Properties

Label 252.9.d.b.181.6
Level $252$
Weight $9$
Character 252.181
Analytic conductor $102.659$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,9,Mod(181,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.181"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 252.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(102.659409735\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 2160x^{4} + 976392x^{2} + 85162752 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{5}\cdot 7^{3} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.6
Root \(-39.6746i\) of defining polynomial
Character \(\chi\) \(=\) 252.181
Dual form 252.9.d.b.181.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+964.066i q^{5} +(2367.93 - 397.129i) q^{7} -11856.2 q^{11} +28897.2i q^{13} +46018.1i q^{17} -19494.9i q^{19} +131645. q^{23} -538799. q^{25} -1.22466e6 q^{29} +1.08710e6i q^{31} +(382858. + 2.28284e6i) q^{35} +2.48906e6 q^{37} +26466.8i q^{41} -4.08031e6 q^{43} +6.95060e6i q^{47} +(5.44938e6 - 1.88075e6i) q^{49} +8.77983e6 q^{53} -1.14302e7i q^{55} -3.74308e6i q^{59} -1.40801e7i q^{61} -2.78588e7 q^{65} -7.62251e6 q^{67} -158650. q^{71} -3.88616e7i q^{73} +(-2.80746e7 + 4.70843e6i) q^{77} +1.13017e7 q^{79} -5.38238e6i q^{83} -4.43645e7 q^{85} -1.08864e7i q^{89} +(1.14759e7 + 6.84265e7i) q^{91} +1.87944e7 q^{95} +5.55681e7i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2166 q^{7} - 24492 q^{11} + 11604 q^{23} - 678714 q^{25} - 1264332 q^{29} + 1314816 q^{35} + 3184332 q^{37} - 7783380 q^{43} + 2719110 q^{49} + 8340660 q^{53} - 84095232 q^{65} + 16579500 q^{67} + 62088852 q^{71}+ \cdots - 85912896 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 964.066i 1.54251i 0.636529 + 0.771253i \(0.280370\pi\)
−0.636529 + 0.771253i \(0.719630\pi\)
\(6\) 0 0
\(7\) 2367.93 397.129i 0.986226 0.165401i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −11856.2 −0.809794 −0.404897 0.914362i \(-0.632693\pi\)
−0.404897 + 0.914362i \(0.632693\pi\)
\(12\) 0 0
\(13\) 28897.2i 1.01177i 0.862600 + 0.505886i \(0.168834\pi\)
−0.862600 + 0.505886i \(0.831166\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 46018.1i 0.550976i 0.961305 + 0.275488i \(0.0888394\pi\)
−0.961305 + 0.275488i \(0.911161\pi\)
\(18\) 0 0
\(19\) 19494.9i 0.149592i −0.997199 0.0747959i \(-0.976169\pi\)
0.997199 0.0747959i \(-0.0238305\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 131645. 0.470428 0.235214 0.971944i \(-0.424421\pi\)
0.235214 + 0.971944i \(0.424421\pi\)
\(24\) 0 0
\(25\) −538799. −1.37933
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.22466e6 −1.73151 −0.865755 0.500468i \(-0.833161\pi\)
−0.865755 + 0.500468i \(0.833161\pi\)
\(30\) 0 0
\(31\) 1.08710e6i 1.17712i 0.808452 + 0.588562i \(0.200306\pi\)
−0.808452 + 0.588562i \(0.799694\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 382858. + 2.28284e6i 0.255133 + 1.52126i
\(36\) 0 0
\(37\) 2.48906e6 1.32809 0.664047 0.747691i \(-0.268837\pi\)
0.664047 + 0.747691i \(0.268837\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 26466.8i 0.00936627i 0.999989 + 0.00468314i \(0.00149069\pi\)
−0.999989 + 0.00468314i \(0.998509\pi\)
\(42\) 0 0
\(43\) −4.08031e6 −1.19349 −0.596746 0.802430i \(-0.703540\pi\)
−0.596746 + 0.802430i \(0.703540\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.95060e6i 1.42440i 0.701979 + 0.712198i \(0.252300\pi\)
−0.701979 + 0.712198i \(0.747700\pi\)
\(48\) 0 0
\(49\) 5.44938e6 1.88075e6i 0.945285 0.326246i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.77983e6 1.11271 0.556356 0.830944i \(-0.312199\pi\)
0.556356 + 0.830944i \(0.312199\pi\)
\(54\) 0 0
\(55\) 1.14302e7i 1.24911i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.74308e6i 0.308903i −0.988000 0.154451i \(-0.950639\pi\)
0.988000 0.154451i \(-0.0493610\pi\)
\(60\) 0 0
\(61\) 1.40801e7i 1.01692i −0.861085 0.508461i \(-0.830215\pi\)
0.861085 0.508461i \(-0.169785\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.78588e7 −1.56066
\(66\) 0 0
\(67\) −7.62251e6 −0.378267 −0.189134 0.981951i \(-0.560568\pi\)
−0.189134 + 0.981951i \(0.560568\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −158650. −0.00624319 −0.00312159 0.999995i \(-0.500994\pi\)
−0.00312159 + 0.999995i \(0.500994\pi\)
\(72\) 0 0
\(73\) 3.88616e7i 1.36845i −0.729271 0.684225i \(-0.760141\pi\)
