Properties

Label 2541.1.k.a
Level $2541$
Weight $1$
Character orbit 2541.k
Analytic conductor $1.268$
Analytic rank $0$
Dimension $8$
Projective image $D_{12}$
CM discriminant -3
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2541,1,Mod(362,2541)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2541, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2541.362"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2541.k (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.26812419710\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{12}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{24}^{2} q^{3} - \zeta_{24}^{8} q^{4} - \zeta_{24}^{5} q^{7} + \zeta_{24}^{4} q^{9} - \zeta_{24}^{10} q^{12} + ( - \zeta_{24}^{7} + \zeta_{24}^{5}) q^{13} - \zeta_{24}^{4} q^{16} + ( - \zeta_{24}^{7} - \zeta_{24}) q^{19} + \cdots + ( - \zeta_{24}^{8} - \zeta_{24}^{4}) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} + 4 q^{9} - 4 q^{16} + 4 q^{25} + 8 q^{36} - 8 q^{64} - 4 q^{81} - 8 q^{91} - 4 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2541\mathbb{Z}\right)^\times\).

\(n\) \(848\) \(1816\) \(2059\)
\(\chi(n)\) \(-1\) \(\zeta_{24}^{4}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
362.1
0.258819 + 0.965926i
−0.258819 0.965926i
0.965926 0.258819i
−0.965926 + 0.258819i
0.258819 0.965926i
−0.258819 + 0.965926i
0.965926 + 0.258819i
−0.965926 0.258819i
0 −0.866025 + 0.500000i 0.500000 + 0.866025i 0 0 −0.965926 0.258819i 0 0.500000 0.866025i 0
362.2 0 −0.866025 + 0.500000i 0.500000 + 0.866025i 0 0 0.965926 + 0.258819i 0 0.500000 0.866025i 0
362.3 0 0.866025 0.500000i 0.500000 + 0.866025i 0 0 −0.258819 + 0.965926i 0 0.500000 0.866025i 0
362.4 0 0.866025 0.500000i 0.500000 + 0.866025i 0 0 0.258819 0.965926i 0 0.500000 0.866025i 0
1088.1 0 −0.866025 0.500000i 0.500000 0.866025i 0 0 −0.965926 + 0.258819i 0 0.500000 + 0.866025i 0
1088.2 0 −0.866025 0.500000i 0.500000 0.866025i 0 0 0.965926 0.258819i 0 0.500000 + 0.866025i 0
1088.3 0 0.866025 + 0.500000i 0.500000 0.866025i 0 0 −0.258819 0.965926i 0 0.500000 + 0.866025i 0
1088.4 0 0.866025 + 0.500000i 0.500000 0.866025i 0 0 0.258819 + 0.965926i 0 0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 362.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
7.d odd 6 1 inner
11.b odd 2 1 inner
21.g even 6 1 inner
33.d even 2 1 inner
77.i even 6 1 inner
231.k odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2541.1.k.a 8
3.b odd 2 1 CM 2541.1.k.a 8
7.d odd 6 1 inner 2541.1.k.a 8
11.b odd 2 1 inner 2541.1.k.a 8
11.c even 5 4 2541.1.bn.a 32
11.d odd 10 4 2541.1.bn.a 32
21.g even 6 1 inner 2541.1.k.a 8
33.d even 2 1 inner 2541.1.k.a 8
33.f even 10 4 2541.1.bn.a 32
33.h odd 10 4 2541.1.bn.a 32
77.i even 6 1 inner 2541.1.k.a 8
77.n even 30 4 2541.1.bn.a 32
77.p odd 30 4 2541.1.bn.a 32
231.k odd 6 1 inner 2541.1.k.a 8
231.bc even 30 4 2541.1.bn.a 32
231.bf odd 30 4 2541.1.bn.a 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2541.1.k.a 8 1.a even 1 1 trivial
2541.1.k.a 8 3.b odd 2 1 CM
2541.1.k.a 8 7.d odd 6 1 inner
2541.1.k.a 8 11.b odd 2 1 inner
2541.1.k.a 8 21.g even 6 1 inner
2541.1.k.a 8 33.d even 2 1 inner
2541.1.k.a 8 77.i even 6 1 inner
2541.1.k.a 8 231.k odd 6 1 inner
2541.1.bn.a 32 11.c even 5 4
2541.1.bn.a 32 11.d odd 10 4
2541.1.bn.a 32 33.f even 10 4
2541.1.bn.a 32 33.h odd 10 4
2541.1.bn.a 32 77.n even 30 4
2541.1.bn.a 32 77.p odd 30 4
2541.1.bn.a 32 231.bc even 30 4
2541.1.bn.a 32 231.bf odd 30 4

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(2541, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} - T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} - T^{4} + 1 \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( (T^{4} - 4 T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( (T^{4} + 2 T^{2} + 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( (T^{4} - T^{2} + 1)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 3 T^{2} + 9)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( (T^{4} + 4 T^{2} + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} + 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( T^{8} + 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( (T^{4} - 2 T^{2} + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( (T^{2} + 3)^{4} \) Copy content Toggle raw display
show more
show less