Properties

Label 196.9.h.b.117.6
Level $196$
Weight $9$
Character 196.117
Analytic conductor $79.846$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [196,9,Mod(117,196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("196.117"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(196, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 196.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(79.8462075720\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 720x^{10} + 409912x^{8} + 71803008x^{6} + 9498639424x^{4} + 342190245888x^{2} + 9948826238976 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{26}\cdot 3^{7}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 117.6
Root \(11.4531 - 19.8373i\) of defining polynomial
Character \(\chi\) \(=\) 196.117
Dual form 196.9.h.b.129.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(127.153 - 73.4116i) q^{3} +(-834.906 - 482.033i) q^{5} +(7498.03 - 12987.0i) q^{9} +(-5928.09 - 10267.8i) q^{11} -28897.2i q^{13} -141547. q^{15} +(39852.8 - 23009.0i) q^{17} +(-16883.1 - 9747.47i) q^{19} +(65822.6 - 114008. i) q^{23} +(269399. + 466614. i) q^{25} -1.23846e6i q^{27} +1.22466e6 q^{29} +(-941455. + 543550. i) q^{31} +(-1.50755e6 - 870382. i) q^{33} +(-1.24453e6 + 2.15559e6i) q^{37} +(-2.12139e6 - 3.67436e6i) q^{39} +26466.8i q^{41} -4.08031e6 q^{43} +(-1.25203e7 + 7.22860e6i) q^{45} +(-6.01939e6 - 3.47530e6i) q^{47} +(3.37826e6 - 5.85132e6i) q^{51} +(4.38991e6 + 7.60356e6i) q^{53} +1.14302e7i q^{55} -2.86231e6 q^{57} +(-3.24161e6 + 1.87154e6i) q^{59} +(-1.21938e7 - 7.04007e6i) q^{61} +(-1.39294e7 + 2.41265e7i) q^{65} +(3.81126e6 + 6.60129e6i) q^{67} -1.93286e7i q^{69} +158650. q^{71} +(3.36551e7 - 1.94308e7i) q^{73} +(6.85097e7 + 3.95541e7i) q^{75} +(-5.65086e6 + 9.78758e6i) q^{79} +(-4.17231e7 - 7.22665e7i) q^{81} -5.38238e6i q^{83} -4.43645e7 q^{85} +(1.55719e8 - 8.99046e7i) q^{87} +(9.42793e6 + 5.44322e6i) q^{89} +(-7.98057e7 + 1.38228e8i) q^{93} +(9.39721e6 + 1.62764e7i) q^{95} -5.55681e7i q^{97} -1.77796e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 18234 q^{9} - 24492 q^{11} - 306816 q^{15} + 11604 q^{23} + 678714 q^{25} + 2528664 q^{29} - 3184332 q^{37} - 5634240 q^{39} - 15566760 q^{43} - 6877824 q^{51} + 8340660 q^{53} - 35901696 q^{57}+ \cdots - 1191795624 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 127.153 73.4116i 1.56979 0.906316i 0.573593 0.819140i \(-0.305549\pi\)
0.996193 0.0871760i \(-0.0277842\pi\)
\(4\) 0 0
\(5\) −834.906 482.033i −1.33585 0.771253i −0.349660 0.936876i \(-0.613703\pi\)
−0.986189 + 0.165623i \(0.947036\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 7498.03 12987.0i 1.14282 1.97942i
\(10\) 0 0
\(11\) −5928.09 10267.8i −0.404897 0.701302i 0.589413 0.807832i \(-0.299359\pi\)
−0.994309 + 0.106530i \(0.966026\pi\)
\(12\) 0 0
\(13\) 28897.2i 1.01177i −0.862600 0.505886i \(-0.831166\pi\)
0.862600 0.505886i \(-0.168834\pi\)
\(14\) 0 0
\(15\) −141547. −2.79600
\(16\) 0 0