0.729271 0.684225i \(-0.239859\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.80746e7 + 4.70843e6i −0.798640 + 0.133941i
\(78\) 0 0
\(79\) 1.13017e7 0.290159 0.145080 0.989420i \(-0.453656\pi\)
0.145080 + 0.989420i \(0.453656\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.38238e6i 0.113413i −0.998391 0.0567064i \(-0.981940\pi\)
0.998391 0.0567064i \(-0.0180599\pi\)
\(84\) 0 0
\(85\) −4.43645e7 −0.849884
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.08864e7i 0.173510i −0.996230 0.0867552i \(-0.972350\pi\)
0.996230 0.0867552i \(-0.0276498\pi\)
\(90\) 0 0
\(91\) 1.14759e7 + 6.84265e7i 0.167348 + 0.997836i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.87944e7 0.230746
\(96\) 0 0
\(97\) 5.55681e7i 0.627681i 0.949476 + 0.313840i \(0.101616\pi\)
−0.949476 + 0.313840i \(0.898384\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.65688e7i 0.735811i −0.929863 0.367905i \(-0.880075\pi\)
0.929863 0.367905i \(-0.119925\pi\)
\(102\) 0 0
\(103\) 1.27219e8i 1.13033i 0.824979 + 0.565163i \(0.191187\pi\)
−0.824979 + 0.565163i \(0.808813\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.35004e8 −1.02994 −0.514969 0.857209i \(-0.672197\pi\)
−0.514969 + 0.857209i \(0.672197\pi\)
\(108\) 0 0
\(109\) −7.70178e7 −0.545613 −0.272807 0.962069i \(-0.587952\pi\)
−0.272807 + 0.962069i \(0.587952\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.20801e7 −0.564745 −0.282372 0.959305i \(-0.591121\pi\)
−0.282372 + 0.959305i \(0.591121\pi\)
\(114\) 0 0
\(115\) 1.26915e8i 0.725639i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.82751e7 + 1.08968e8i 0.0911322 + 0.543387i
\(120\) 0 0
\(121\) −7.37896e7 −0.344234
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.42850e8i 0.585112i
\(126\) 0 0
\(127\) −3.72776e8 −1.43296 −0.716479 0.697609i \(-0.754247\pi\)
−0.716479 + 0.697609i \(0.754247\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.33849e8i 0.794054i −0.917807 0.397027i \(-0.870042\pi\)
0.917807 0.397027i \(-0.129958\pi\)
\(132\) 0 0
\(133\) −7.74200e6 4.61627e7i −0.0247427 0.147531i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.78252e8 −1.92535 −0.962673 0.270666i \(-0.912756\pi\)
−0.962673 + 0.270666i \(0.912756\pi\)
\(138\) 0 0
\(139\) 4.09826e8i 1.09784i 0.835874 + 0.548921i \(0.184961\pi\)
−0.835874 + 0.548921i \(0.815039\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.42611e8i 0.819326i
\(144\) 0 0
\(145\) 1.18066e9i 2.67087i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.64958e8 −0.943342 −0.471671 0.881775i \(-0.656349\pi\)
−0.471671 + 0.881775i \(0.656349\pi\)
\(150\) 0 0
\(151\) 4.25253e8 0.817974 0.408987 0.912540i \(-0.365882\pi\)
0.408987 + 0.912540i \(0.365882\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.04804e9 −1.81572
\(156\) 0 0
\(157\) 9.13759e8i 1.50395i −0.659192 0.751974i \(-0.729102\pi\)
0.659192 0.751974i \(-0.270898\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.11726e8 5.22801e7i 0.463949 0.0778095i
\(162\) 0 0
\(163\) −5.93705e8 −0.841047 −0.420524 0.907282i \(-0.638154\pi\)
−0.420524 + 0.907282i \(0.638154\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.97081e8i 0.896225i 0.893977 + 0.448113i \(0.147904\pi\)
−0.893977 + 0.448113i \(0.852096\pi\)
\(168\) 0 0
\(169\) −1.93178e7 −0.0236816
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.66618e8i 0.520927i −0.965484 0.260463i \(-0.916125\pi\)
0.965484 0.260463i \(-0.0838754\pi\)
\(174\) 0 0
\(175\) −1.27584e9 + 2.13973e8i −1.36033 + 0.228142i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.52236e8 −0.830133 −0.415066 0.909791i \(-0.636242\pi\)
−0.415066 + 0.909791i \(0.636242\pi\)
\(180\) 0 0
\(181\) 7.41085e8i 0.690484i 0.938514 + 0.345242i \(0.112203\pi\)
−0.938514 + 0.345242i \(0.887797\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.39962e9i 2.04859i
\(186\) 0 0
\(187\) 5.45599e8i 0.446177i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.47730e8 −0.261282 −0.130641 0.991430i \(-0.541703\pi\)
−0.130641 + 0.991430i \(0.541703\pi\)
\(192\) 0 0
\(193\) −4.97355e8 −0.358457 −0.179228 0.983807i \(-0.557360\pi\)
−0.179228 + 0.983807i \(0.557360\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.99473e8 0.198835 0.0994175 0.995046i \(-0.468302\pi\)
0.0994175 + 0.995046i \(0.468302\pi\)
\(198\) 0 0
