Defining parameters
Level: | \( N \) | \(=\) | \( 2535 = 3 \cdot 5 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2535.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 40 \) | ||
Sturm bound: | \(728\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2535))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 392 | 104 | 288 |
Cusp forms | 337 | 104 | 233 |
Eisenstein series | 55 | 0 | 55 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(13\) | Fricke | Dim. |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(11\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(14\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(18\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(8\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(15\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(12\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(8\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(18\) |
Plus space | \(+\) | \(39\) | ||
Minus space | \(-\) | \(65\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2535))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2535))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2535)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(195))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(507))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(845))\)\(^{\oplus 2}\)