Properties

Label 2523.1.b
Level $2523$
Weight $1$
Character orbit 2523.b
Rep. character $\chi_{2523}(842,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $3$
Sturm bound $290$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2523.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(290\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2523, [\chi])\).

Total New Old
Modular forms 36 33 3
Cusp forms 6 6 0
Eisenstein series 30 27 3

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 6 0 0 0

Trace form

\( 6 q + 4 q^{4} + 2 q^{6} - 4 q^{7} + 2 q^{9} + 2 q^{16} - 2 q^{22} + 2 q^{24} + 6 q^{25} - 2 q^{28} + 2 q^{33} - 2 q^{34} + 4 q^{36} - 2 q^{42} + 2 q^{49} + 2 q^{51} - 2 q^{52} - 2 q^{54} - 2 q^{57} + 2 q^{64}+ \cdots + 2 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2523, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2523.1.b.a 2523.b 3.b $2$ $1.259$ \(\Q(\sqrt{5}) \) $D_{5}$ \(\Q(\sqrt{-3}) \) None 2523.1.b.a \(0\) \(-2\) \(0\) \(-1\) \(q-q^{3}+q^{4}+(-1+\beta )q^{7}+q^{9}-q^{12}+\cdots\)
2523.1.b.b 2523.b 3.b $2$ $1.259$ \(\Q(\sqrt{-1}) \) $D_{3}$ \(\Q(\sqrt{-87}) \) None 87.1.d.a \(0\) \(0\) \(0\) \(-2\) \(q-i q^{2}+i q^{3}+q^{6}-q^{7}-i q^{8}+\cdots\)
2523.1.b.c 2523.b 3.b $2$ $1.259$ \(\Q(\sqrt{5}) \) $D_{5}$ \(\Q(\sqrt{-3}) \) None 2523.1.b.a \(0\) \(2\) \(0\) \(-1\) \(q+q^{3}+q^{4}+(-1+\beta )q^{7}+q^{9}+q^{12}+\cdots\)