\(199\) 6.90200e7i 0.0440112i 0.999758 + 0.0220056i \(0.00700516\pi\)
−0.999758 + 0.0220056i \(0.992995\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.89992e9 + 4.86349e8i −1.70766 + 0.286394i
\(204\) 0 0
\(205\) −2.55158e7 −0.0144475
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.31136e8i 0.121138i
\(210\) 0 0
\(211\) 1.38118e9 0.696820 0.348410 0.937342i \(-0.386722\pi\)
0.348410 + 0.937342i \(0.386722\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.93369e9i 1.84097i
\(216\) 0 0
\(217\) 4.31718e8 + 2.57417e9i 0.194698 + 1.16091i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.32979e9 −0.557462
\(222\) 0 0
\(223\) 3.59070e9i 1.45198i 0.687707 + 0.725989i \(0.258617\pi\)
−0.687707 + 0.725989i \(0.741383\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.45220e9i 0.546919i −0.961884 0.273460i \(-0.911832\pi\)
0.961884 0.273460i \(-0.0881680\pi\)
\(228\) 0 0
\(229\) 4.39121e9i 1.59677i −0.602148 0.798384i \(-0.705688\pi\)
0.602148 0.798384i \(-0.294312\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.51324e9 −0.852729 −0.426364 0.904551i \(-0.640206\pi\)
−0.426364 + 0.904551i \(0.640206\pi\)
\(234\) 0 0
\(235\) −6.70084e9 −2.19714
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.38734e9 0.425198 0.212599 0.977140i \(-0.431807\pi\)
0.212599 + 0.977140i \(0.431807\pi\)
\(240\) 0 0
\(241\) 2.00561e9i 0.594535i −0.954794 0.297267i \(-0.903925\pi\)
0.954794 0.297267i \(-0.0960753\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.81316e9 + 5.25356e9i 0.503237 + 1.45811i
\(246\) 0 0
\(247\) 5.63349e8 0.151353
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.22678e9i 1.82075i −0.413786 0.910374i \(-0.635794\pi\)
0.413786 0.910374i \(-0.364206\pi\)
\(252\) 0 0
\(253\) −1.56081e9 −0.380950
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.65025e8i 0.175365i −0.996148 0.0876825i \(-0.972054\pi\)
0.996148 0.0876825i \(-0.0279461\pi\)
\(258\) 0 0
\(259\) 5.89393e9 9.88479e8i 1.30980 0.219669i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.17529e9 1.29073 0.645363 0.763876i \(-0.276706\pi\)
0.645363 + 0.763876i \(0.276706\pi\)
\(264\) 0 0
\(265\) 8.46434e9i 1.71636i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.41507e9i 1.22516i −0.790409 0.612579i \(-0.790132\pi\)
0.790409 0.612579i \(-0.209868\pi\)
\(270\) 0 0
\(271\) 5.16209e9i 0.957080i −0.878066 0.478540i \(-0.841166\pi\)
0.878066 0.478540i \(-0.158834\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.38810e9 1.11697
\(276\) 0 0
\(277\) 6.33607e9 1.07622 0.538110 0.842875i \(-0.319138\pi\)
0.538110 + 0.842875i \(0.319138\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.11288e9 −0.338883 −0.169441 0.985540i \(-0.554196\pi\)
−0.169441 + 0.985540i \(0.554196\pi\)
\(282\) 0 0
\(283\) 5.14406e9i 0.801974i −0.916084 0.400987i \(-0.868667\pi\)
0.916084 0.400987i \(-0.131333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.05107e7 + 6.26716e7i 0.00154919 + 0.00923726i
\(288\) 0 0
\(289\) 4.85810e9 0.696426
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7.60278e9i 1.03158i 0.856716 + 0.515789i \(0.172501\pi\)
−0.856716 + 0.515789i \(0.827499\pi\)
\(294\) 0 0
\(295\) 3.60858e9 0.476484
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.80418e9i 0.475966i
\(300\) 0 0
\(301\) −9.66189e9 + 1.62041e9i −1.17705 + 0.197405i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.35742e10 1.56861
\(306\) 0 0
\(307\) 1.31307e10i 1.47820i 0.673593 + 0.739102i \(0.264750\pi\)
−0.673593 + 0.739102i \(0.735250\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.50081e10i 1.60429i 0.597128 + 0.802146i \(0.296309\pi\)
−0.597128 + 0.802146i \(0.703691\pi\)
\(312\) 0 0
\(313\) 8.16769e9i 0.850985i 0.904962 + 0.425492i \(0.139899\pi\)
−0.904962 + 0.425492i \(0.860101\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.60016e9 0.356520 0.178260 0.983983i \(-0.442953\pi\)
0.178260 + 0.983983i \(0.442953\pi\)
\(318\) 0 0
\(319\) 1.45199e10 1.40217
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.97120e8 0.0824214
\(324\) 0 0
\(325\) 1.55698e10i 1.39556i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.76028e9 + 1.64585e10i 0.235597 + 1.40478i
\(330\) 0 0
\(331\) −1.70539e10 −1.42073 −0.710367 0.703831i \(-0.751471\pi\)
−0.710367 + 0.703831i \(0.751471\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.34861e9i 0.583480i
