L(s) = 1 | + (0.866 − 0.5i)3-s + (0.5 + 0.866i)4-s + (0.258 − 0.965i)7-s + (0.499 − 0.866i)9-s + (0.866 + 0.499i)12-s − 0.517·13-s + (−0.499 + 0.866i)16-s + (0.707 − 1.22i)19-s + (−0.258 − 0.965i)21-s + (0.5 + 0.866i)25-s − 0.999i·27-s + (0.965 − 0.258i)28-s + (−0.866 + 0.5i)31-s + 0.999·36-s + (0.866 − 1.5i)37-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)3-s + (0.5 + 0.866i)4-s + (0.258 − 0.965i)7-s + (0.499 − 0.866i)9-s + (0.866 + 0.499i)12-s − 0.517·13-s + (−0.499 + 0.866i)16-s + (0.707 − 1.22i)19-s + (−0.258 − 0.965i)21-s + (0.5 + 0.866i)25-s − 0.999i·27-s + (0.965 − 0.258i)28-s + (−0.866 + 0.5i)31-s + 0.999·36-s + (0.866 − 1.5i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.915 + 0.402i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.915 + 0.402i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.873489643\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.873489643\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (-0.258 + 0.965i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + 0.517T + T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - 1.93iT - T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.965 - 1.67i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.965 + 1.67i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - 1.73iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.052082039355900337556340109486, −8.040914860047519648448945575432, −7.40551996100440133922199837017, −7.18322521431494667380325912021, −6.28022862891255239181851735272, −4.90179291085736972153966464803, −4.02171726071065814034793054264, −3.20590809167861397028300858568, −2.48092149985991802975850850141, −1.28625079149349742412569543157,
1.63322496718267075427173345313, 2.40839338756501525207239131531, 3.26332357615987834802157908208, 4.46529178273355965294370317834, 5.25678380701297352071948375718, 5.88680175116002545311669584556, 6.87755051583415233638034076921, 7.76385390001684137396209841061, 8.414471776699171358888831137709, 9.267349724113605788350237677917