Properties

Label 2523.1.b.a
Level $2523$
Weight $1$
Character orbit 2523.b
Self dual yes
Analytic conductor $1.259$
Analytic rank $0$
Dimension $2$
Projective image $D_{5}$
CM discriminant -3
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2523,1,Mod(842,2523)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2523, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2523.842");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2523.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.25914102687\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.6365529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + q^{4} + (\beta - 1) q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{3} + q^{4} + (\beta - 1) q^{7} + q^{9} - q^{12} - \beta q^{13} + q^{16} + \beta q^{19} + ( - \beta + 1) q^{21} + q^{25} - q^{27} + (\beta - 1) q^{28} + ( - \beta + 1) q^{31} + q^{36} + \beta q^{37} + \beta q^{39} + ( - \beta + 1) q^{43} - q^{48} + ( - \beta + 1) q^{49} - \beta q^{52} - \beta q^{57} + ( - \beta + 1) q^{61} + (\beta - 1) q^{63} + q^{64} - \beta q^{67} + \beta q^{73} - q^{75} + \beta q^{76} + \beta q^{79} + q^{81} + ( - \beta + 1) q^{84} - q^{91} + (\beta - 1) q^{93} + ( - \beta + 1) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{4} - q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 2 q^{4} - q^{7} + 2 q^{9} - 2 q^{12} - q^{13} + 2 q^{16} + q^{19} + q^{21} + 2 q^{25} - 2 q^{27} - q^{28} + q^{31} + 2 q^{36} + q^{37} + q^{39} + q^{43} - 2 q^{48} + q^{49} - q^{52} - q^{57} + q^{61} - q^{63} + 2 q^{64} - q^{67} + q^{73} - 2 q^{75} + q^{76} + q^{79} + 2 q^{81} + q^{84} - 2 q^{91} - q^{93} + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2523\mathbb{Z}\right)^\times\).

\(n\) \(842\) \(1684\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
842.1
−0.618034
1.61803
0 −1.00000 1.00000 0 0 −1.61803 0 1.00000 0
842.2 0 −1.00000 1.00000 0 0 0.618034 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2523.1.b.a 2
3.b odd 2 1 CM 2523.1.b.a 2
29.b even 2 1 2523.1.b.c yes 2
29.c odd 4 2 2523.1.d.a 4
29.d even 7 6 2523.1.j.c 12
29.e even 14 6 2523.1.j.a 12
29.f odd 28 12 2523.1.h.c 24
87.d odd 2 1 2523.1.b.c yes 2
87.f even 4 2 2523.1.d.a 4
87.h odd 14 6 2523.1.j.a 12
87.j odd 14 6 2523.1.j.c 12
87.k even 28 12 2523.1.h.c 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2523.1.b.a 2 1.a even 1 1 trivial
2523.1.b.a 2 3.b odd 2 1 CM
2523.1.b.c yes 2 29.b even 2 1
2523.1.b.c yes 2 87.d odd 2 1
2523.1.d.a 4 29.c odd 4 2
2523.1.d.a 4 87.f even 4 2
2523.1.h.c 24 29.f odd 28 12
2523.1.h.c 24 87.k even 28 12
2523.1.j.a 12 29.e even 14 6
2523.1.j.a 12 87.h odd 14 6
2523.1.j.c 12 29.d even 7 6
2523.1.j.c 12 87.j odd 14 6

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2523, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{19}^{2} - T_{19} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$37$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$67$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$79$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - T - 1 \) Copy content Toggle raw display
show more
show less