\(336\) 0 0
\(337\) −2.14873e9 −0.166595 −0.0832976 0.996525i \(-0.526545\pi\)
−0.0832976 + 0.996525i \(0.526545\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.28889e10i 0.953228i
\(342\) 0 0
\(343\) 1.21568e10 6.61758e9i 0.878303 0.478104i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.21427e10 −1.52726 −0.763631 0.645653i \(-0.776585\pi\)
−0.763631 + 0.645653i \(0.776585\pi\)
\(348\) 0 0
\(349\) 5.06835e8i 0.0341637i −0.999854 0.0170818i \(-0.994562\pi\)
0.999854 0.0170818i \(-0.00543758\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.18664e10i 1.40825i 0.710077 + 0.704124i \(0.248660\pi\)
−0.710077 + 0.704124i \(0.751340\pi\)
\(354\) 0 0
\(355\) 1.52949e8i 0.00963015i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.65236e10 0.994780 0.497390 0.867527i \(-0.334292\pi\)
0.497390 + 0.867527i \(0.334292\pi\)
\(360\) 0 0
\(361\) 1.66035e10 0.977622
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.74651e10 2.11084
\(366\) 0 0
\(367\) 8.46251e9i 0.466482i −0.972419 0.233241i \(-0.925067\pi\)
0.972419 0.233241i \(-0.0749331\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.07900e10 3.48672e9i 1.09739 0.184044i
\(372\) 0 0
\(373\) 2.54227e10 1.31337 0.656684 0.754166i \(-0.271959\pi\)
0.656684 + 0.754166i \(0.271959\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.53894e10i 1.75189i
\(378\) 0 0
\(379\) 3.76359e9 0.182409 0.0912044 0.995832i \(-0.470928\pi\)
0.0912044 + 0.995832i \(0.470928\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.59784e10i 0.742571i 0.928519 + 0.371285i \(0.121083\pi\)
−0.928519 + 0.371285i \(0.878917\pi\)
\(384\) 0 0
\(385\) −4.53924e9 2.70658e10i −0.206605 1.23191i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.04578e10 0.893432 0.446716 0.894676i \(-0.352594\pi\)
0.446716 + 0.894676i \(0.352594\pi\)
\(390\) 0 0
\(391\) 6.05805e9i 0.259195i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.08956e10i 0.447572i
\(396\) 0 0
\(397\) 7.26355e9i 0.292406i 0.989255 + 0.146203i \(0.0467053\pi\)
−0.989255 + 0.146203i \(0.953295\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.21706e9 −0.0857432 −0.0428716 0.999081i \(-0.513651\pi\)
−0.0428716 + 0.999081i \(0.513651\pi\)
\(402\) 0 0
\(403\) −3.14141e10 −1.19098
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.95108e10 −1.07548
\(408\) 0 0
\(409\) 3.38513e10i 1.20971i 0.796335 + 0.604856i \(0.206769\pi\)
−0.796335 + 0.604856i \(0.793231\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.48649e9 8.86336e9i −0.0510929 0.304648i
\(414\) 0 0
\(415\) 5.18897e9 0.174940
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.14074e10i 1.01900i −0.860469 0.509502i \(-0.829830\pi\)
0.860469 0.509502i \(-0.170170\pi\)
\(420\) 0 0
\(421\) 1.95780e10 0.623217 0.311608 0.950211i \(-0.399132\pi\)
0.311608 + 0.950211i \(0.399132\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.47945e10i 0.759975i
\(426\) 0 0
\(427\) −5.59162e9 3.33408e10i −0.168200 1.00291i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.98097e10 0.574076 0.287038 0.957919i \(-0.407329\pi\)
0.287038 + 0.957919i \(0.407329\pi\)
\(432\) 0 0
\(433\) 1.98951e10i 0.565972i 0.959124 + 0.282986i \(0.0913250\pi\)
−0.959124 + 0.282986i \(0.908675\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.56641e9i 0.0703722i
\(438\) 0 0
\(439\) 6.74308e10i 1.81552i 0.419493 + 0.907759i \(0.362208\pi\)
−0.419493 + 0.907759i \(0.637792\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.14164e10 −1.33502 −0.667508 0.744603i \(-0.732639\pi\)
−0.667508 + 0.744603i \(0.732639\pi\)
\(444\) 0 0
\(445\) 1.04952e10 0.267641
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.77031e9 0.0681620 0.0340810 0.999419i \(-0.489150\pi\)
0.0340810 + 0.999419i \(0.489150\pi\)
\(450\) 0 0
\(451\) 3.13796e8i 0.00758475i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.59677e10 + 1.10635e10i −1.53917 + 0.258136i
\(456\) 0 0
\(457\) −3.73325e10 −0.855898 −0.427949 0.903803i \(-0.640764\pi\)
−0.427949 + 0.903803i \(0.640764\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.50363e10i 0.775736i −0.921715 0.387868i \(-0.873212\pi\)
0.921715 0.387868i \(-0.126788\pi\)
\(462\) 0 0
\(463\) −7.33892e10 −1.59701 −0.798506 0.601986i \(-0.794376\pi\)
−0.798506 + 0.601986i \(0.794376\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.81052e10i 1.01140i 0.862708 + 0.505702i \(0.168766\pi\)
