Properties

Label 25410.bc
Number of curves $2$
Conductor $25410$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 25410.bc have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 25410.bc do not have complex multiplication.

Modular form 25410.2.a.bc

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + q^{7} - q^{8} + q^{9} + q^{10} + q^{12} - q^{13} - q^{14} - q^{15} + q^{16} + 6 q^{17} - q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 25410.bc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25410.bc1 25410ba1 \([1, 0, 1, -3427962189, 82858170304336]\) \(-20782141595587068688417129/1809469231117340625000\) \(-387875799586243516070840625000\) \([3]\) \(47900160\) \(4.4217\) \(\Gamma_0(N)\)-optimal
25410.bc2 25410ba2 \([1, 0, 1, 20423604396, -6555916884398]\) \(4395207667904864663662547111/2543609619140625000000000\) \(-545245311659820556640625000000000\) \([]\) \(143700480\) \(4.9710\)