\(17\) 39852.8 23009.0i 0.477159 0.275488i −0.242073 0.970258i \(-0.577827\pi\)
0.719232 + 0.694770i \(0.244494\pi\)
\(18\) 0 0
\(19\) −16883.1 9747.47i −0.129550 0.0747959i 0.433824 0.900997i \(-0.357164\pi\)
−0.563375 + 0.826202i \(0.690497\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 65822.6 114008.i 0.235214 0.407403i −0.724121 0.689673i \(-0.757754\pi\)
0.959335 + 0.282270i \(0.0910875\pi\)
\(24\) 0 0
\(25\) 269399. + 466614.i 0.689663 + 1.19453i
\(26\) 0 0
\(27\) 1.23846e6i 2.33039i
\(28\) 0 0
\(29\) 1.22466e6 1.73151 0.865755 0.500468i \(-0.166839\pi\)
0.865755 + 0.500468i \(0.166839\pi\)
\(30\) 0 0
\(31\) −941455. + 543550.i −1.01942 + 0.588562i −0.913936 0.405859i \(-0.866972\pi\)
−0.105484 + 0.994421i \(0.533639\pi\)
\(32\) 0 0
\(33\) −1.50755e6 870382.i −1.27120 0.733929i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.24453e6 + 2.15559e6i −0.664047 + 1.15016i 0.315495 + 0.948927i \(0.397829\pi\)
−0.979543 + 0.201237i \(0.935504\pi\)
\(38\) 0 0
\(39\) −2.12139e6 3.67436e6i −0.916985 1.58826i
\(40\) 0 0
\(41\) 26466.8i 0.00936627i 0.999989 + 0.00468314i \(0.00149069\pi\)
−0.999989 + 0.00468314i \(0.998509\pi\)
\(42\) 0 0
\(43\) −4.08031e6 −1.19349 −0.596746 0.802430i \(-0.703540\pi\)
−0.596746 + 0.802430i \(0.703540\pi\)
\(44\) 0 0
\(45\) −1.25203e7 + 7.22860e6i −3.05327 + 1.76280i
\(46\) 0 0
\(47\) −6.01939e6 3.47530e6i −1.23356 0.712198i −0.265792 0.964030i \(-0.585634\pi\)
−0.967771 + 0.251832i \(0.918967\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 3.37826e6 5.85132e6i 0.499358 0.864914i
\(52\) 0 0
\(53\) 4.38991e6 + 7.60356e6i 0.556356 + 0.963636i 0.997797 + 0.0663461i \(0.0211341\pi\)
−0.441441 + 0.897290i \(0.645533\pi\)
\(54\) 0 0
\(55\) 1.14302e7i 1.24911i
\(56\) 0 0
\(57\) −2.86231e6 −0.271155
\(58\) 0 0
\(59\) −3.24161e6 + 1.87154e6i −0.267517 + 0.154451i −0.627759 0.778408i \(-0.716028\pi\)
0.360241 + 0.932859i \(0.382694\pi\)
\(60\) 0 0
\(61\) −1.21938e7 7.04007e6i −0.880680 0.508461i −0.00979722 0.999952i \(-0.503119\pi\)
−0.870882 + 0.491491i \(0.836452\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.39294e7 + 2.41265e7i −0.780332 + 1.35157i
\(66\) 0 0
\(67\) 3.81126e6 + 6.60129e6i 0.189134 + 0.327589i 0.944962 0.327181i \(-0.106099\pi\)
−0.755828 + 0.654770i \(0.772765\pi\)
\(68\) 0 0
\(69\) 1.93286e7i 0.852714i
\(70\) 0 0
\(71\) 158650. 0.00624319 0.00312159 0.999995i \(-0.499006\pi\)
0.00312159 + 0.999995i \(0.499006\pi\)
\(72\) 0 0
\(73\) 3.36551e7 1.94308e7i 1.18511 0.684225i 0.227920 0.973680i \(-0.426807\pi\)
0.957192 + 0.289455i \(0.0934741\pi\)
\(74\) 0 0
\(75\) 6.85097e7 + 3.95541e7i 2.16525 + 1.25011i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −5.65086e6 + 9.78758e6i −0.145080 + 0.251285i −0.929403 0.369067i \(-0.879677\pi\)
0.784323 + 0.620353i \(0.213010\pi\)
\(80\) 0 0
\(81\) −4.17231e7 7.22665e7i −0.969251 1.67879i
\(82\) 0 0
\(83\) 5.38238e6i 0.113413i −0.998391 0.0567064i \(-0.981940\pi\)
0.998391 0.0567064i \(-0.0180599\pi\)
\(84\) 0 0
\(85\) −4.43645e7 −0.849884
\(86\) 0 0