−0.862708 + 0.505702i \(0.831234\pi\)
\(468\) 0 0
\(469\) −1.80496e10 + 3.02712e9i −0.373057 + 0.0625660i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.83769e10 0.966482
\(474\) 0 0
\(475\) 1.05039e10i 0.206336i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3.16459e10i 0.601139i 0.953760 + 0.300570i \(0.0971768\pi\)
−0.953760 + 0.300570i \(0.902823\pi\)
\(480\) 0 0
\(481\) 7.19270e10i 1.34373i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.35714e10 −0.968202
\(486\) 0 0
\(487\) −2.64463e10 −0.470163 −0.235082 0.971976i \(-0.575536\pi\)
−0.235082 + 0.971976i \(0.575536\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8.51063e9 −0.146432 −0.0732159 0.997316i \(-0.523326\pi\)
−0.0732159 + 0.997316i \(0.523326\pi\)
\(492\) 0 0
\(493\) 5.63567e10i 0.954021i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.75672e8 + 6.30044e7i −0.00615719 + 0.00103263i
\(498\) 0 0
\(499\) 6.43265e10 1.03750 0.518750 0.854926i \(-0.326398\pi\)
0.518750 + 0.854926i \(0.326398\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.04123e10i 0.162658i −0.996687 0.0813292i \(-0.974083\pi\)
0.996687 0.0813292i \(-0.0259165\pi\)
\(504\) 0 0
\(505\) 7.38174e10 1.13499
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.37157e10i 0.204337i −0.994767 0.102168i \(-0.967422\pi\)
0.994767 0.102168i \(-0.0325781\pi\)
\(510\) 0 0
\(511\) −1.54330e10 9.20214e10i −0.226343 1.34960i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.22648e11 −1.74354
\(516\) 0 0
\(517\) 8.24076e10i 1.15347i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9.00567e10i 1.22226i 0.791528 + 0.611132i \(0.209286\pi\)
−0.791528 + 0.611132i \(0.790714\pi\)
\(522\) 0 0
\(523\) 4.39983e10i 0.588070i 0.955795 + 0.294035i \(0.0949983\pi\)
−0.955795 + 0.294035i \(0.905002\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.00262e10 −0.648567
\(528\) 0 0
\(529\) −6.09805e10 −0.778697
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.64818e8 −0.00947653
\(534\) 0 0
\(535\) 1.30153e11i 1.58869i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6.46089e10 + 2.22985e10i −0.765486 + 0.264192i
\(540\) 0 0
\(541\) −9.81531e10 −1.14582 −0.572908 0.819619i \(-0.694185\pi\)
−0.572908 + 0.819619i \(0.694185\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.42503e10i 0.841612i
\(546\) 0 0
\(547\) −9.97101e8 −0.0111376 −0.00556878 0.999984i \(-0.501773\pi\)
−0.00556878 + 0.999984i \(0.501773\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.38748e10i 0.259020i
\(552\) 0 0
\(553\) 2.67617e10 4.48824e9i 0.286163 0.0479927i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.53863e10 −0.367632 −0.183816 0.982961i \(-0.558845\pi\)
−0.183816 + 0.982961i \(0.558845\pi\)
\(558\) 0 0
\(559\) 1.17910e11i 1.20754i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.78696e11i 1.77862i −0.457308 0.889308i \(-0.651186\pi\)
0.457308 0.889308i \(-0.348814\pi\)
\(564\) 0 0
\(565\) 8.87714e10i 0.871122i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.16763e10 0.874597 0.437298 0.899316i \(-0.355935\pi\)
0.437298 + 0.899316i \(0.355935\pi\)
\(570\) 0 0
\(571\) 1.66178e10 0.156325 0.0781626 0.996941i \(-0.475095\pi\)
0.0781626 + 0.996941i \(0.475095\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −7.09303e10 −0.648874
\(576\) 0 0
\(577\) 1.35959e11i 1.22661i 0.789848 + 0.613303i \(0.210159\pi\)
−0.789848 + 0.613303i \(0.789841\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.13750e9 1.27451e10i −0.0187586 0.111851i
\(582\) 0 0
\(583\) −1.04095e11 −0.901067
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.24512e10i 0.189098i 0.995520 + 0.0945491i \(0.0301409\pi\)
−0.995520 + 0.0945491i \(0.969859\pi\)
\(588\) 0 0
\(589\) 2.11929e10 0.176088
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.40438e11i 1.94439i 0.234170 + 0.972196i \(0.424763\pi\)
−0.234170 + 0.972196i \(0.575237\pi\)
\(594\) 0 0
\(595\) −1.05052e11 + 1.76184e10i −0.838178 + 0.140572i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.62590e10 0.281649 0.140825 0.990035i \(-0.455025\pi\)
0.140825 + 0.990035i \(0.455025\pi\)
\(600\) 0 0
\(601\) 1.88260e11i 1.44298i 0.692426 + 0.721488i \(0.256542\pi\)
−0.692426 + 0.721488i \(0.743458\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.11381e10i 0.530983i
