Properties

Label 2523.1.d
Level $2523$
Weight $1$
Character orbit 2523.d
Rep. character $\chi_{2523}(2522,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $290$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2523.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 87 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(290\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2523, [\chi])\).

Total New Old
Modular forms 38 30 8
Cusp forms 8 4 4
Eisenstein series 30 26 4

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - 4 q^{4} - 2 q^{7} - 4 q^{9} + 2 q^{13} + 4 q^{16} + 4 q^{25} + 2 q^{28} + 4 q^{36} + 2 q^{49} - 2 q^{52} + 2 q^{57} + 2 q^{63} - 4 q^{64} + 2 q^{67} + 4 q^{81} + 4 q^{91} + 2 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2523, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2523.1.d.a 2523.d 87.d $4$ $1.259$ \(\Q(i, \sqrt{5})\) $D_{5}$ \(\Q(\sqrt{-3}) \) None 2523.1.b.a \(0\) \(0\) \(0\) \(-2\) \(q+\beta _{3}q^{3}-q^{4}+\beta _{2}q^{7}-q^{9}-\beta _{3}q^{12}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2523, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2523, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 2}\)