\(87\) 1.55719e8 8.99046e7i 2.71810 1.56930i
\(88\) 0 0
\(89\) 9.42793e6 + 5.44322e6i 0.150264 + 0.0867552i 0.573247 0.819383i \(-0.305684\pi\)
−0.422983 + 0.906138i \(0.639017\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −7.98057e7 + 1.38228e8i −1.06685 + 1.84783i
\(94\) 0 0
\(95\) 9.39721e6 + 1.62764e7i 0.115373 + 0.199832i
\(96\) 0 0
\(97\) 5.55681e7i 0.627681i −0.949476 0.313840i \(-0.898384\pi\)
0.949476 0.313840i \(-0.101616\pi\)
\(98\) 0 0
\(99\) −1.77796e8 −1.85089
\(100\) 0 0
\(101\) −6.63105e7 + 3.82844e7i −0.637231 + 0.367905i −0.783547 0.621332i \(-0.786592\pi\)
0.146316 + 0.989238i \(0.453258\pi\)
\(102\) 0 0
\(103\) 1.10175e8 + 6.36096e7i 0.978891 + 0.565163i 0.901935 0.431871i \(-0.142147\pi\)
0.0769560 + 0.997034i \(0.475480\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.75020e7 + 1.16917e8i −0.514969 + 0.891953i 0.484880 + 0.874581i \(0.338863\pi\)
−0.999849 + 0.0173723i \(0.994470\pi\)
\(108\) 0 0
\(109\) 3.85089e7 + 6.66994e7i 0.272807 + 0.472515i 0.969579 0.244777i \(-0.0787147\pi\)
−0.696773 + 0.717292i \(0.745381\pi\)
\(110\) 0 0
\(111\) 3.65452e8i 2.40735i
\(112\) 0 0
\(113\) 9.20801e7 0.564745 0.282372 0.959305i \(-0.408879\pi\)
0.282372 + 0.959305i \(0.408879\pi\)
\(114\) 0 0
\(115\) −1.09911e8 + 6.34573e7i −0.628421 + 0.362819i
\(116\) 0 0
\(117\) −3.75287e8 2.16672e8i −2.00272 1.15627i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.68948e7 6.39037e7i 0.172117 0.298116i
\(122\) 0 0
\(123\) 1.94297e6 + 3.36533e6i 0.00848881 + 0.0147030i
\(124\) 0 0
\(125\) 1.42850e8i 0.585112i
\(126\) 0 0
\(127\) −3.72776e8 −1.43296 −0.716479 0.697609i \(-0.754247\pi\)
−0.716479 + 0.697609i \(0.754247\pi\)
\(128\) 0 0
\(129\) −5.18822e8 + 2.99542e8i −1.87353 + 1.08168i
\(130\) 0 0
\(131\) 2.02519e8 + 1.16924e8i 0.687671 + 0.397027i 0.802739 0.596331i \(-0.203375\pi\)
−0.115068 + 0.993358i \(0.536709\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −5.96981e8 + 1.03400e9i −1.79732 + 3.11305i
\(136\) 0 0
\(137\) −3.39126e8 5.87384e8i −0.962673 1.66740i −0.715740 0.698366i \(-0.753911\pi\)
−0.246933 0.969033i \(-0.579423\pi\)
\(138\) 0 0
\(139\) 4.09826e8i 1.09784i −0.835874 0.548921i \(-0.815039\pi\)
0.835874 0.548921i \(-0.184961\pi\)
\(140\) 0 0
\(141\) −1.02051e9 −2.58191
\(142\) 0 0
\(143\) −2.96710e8 + 1.71305e8i −0.709557 + 0.409663i
\(144\) 0 0
\(145\) −1.02248e9 5.90329e8i −2.31304 1.33543i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.32479e8 + 4.02666e8i −0.471671 + 0.816958i −0.999475 0.0324084i \(-0.989682\pi\)
0.527804 + 0.849366i \(0.323016\pi\)
\(150\) 0 0
\(151\) −2.12626e8 3.68280e8i −0.408987 0.708386i 0.585790 0.810463i \(-0.300785\pi\)
−0.994777 + 0.102077i \(0.967451\pi\)
\(152\) 0 0
\(153\) 6.90090e8i 1.25933i
\(154\) 0 0
\(155\) 1.04804e9 1.81572
\(156\) 0 0
\(157\) 7.91338e8 4.56879e8i 1.30246 0.751974i 0.321633 0.946865i \(-0.395768\pi\)
0.980825 + 0.194890i \(0.0624351\pi\)
\(158\) 0 0