\(606\) 0 0
\(607\) 2.96089e10i 0.218106i −0.994036 0.109053i \(-0.965218\pi\)
0.994036 0.109053i \(-0.0347819\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.00853e11 −1.44116
\(612\) 0 0
\(613\) 2.29090e11 1.62242 0.811211 0.584754i \(-0.198809\pi\)
0.811211 + 0.584754i \(0.198809\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2.19299e11 −1.51320 −0.756598 0.653880i \(-0.773140\pi\)
−0.756598 + 0.653880i \(0.773140\pi\)
\(618\) 0 0
\(619\) 6.01757e10i 0.409882i 0.978774 + 0.204941i \(0.0657002\pi\)
−0.978774 + 0.204941i \(0.934300\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.32332e9 2.57783e10i −0.0286989 0.171121i
\(624\) 0 0
\(625\) −7.27519e10 −0.476787
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.14542e11i 0.731748i
\(630\) 0 0
\(631\) −1.82301e11 −1.14993 −0.574965 0.818178i \(-0.694984\pi\)
−0.574965 + 0.818178i \(0.694984\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.59381e11i 2.21035i
\(636\) 0 0
\(637\) 5.43483e10 + 1.57472e11i 0.330087 + 0.956412i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.38968e11 1.41549 0.707746 0.706467i \(-0.249712\pi\)
0.707746 + 0.706467i \(0.249712\pi\)
\(642\) 0 0
\(643\) 2.67685e11i 1.56596i 0.622046 + 0.782980i \(0.286302\pi\)
−0.622046 + 0.782980i \(0.713698\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.95204e9i 0.0111396i 0.999984 + 0.00556981i \(0.00177294\pi\)
−0.999984 + 0.00556981i \(0.998227\pi\)
\(648\) 0 0
\(649\) 4.43787e10i 0.250147i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.52280e11 1.38749 0.693744 0.720221i \(-0.255960\pi\)
0.693744 + 0.720221i \(0.255960\pi\)
\(654\) 0 0
\(655\) 2.25446e11 1.22483
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.72053e11 1.44249 0.721244 0.692681i \(-0.243571\pi\)
0.721244 + 0.692681i \(0.243571\pi\)
\(660\) 0 0
\(661\) 2.43044e11i 1.27315i 0.771215 + 0.636574i \(0.219649\pi\)
−0.771215 + 0.636574i \(0.780351\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.45039e10 7.46380e9i 0.227568 0.0381657i
\(666\) 0 0
\(667\) −1.61221e11 −0.814552
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.66937e11i 0.823496i
\(672\) 0 0
\(673\) 4.27524e9 0.0208401 0.0104201 0.999946i \(-0.496683\pi\)
0.0104201 + 0.999946i \(0.496683\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.98728e11i 0.946029i −0.881055 0.473014i \(-0.843166\pi\)
0.881055 0.473014i \(-0.156834\pi\)
\(678\) 0 0
\(679\) 2.20677e10 + 1.31581e11i 0.103819 + 0.619035i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.67236e11 0.768504 0.384252 0.923228i \(-0.374459\pi\)
0.384252 + 0.923228i \(0.374459\pi\)
\(684\) 0 0
\(685\) 6.53880e11i 2.96986i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.53713e11i 1.12581i
\(690\) 0 0
\(691\) 2.41970e11i 1.06133i −0.847583 0.530663i \(-0.821943\pi\)
0.847583 0.530663i \(-0.178057\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.95099e11 −1.69343
\(696\) 0 0
\(697\) −1.21795e9 −0.00516059
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3.65999e11 1.51568 0.757840 0.652441i \(-0.226255\pi\)
0.757840 + 0.652441i \(0.226255\pi\)
\(702\) 0 0
\(703\) 4.85242e10i 0.198672i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.04077e10 1.81309e11i −0.121704 0.725676i
\(708\) 0 0
\(709\) 3.74001e11 1.48009 0.740045 0.672557i \(-0.234804\pi\)
0.740045 + 0.672557i \(0.234804\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.43111e11i 0.553753i
\(714\) 0 0
\(715\) 3.30300e11 1.26382
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.04752e10i 0.0391965i −0.999808 0.0195982i \(-0.993761\pi\)
0.999808 0.0195982i \(-0.00623871\pi\)
\(720\) 0 0
\(721\) 5.05224e10 + 3.01246e11i 0.186958 + 1.11476i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.59848e11 2.38832
\(726\) 0 0
\(727\) 4.11284e11i 1.47233i 0.676804 + 0.736163i \(0.263364\pi\)
−0.676804 + 0.736163i \(0.736636\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.87768e11i 0.657585i
\(732\) 0 0
\(733\) 4.88417e11i 1.69190i −0.533263 0.845950i \(-0.679034\pi\)
0.533263 0.845950i \(-0.320966\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.03740e10 0.306319
\(738\) 0 0
\(739\) −2.88067e11 −0.965865 −0.482932 0.875658i \(-0.660428\pi\)
−0.482932 + 0.875658i \(0.660428\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −2.14288e11 −0.703142 −0.351571 0.936161i \(-0.614352\pi\)
