fk 25410.a 1.a $4$ $202.900$ 4.4.2525.1 None \(4\) \(4\) \(-4\) \(4\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.fl 25410.a 1.a $4$ $202.900$ 4.4.48389.1 None \(4\) \(4\) \(4\) \(-4\) $-$ $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.fm 25410.a 1.a $4$ $202.900$ 4.4.725.1 None \(4\) \(4\) \(4\) \(4\) $-$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.fn 25410.a 1.a $4$ $202.900$ 4.4.4552584.1 None \(4\) \(4\) \(4\) \(4\) $-$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.fo 25410.a 1.a $4$ $202.900$ 4.4.570904.1 None \(4\) \(4\) \(4\) \(4\) $-$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.fp 25410.a 1.a $6$ $202.900$ 6.6.2014930625.1 None \(-6\) \(-6\) \(-6\) \(-6\) $+$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.fq 25410.a 1.a $6$ $202.900$ 6.6.143233625.1 None \(-6\) \(-6\) \(-6\) \(6\) $+$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.fr 25410.a 1.a $6$ $202.900$ 6.6.80638625.1 None \(-6\) \(-6\) \(-6\) \(6\) $+$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.fs 25410.a 1.a $6$ $202.900$ 6.6.1744180625.1 None \(-6\) \(-6\) \(6\) \(-6\) $+$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.ft 25410.a 1.a $6$ $202.900$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(-6\) \(-6\) \(6\) \(-6\) $+$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.fu 25410.a 1.a $6$ $202.900$ 6.6.32928625.1 None \(-6\) \(-6\) \(6\) \(6\) $+$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.fv 25410.a 1.a $6$ $202.900$ 6.6.122153625.1 None \(-6\) \(-6\) \(6\) \(6\) $+$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.fw 25410.a 1.a $6$ $202.900$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(-6\) \(6\) \(-6\) \(-6\) $+$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.fx 25410.a 1.a $6$ $202.900$ 6.6.55130625.1 None \(-6\) \(6\) \(6\) \(6\) $+$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.fy 25410.a 1.a $6$ $202.900$ 6.6.29175625.1 None \(-6\) \(6\) \(6\) \(6\) $+$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.fz 25410.a 1.a $6$ $202.900$ 6.6.80638625.1 None \(6\) \(-6\) \(-6\) \(-6\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.ga 25410.a 1.a $6$ $202.900$ 6.6.143233625.1 None \(6\) \(-6\) \(-6\) \(-6\) $-$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.gb 25410.a 1.a $6$ $202.900$ 6.6.2014930625.1 None \(6\) \(-6\) \(-6\) \(6\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
25410.2.a.gc 25410.a 1.a $6$ $202.900$ 6.6.122153625.1 None \(6\) \(-6\) \(6\) \(-6\) $-$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.gd 25410.a 1.a $6$ $202.900$ 6.6.32928625.1 None \(6\) \(-6\) \(6\) \(-6\) $-$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.ge 25410.a 1.a $6$ $202.900$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(6\) \(-6\) \(6\) \(6\) $-$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.gf 25410.a 1.a $6$ $202.900$ 6.6.1744180625.1 None \(6\) \(-6\) \(6\) \(6\) $-$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.gg 25410.a 1.a $6$ $202.900$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(6\) \(6\) \(-6\) \(6\) $-$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.gh 25410.a 1.a $6$ $202.900$ 6.6.29175625.1 None \(6\) \(6\) \(6\) \(-6\) $-$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.gi 25410.a 1.a $6$ $202.900$ 6.6.55130625.1 None \(6\) \(6\) \(6\) \(-6\) $-$ $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.gj 25410.a 1.a $8$ $202.900$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(-8\) \(8\) \(-8\) \(-8\) $+$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
25410.2.a.gk 25410.a 1.a $8$ $202.900$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(-8\) \(8\) \(8\) \(-8\) $+$ $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.gl 25410.a 1.a $8$ $202.900$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(-8\) \(8\) \(8\) \(8\) $+$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.gm 25410.a 1.a $8$ $202.900$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(8\) \(8\) \(-8\) \(8\) $-$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
25410.2.a.gn 25410.a 1.a $8$ $202.900$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(8\) \(8\) \(8\) \(-8\) $-$ $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
25410.2.a.go 25410.a 1.a $8$ $202.900$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(8\) \(8\) \(8\) \(8\) $-$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(25410))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(25410)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 32}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(165))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(231))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(242))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(330))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(363))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(385))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(462))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(605))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(726))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(770))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(847))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1155))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1210))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1694))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1815))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2310))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2541))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3630))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4235))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5082))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(8470))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(12705))\)\(^{\oplus 2}\)