\(159\) 1.11638e9 + 6.44542e8i 1.74672 + 1.00847i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.96853e8 5.14164e8i 0.420524 0.728368i −0.575467 0.817825i \(-0.695180\pi\)
0.995991 + 0.0894567i \(0.0285131\pi\)
\(164\) 0 0
\(165\) 8.39106e8 + 1.45337e9i 1.13209 + 1.96084i
\(166\) 0 0
\(167\) 6.97081e8i 0.896225i 0.893977 + 0.448113i \(0.147904\pi\)
−0.893977 + 0.448113i \(0.852096\pi\)
\(168\) 0 0
\(169\) −1.93178e7 −0.0236816
\(170\) 0 0
\(171\) −2.53180e8 + 1.46174e8i −0.296105 + 0.170956i
\(172\) 0 0
\(173\) 4.04103e8 + 2.33309e8i 0.451136 + 0.260463i 0.708310 0.705902i \(-0.249458\pi\)
−0.257174 + 0.966365i \(0.582791\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2.74786e8 + 4.75943e8i −0.279963 + 0.484911i
\(178\) 0 0
\(179\) −4.26118e8 7.38058e8i −0.415066 0.718916i 0.580369 0.814354i \(-0.302908\pi\)
−0.995435 + 0.0954374i \(0.969575\pi\)
\(180\) 0 0
\(181\) 7.41085e8i 0.690484i −0.938514 0.345242i \(-0.887797\pi\)
0.938514 0.345242i \(-0.112203\pi\)
\(182\) 0 0
\(183\) −2.06729e9 −1.84330
\(184\) 0 0
\(185\) 2.07813e9 1.19981e9i 1.77413 1.02430i
\(186\) 0 0
\(187\) −4.72502e8 2.72799e8i −0.386400 0.223088i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.73865e8 + 3.01143e8i −0.130641 + 0.226277i −0.923924 0.382577i \(-0.875037\pi\)
0.793283 + 0.608853i \(0.208370\pi\)
\(192\) 0 0
\(193\) 2.48677e8 + 4.30722e8i 0.179228 + 0.310433i 0.941617 0.336687i \(-0.109307\pi\)
−0.762388 + 0.647120i \(0.775973\pi\)
\(194\) 0 0
\(195\) 4.09032e9i 2.82891i
\(196\) 0 0
\(197\) −2.99473e8 −0.198835 −0.0994175 0.995046i \(-0.531698\pi\)
−0.0994175 + 0.995046i \(0.531698\pi\)
\(198\) 0 0
\(199\) −5.97731e7 + 3.45100e7i −0.0381148 + 0.0220056i −0.518936 0.854813i \(-0.673672\pi\)
0.480822 + 0.876818i \(0.340338\pi\)
\(200\) 0 0
\(201\) 9.69223e8 + 5.59581e8i 0.593799 + 0.342830i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1.27579e7 2.20973e7i 0.00722377 0.0125119i
\(206\) 0 0
\(207\) −9.87080e8 1.70967e9i −0.537614 0.931175i
\(208\) 0 0
\(209\) 2.31136e8i 0.121138i
\(210\) 0 0
\(211\) 1.38118e9 0.696820 0.348410 0.937342i \(-0.386722\pi\)
0.348410 + 0.937342i \(0.386722\pi\)
\(212\) 0 0
\(213\) 2.01728e7 1.16467e7i 0.00980047 0.00565830i
\(214\) 0 0
\(215\) 3.40668e9 + 1.96685e9i 1.59433 + 0.920484i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2.85289e9 4.94135e9i 1.24025 2.14817i
\(220\) 0 0
\(221\) −6.64897e8 1.15163e9i −0.278731 0.482776i
\(222\) 0 0
\(223\) 3.59070e9i 1.45198i −0.687707 0.725989i \(-0.741383\pi\)
0.687707 0.725989i \(-0.258617\pi\)
\(224\) 0 0
\(225\) 8.07987e9 3.15264
\(226\) 0 0
\(227\) −1.25764e9 + 7.26100e8i −0.473646 + 0.273460i −0.717765 0.696286i \(-0.754835\pi\)
0.244119 + 0.969745i \(0.421501\pi\)
\(228\) 0 0
\(229\) −3.80290e9 2.19560e9i −1.38284 0.798384i −0.390347 0.920668i \(-0.627645\pi\)
−0.992495 + 0.122283i \(0.960978\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.25662e9 + 2.17653e9i −0.426364 + 0.738485i −0.996547 0.0830333i \(-0.973539\pi\)
0.570182 + 0.821518i \(0.306873\pi\)
\(234\) 0 0