−0.351571 + 0.936161i \(0.614352\pi\)
\(744\) 0 0
\(745\) 4.48251e11i 1.45511i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.19680e11 + 5.36140e10i −1.01575 + 0.170353i
\(750\) 0 0
\(751\) 1.85479e11 0.583088 0.291544 0.956557i \(-0.405831\pi\)
0.291544 + 0.956557i \(0.405831\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.09972e11i 1.26173i
\(756\) 0 0
\(757\) 6.69254e10 0.203802 0.101901 0.994795i \(-0.467508\pi\)
0.101901 + 0.994795i \(0.467508\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.57239e10i 0.136334i 0.997674 + 0.0681670i \(0.0217151\pi\)
−0.997674 + 0.0681670i \(0.978285\pi\)
\(762\) 0 0
\(763\) −1.82373e11 + 3.05860e10i −0.538098 + 0.0902452i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.08165e11 0.312539
\(768\) 0 0
\(769\) 4.25562e11i 1.21691i −0.793589 0.608454i \(-0.791790\pi\)
0.793589 0.608454i \(-0.208210\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.61674e11i 0.452816i −0.974032 0.226408i \(-0.927302\pi\)
0.974032 0.226408i \(-0.0726983\pi\)
\(774\) 0 0
\(775\) 5.85728e11i 1.62364i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.15970e8 0.00140112
\(780\) 0 0
\(781\) 1.88098e9 0.00505569
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.80924e11 2.31985
\(786\) 0 0
\(787\) 3.11384e11i 0.811705i 0.913939 + 0.405852i \(0.133025\pi\)
−0.913939 + 0.405852i \(0.866975\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.18039e11 + 3.65677e10i −0.556966 + 0.0934096i
\(792\) 0 0
\(793\) 4.06876e11 1.02889
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 5.39201e11i 1.33634i 0.744008 + 0.668171i \(0.232922\pi\)
−0.744008 + 0.668171i \(0.767078\pi\)
\(798\) 0 0
\(799\) −3.19853e11 −0.784808
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.60750e11i 1.10816i
\(804\) 0 0
\(805\) 5.04014e10 + 3.00525e11i 0.120022 + 0.715644i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 3.72257e11 0.869059 0.434530 0.900658i \(-0.356915\pi\)
0.434530 + 0.900658i \(0.356915\pi\)
\(810\) 0 0
\(811\) 6.84823e11i 1.58305i 0.611137 + 0.791525i \(0.290713\pi\)
−0.611137 + 0.791525i \(0.709287\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.72371e11i 1.29732i
\(816\) 0 0
\(817\) 7.95454e10i 0.178537i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.06763e11 −0.895300 −0.447650 0.894209i \(-0.647739\pi\)
−0.447650 + 0.894209i \(0.647739\pi\)
\(822\) 0 0
\(823\) 5.61961e11 1.22492 0.612459 0.790503i \(-0.290181\pi\)
0.612459 + 0.790503i \(0.290181\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.56518e11 0.334612 0.167306 0.985905i \(-0.446493\pi\)
0.167306 + 0.985905i \(0.446493\pi\)
\(828\) 0 0
\(829\) 6.83001e11i 1.44612i 0.690787 + 0.723058i \(0.257264\pi\)
−0.690787 + 0.723058i \(0.742736\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 8.65483e10 + 2.50770e11i 0.179754 + 0.520829i
\(834\) 0 0
\(835\) −6.72032e11 −1.38243
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.02058e11i 1.21504i 0.794304 + 0.607520i \(0.207836\pi\)
−0.794304 + 0.607520i \(0.792164\pi\)
\(840\) 0 0
\(841\) 9.99557e11 1.99813
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.86237e10i 0.0365291i
\(846\) 0 0
\(847\) −1.74729e11 + 2.93040e10i −0.339493 + 0.0569368i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 3.27673e11 0.624773
\(852\) 0 0
\(853\) 2.62751e11i 0.496305i −0.968721 0.248153i \(-0.920177\pi\)
0.968721 0.248153i \(-0.0798235\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.71804e10i 0.0874658i 0.999043 + 0.0437329i \(0.0139251\pi\)
−0.999043 + 0.0437329i \(0.986075\pi\)
\(858\) 0 0
\(859\) 5.10713e11i 0.938003i 0.883197 + 0.469001i \(0.155386\pi\)
−0.883197 + 0.469001i \(0.844614\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.69496e10 −0.0666142 −0.0333071 0.999445i \(-0.510604\pi\)
−0.0333071 + 0.999445i \(0.510604\pi\)
\(864\) 0 0
\(865\) 4.49850e11 0.803533
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.33995e11 −0.234969
\(870\) 0 0
\(871\) 2.20269e11i 0.382720i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −5.67297e10 3.38258e11i −0.0967783 0.577053i
\(876\) 0 0
\(877\) −9.68347e11 −1.63694 −0.818470 0.574549i \(-0.805177\pi\)
−0.818470 + 0.574549i \(0.805177\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 9.95652e11i 1.65274i −0.563129 0.826369i \(-0.690403\pi\)
