Properties

Label 2535.2.a.n
Level $2535$
Weight $2$
Character orbit 2535.a
Self dual yes
Analytic conductor $20.242$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2535,2,Mod(1,2535)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2535, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2535.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2535 = 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2535.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,2,4,-2,-2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.2420769124\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{2} + q^{3} + ( - 2 \beta + 2) q^{4} - q^{5} + (\beta - 1) q^{6} + (2 \beta + 1) q^{7} + (2 \beta - 6) q^{8} + q^{9} + ( - \beta + 1) q^{10} - 2 \beta q^{11} + ( - 2 \beta + 2) q^{12} + \cdots - 2 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} + 4 q^{4} - 2 q^{5} - 2 q^{6} + 2 q^{7} - 12 q^{8} + 2 q^{9} + 2 q^{10} + 4 q^{12} + 10 q^{14} - 2 q^{15} + 16 q^{16} - 10 q^{17} - 2 q^{18} - 4 q^{19} - 4 q^{20} + 2 q^{21} - 12 q^{22}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−2.73205 1.00000 5.46410 −1.00000 −2.73205 −2.46410 −9.46410 1.00000 2.73205
1.2 0.732051 1.00000 −1.46410 −1.00000 0.732051 4.46410 −2.53590 1.00000 −0.732051
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2535.2.a.n 2
3.b odd 2 1 7605.2.a.bk 2
13.b even 2 1 2535.2.a.s 2
13.f odd 12 2 195.2.bb.a 4
39.d odd 2 1 7605.2.a.y 2
39.k even 12 2 585.2.bu.a 4
65.o even 12 2 975.2.w.f 4
65.s odd 12 2 975.2.bc.h 4
65.t even 12 2 975.2.w.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.2.bb.a 4 13.f odd 12 2
585.2.bu.a 4 39.k even 12 2
975.2.w.a 4 65.t even 12 2
975.2.w.f 4 65.o even 12 2
975.2.bc.h 4 65.s odd 12 2
2535.2.a.n 2 1.a even 1 1 trivial
2535.2.a.s 2 13.b even 2 1
7605.2.a.y 2 39.d odd 2 1
7605.2.a.bk 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2535))\):

\( T_{2}^{2} + 2T_{2} - 2 \) Copy content Toggle raw display
\( T_{7}^{2} - 2T_{7} - 11 \) Copy content Toggle raw display
\( T_{11}^{2} - 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T - 2 \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 2T - 11 \) Copy content Toggle raw display
$11$ \( T^{2} - 12 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 10T + 22 \) Copy content Toggle raw display
$19$ \( T^{2} + 4T - 8 \) Copy content Toggle raw display
$23$ \( T^{2} + 8T + 4 \) Copy content Toggle raw display
$29$ \( T^{2} + 2T - 2 \) Copy content Toggle raw display
$31$ \( T^{2} - 4T - 23 \) Copy content Toggle raw display
$37$ \( (T - 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 14T + 46 \) Copy content Toggle raw display
$43$ \( T^{2} + 4T + 1 \) Copy content Toggle raw display
$47$ \( T^{2} - 10T - 2 \) Copy content Toggle raw display
$53$ \( T^{2} - 48 \) Copy content Toggle raw display
$59$ \( T^{2} + 18T + 78 \) Copy content Toggle raw display
$61$ \( T^{2} - 2T - 11 \) Copy content Toggle raw display
$67$ \( T^{2} - 18T + 69 \) Copy content Toggle raw display
$71$ \( T^{2} + 22T + 118 \) Copy content Toggle raw display
$73$ \( T^{2} + 10T - 83 \) Copy content Toggle raw display
$79$ \( T^{2} + 10T - 23 \) Copy content Toggle raw display
$83$ \( T^{2} + 12T + 24 \) Copy content Toggle raw display
$89$ \( T^{2} + 6T + 6 \) Copy content Toggle raw display
$97$ \( T^{2} + 26T + 157 \) Copy content Toggle raw display
show more
show less