\(235\) 3.35042e9 + 5.80310e9i 1.09857 + 1.90278i
\(236\) 0 0
\(237\) 1.65936e9i 0.525952i
\(238\) 0 0
\(239\) −1.38734e9 −0.425198 −0.212599 0.977140i \(-0.568193\pi\)
−0.212599 + 0.977140i \(0.568193\pi\)
\(240\) 0 0
\(241\) 1.73691e9 1.00280e9i 0.514882 0.297267i −0.219956 0.975510i \(-0.570591\pi\)
0.734838 + 0.678242i \(0.237258\pi\)
\(242\) 0 0
\(243\) −3.57345e9 2.06313e9i −1.02486 0.591701i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2.81675e8 + 4.87875e8i −0.0756763 + 0.131075i
\(248\) 0 0
\(249\) −3.95129e8 6.84384e8i −0.102788 0.178034i
\(250\) 0 0
\(251\) 7.22678e9i 1.82075i −0.413786 0.910374i \(-0.635794\pi\)
0.413786 0.910374i \(-0.364206\pi\)
\(252\) 0 0
\(253\) −1.56081e9 −0.380950
\(254\) 0 0
\(255\) −5.64106e9 + 3.25687e9i −1.33414 + 0.770264i
\(256\) 0 0
\(257\) 6.62531e8 + 3.82512e8i 0.151871 + 0.0876825i 0.574010 0.818849i \(-0.305387\pi\)
−0.422139 + 0.906531i \(0.638721\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 9.18258e9 1.59047e10i 1.97880 3.42739i
\(262\) 0 0
\(263\) 3.08764e9 + 5.34796e9i 0.645363 + 1.11780i 0.984217 + 0.176963i \(0.0566273\pi\)
−0.338854 + 0.940839i \(0.610039\pi\)
\(264\) 0 0
\(265\) 8.46434e9i 1.71636i
\(266\) 0 0
\(267\) 1.59838e9 0.314511
\(268\) 0 0
\(269\) −5.55561e9 + 3.20753e9i −1.06102 + 0.612579i −0.925714 0.378225i \(-0.876535\pi\)
−0.135304 + 0.990804i \(0.543201\pi\)
\(270\) 0 0
\(271\) −4.47050e9 2.58104e9i −0.828855 0.478540i 0.0246053 0.999697i \(-0.492167\pi\)
−0.853461 + 0.521157i \(0.825500\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.19405e9 5.53226e9i 0.558485 0.967324i
\(276\) 0 0
\(277\) −3.16804e9 5.48720e9i −0.538110 0.932034i −0.999006 0.0445796i \(-0.985805\pi\)
0.460896 0.887454i \(-0.347528\pi\)
\(278\) 0 0
\(279\) 1.63022e10i 2.69048i
\(280\) 0 0
\(281\) 2.11288e9 0.338883 0.169441 0.985540i \(-0.445804\pi\)
0.169441 + 0.985540i \(0.445804\pi\)
\(282\) 0 0
\(283\) 4.45489e9 2.57203e9i 0.694530 0.400987i −0.110777 0.993845i \(-0.535334\pi\)
0.805307 + 0.592858i \(0.202001\pi\)
\(284\) 0 0
\(285\) 2.38976e9 + 1.37973e9i 0.362222 + 0.209129i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −2.42905e9 + 4.20723e9i −0.348213 + 0.603122i
\(290\) 0 0
\(291\) −4.07935e9 7.06564e9i −0.568877 0.985325i
\(292\) 0 0
\(293\) 7.60278e9i 1.03158i 0.856716 + 0.515789i \(0.172501\pi\)
−0.856716 + 0.515789i \(0.827499\pi\)
\(294\) 0 0
\(295\) 3.60858e9 0.476484
\(296\) 0 0
\(297\) −1.27163e10 + 7.34173e9i −1.63431 + 0.943567i
\(298\) 0 0
\(299\) −3.29451e9 1.90209e9i −0.412199 0.237983i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −5.62104e9 + 9.73592e9i −0.666877 + 1.15507i
\(304\) 0 0
\(305\) 6.78709e9 + 1.17556e10i 0.784304 + 1.35845i
\(306\) 0 0
\(307\) 1.31307e10i 1.47820i −0.673593 0.739102i \(-0.735250\pi\)
0.673593 0.739102i \(-0.264750\pi\)
\(308\) 0 0
\(309\) 1.86787e10 2.04887
\(310\) 0 0
\(311\) 1.29974e10 7.50404e9i 1.38936 0.802146i 0.396115 0.918201i \(-0.370358\pi\)
0.993243 + 0.116055i \(0.0370248\pi\)
\(312\) 0 0