0.563129 0.826369i \(-0.309597\pi\)
\(882\) 0 0
\(883\) 5.84931e10 0.0962192 0.0481096 0.998842i \(-0.484680\pi\)
0.0481096 + 0.998842i \(0.484680\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.91546e11i 0.794090i 0.917799 + 0.397045i \(0.129964\pi\)
−0.917799 + 0.397045i \(0.870036\pi\)
\(888\) 0 0
\(889\) −8.82708e11 + 1.48040e11i −1.41322 + 0.237013i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.35502e11 0.213078
\(894\) 0 0
\(895\) 8.21612e11i 1.28049i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.33133e12i 2.03820i
\(900\) 0 0
\(901\) 4.04031e11i 0.613077i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.14455e11 −1.06508
\(906\) 0 0
\(907\) 3.70620e11 0.547645 0.273823 0.961780i \(-0.411712\pi\)
0.273823 + 0.961780i \(0.411712\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −7.13289e11 −1.03560 −0.517800 0.855502i \(-0.673249\pi\)
−0.517800 + 0.855502i \(0.673249\pi\)
\(912\) 0 0
\(913\) 6.38145e10i 0.0918410i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −9.28681e10 5.53737e11i −0.131338 0.783117i
\(918\) 0 0
\(919\) −3.56109e11 −0.499253 −0.249626 0.968342i \(-0.580308\pi\)
−0.249626 + 0.968342i \(0.580308\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.58454e9i 0.00631668i
\(924\) 0 0
\(925\) −1.34110e12 −1.83187
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.23321e12i 1.65567i −0.560971 0.827836i \(-0.689572\pi\)
0.560971 0.827836i \(-0.310428\pi\)
\(930\) 0 0
\(931\) −3.66650e10 1.06235e11i −0.0488038 0.141407i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.25993e11 0.688231
\(936\) 0 0
\(937\) 1.10549e12i 1.43415i −0.696994 0.717077i \(-0.745479\pi\)
0.696994 0.717077i \(-0.254521\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 7.52243e11i 0.959400i 0.877433 + 0.479700i \(0.159254\pi\)
−0.877433 + 0.479700i \(0.840746\pi\)
\(942\) 0 0
\(943\) 3.48423e9i 0.00440616i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −9.01671e11 −1.12111 −0.560555 0.828117i \(-0.689412\pi\)
−0.560555 + 0.828117i \(0.689412\pi\)
\(948\) 0 0
\(949\) 1.12299e12 1.38456
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5.66082e11 −0.686290 −0.343145 0.939282i \(-0.611492\pi\)
−0.343145 + 0.939282i \(0.611492\pi\)
\(954\) 0 0
\(955\) 3.35235e11i 0.403029i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.60605e12 + 2.69353e11i −1.89883 + 0.318455i
\(960\) 0 0
\(961\) −3.28893e11 −0.385622
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.79483e11i 0.552922i
\(966\) 0 0
\(967\) 8.41824e11 0.962754 0.481377 0.876514i \(-0.340137\pi\)
0.481377 + 0.876514i \(0.340137\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.22117e11i 0.474849i −0.971406 0.237425i \(-0.923697\pi\)
0.971406 0.237425i \(-0.0763033\pi\)
\(972\) 0 0
\(973\) 1.62754e11 + 9.70438e11i 0.181585 + 1.08272i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.43992e11 0.158037 0.0790187 0.996873i \(-0.474821\pi\)
0.0790187 + 0.996873i \(0.474821\pi\)
\(978\) 0 0
\(979\) 1.29072e11i 0.140508i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.68786e12i 1.80769i 0.427863 + 0.903844i \(0.359267\pi\)
−0.427863 + 0.903844i \(0.640733\pi\)
\(984\) 0 0
\(985\) 2.88712e11i 0.306704i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −5.37153e11 −0.561452
\(990\) 0 0
\(991\) −6.08937e11 −0.631361 −0.315681 0.948866i \(-0.602233\pi\)
−0.315681 + 0.948866i \(0.602233\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −6.65399e10 −0.0678875
\(996\) 0 0
\(997\) 6.40936e11i 0.648686i 0.945940 + 0.324343i \(0.105143\pi\)
−0.945940 + 0.324343i \(0.894857\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.9.d.b.181.6 6
3.2 odd 2 28.9.b.a.13.1 6
7.6 odd 2 inner 252.9.d.b.181.1 6
12.11 even 2 112.9.c.d.97.6 6
21.2 odd 6 196.9.h.b.129.6 12
21.5 even 6 196.9.h.b.129.1 12
21.11 odd 6 196.9.h.b.117.1 12
21.17 even 6 196.9.h.b.117.6 12
21.20 even 2 28.9.b.a.13.6 yes 6
84.83 odd 2 112.9.c.d.97.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.9.b.a.13.1 6 3.2 odd 2
28.9.b.a.13.6 yes 6 21.20 even 2
112.9.c.d.97.1 6 84.83 odd 2
112.9.c.d.97.6 6 12.11 even 2
196.9.h.b.117.1 12 21.11 odd 6
196.9.h.b.117.6 12 21.17 even 6
196.9.h.b.129.1 12 21.5 even 6
196.9.h.b.129.6 12 21.2 odd 6
252.9.d.b.181.1 6 7.6 odd 2 inner
252.9.d.b.181.6 6 1.1 even 1 trivial