Properties

Label 2523.1
Level 2523
Weight 1
Dimension 82
Nonzero newspaces 4
Newform subspaces 10
Sturm bound 470960
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 10 \)
Sturm bound: \(470960\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(2523))\).

Total New Old
Modular forms 2494 1231 1263
Cusp forms 86 82 4
Eisenstein series 2408 1149 1259

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 82 0 0 0

Trace form

\( 82 q + 2 q^{6} + 2 q^{7} - 2 q^{9} + 2 q^{13} + 2 q^{16} - 2 q^{22} - 2 q^{24} - 2 q^{25} + 2 q^{33} - 2 q^{34} - 2 q^{42} + 2 q^{51} + 2 q^{54} + 2 q^{63} - 2 q^{64} + 2 q^{67} - 2 q^{78} - 2 q^{81} + 4 q^{82}+ \cdots - 2 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(2523))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2523.1.b \(\chi_{2523}(842, \cdot)\) 2523.1.b.a 2 1
2523.1.b.b 2
2523.1.b.c 2
2523.1.d \(\chi_{2523}(2522, \cdot)\) 2523.1.d.a 4 1
2523.1.e \(\chi_{2523}(1723, \cdot)\) None 0 2
2523.1.h \(\chi_{2523}(236, \cdot)\) 2523.1.h.a 6 6
2523.1.h.b 6
2523.1.h.c 24
2523.1.j \(\chi_{2523}(605, \cdot)\) 2523.1.j.a 12 6
2523.1.j.b 12
2523.1.j.c 12
2523.1.l \(\chi_{2523}(781, \cdot)\) None 0 12
2523.1.n \(\chi_{2523}(86, \cdot)\) None 0 28
2523.1.p \(\chi_{2523}(59, \cdot)\) None 0 28
2523.1.r \(\chi_{2523}(46, \cdot)\) None 0 56
2523.1.t \(\chi_{2523}(20, \cdot)\) None 0 168
2523.1.v \(\chi_{2523}(5, \cdot)\) None 0 168
2523.1.w \(\chi_{2523}(10, \cdot)\) None 0 336

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(2523))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(2523)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(29))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(87))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(841))\)\(^{\oplus 2}\)