Defining parameters
| Level: | \( N \) | \(=\) | \( 2523 = 3 \cdot 29^{2} \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2523.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(290\) | ||
| Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2523, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 36 | 33 | 3 |
| Cusp forms | 6 | 6 | 0 |
| Eisenstein series | 30 | 27 | 3 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 6 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2523, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 2523.1.b.a | $2$ | $1.259$ | \(\Q(\sqrt{5}) \) | $D_{5}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-2\) | \(0\) | \(-1\) | \(q-q^{3}+q^{4}+(-1+\beta )q^{7}+q^{9}-q^{12}+\cdots\) |
| 2523.1.b.b | $2$ | $1.259$ | \(\Q(\sqrt{-1}) \) | $D_{3}$ | \(\Q(\sqrt{-87}) \) | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q-i q^{2}+i q^{3}+q^{6}-q^{7}-i q^{8}+\cdots\) |
| 2523.1.b.c | $2$ | $1.259$ | \(\Q(\sqrt{5}) \) | $D_{5}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(2\) | \(0\) | \(-1\) | \(q+q^{3}+q^{4}+(-1+\beta )q^{7}+q^{9}+q^{12}+\cdots\) |