\(313\) 7.07342e9 + 4.08384e9i 0.736974 + 0.425492i 0.820968 0.570974i \(-0.193434\pi\)
−0.0839939 + 0.996466i \(0.526768\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.80008e9 3.11783e9i 0.178260 0.308756i −0.763025 0.646369i \(-0.776286\pi\)
0.941285 + 0.337614i \(0.109620\pi\)
\(318\) 0 0
\(319\) −7.25993e9 1.25746e10i −0.701083 1.21431i
\(320\) 0 0
\(321\) 1.98217e10i 1.86690i
\(322\) 0 0
\(323\) −8.97120e8 −0.0824214
\(324\) 0 0
\(325\) 1.34838e10 7.78489e9i 1.20859 0.697781i
\(326\) 0 0
\(327\) 9.79302e9 + 5.65400e9i 0.856496 + 0.494498i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 8.52697e9 1.47692e10i 0.710367 1.23039i −0.254352 0.967112i \(-0.581862\pi\)
0.964719 0.263281i \(-0.0848045\pi\)
\(332\) 0 0
\(333\) 1.86631e10 + 3.23254e10i 1.51777 + 2.62886i
\(334\) 0 0
\(335\) 7.34861e9i 0.583480i
\(336\) 0 0
\(337\) −2.14873e9 −0.166595 −0.0832976 0.996525i \(-0.526545\pi\)
−0.0832976 + 0.996525i \(0.526545\pi\)
\(338\) 0 0
\(339\) 1.17082e10 6.75975e9i 0.886528 0.511837i
\(340\) 0 0
\(341\) 1.11621e10 + 6.44443e9i 0.825520 + 0.476614i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −9.31701e9 + 1.61375e10i −0.657658 + 1.13910i
\(346\) 0 0
\(347\) −1.10714e10 1.91762e10i −0.763631 1.32265i −0.940967 0.338498i \(-0.890081\pi\)
0.177336 0.984150i \(-0.443252\pi\)
\(348\) 0 0
\(349\) 5.06835e8i 0.0341637i 0.999854 + 0.0170818i \(0.00543758\pi\)
−0.999854 + 0.0170818i \(0.994562\pi\)
\(350\) 0 0
\(351\) −3.57882e10 −2.35782
\(352\) 0 0
\(353\) 1.89369e10 1.09332e10i 1.21958 0.704124i 0.254751 0.967007i \(-0.418006\pi\)
0.964828 + 0.262882i \(0.0846731\pi\)
\(354\) 0 0
\(355\) −1.32458e8 7.64745e7i −0.00833996 0.00481508i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.26180e9 1.43099e10i 0.497390 0.861504i −0.502606 0.864516i \(-0.667625\pi\)
0.999995 + 0.00301141i \(0.000958563\pi\)
\(360\) 0 0
\(361\) −8.30176e9 1.43791e10i −0.488811 0.846646i
\(362\) 0 0
\(363\) 1.08340e10i 0.623970i
\(364\) 0 0
\(365\) −3.74651e10 −2.11084
\(366\) 0 0
\(367\) 7.32875e9 4.23125e9i 0.403985 0.233241i −0.284217 0.958760i \(-0.591734\pi\)
0.688202 + 0.725519i \(0.258400\pi\)
\(368\) 0 0
\(369\) 3.43724e8 + 1.98449e8i 0.0185398 + 0.0107040i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.27113e10 + 2.20167e10i −0.656684 + 1.13741i 0.324785 + 0.945788i \(0.394708\pi\)
−0.981469 + 0.191622i \(0.938625\pi\)
\(374\) 0 0
\(375\) −1.04868e10 1.81637e10i −0.530296 0.918500i
\(376\) 0 0
\(377\) 3.53894e10i 1.75189i
\(378\) 0 0
\(379\) 3.76359e9 0.182409 0.0912044 0.995832i \(-0.470928\pi\)
0.0912044 + 0.995832i \(0.470928\pi\)
\(380\) 0 0
\(381\) −4.73995e10 + 2.73661e10i −2.24944 + 1.29871i
\(382\) 0 0
\(383\) −1.38377e10 7.98919e9i −0.643085 0.371285i 0.142717 0.989764i \(-0.454416\pi\)
−0.785802 + 0.618478i \(0.787749\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.05943e10 + 5.29909e10i −1.36394 + 2.36242i
\(388\) 0 0
\(389\) 1.02289e10 + 1.77170e10i 0.446716 + 0.773734i 0.998170 0.0604707i \(-0.0192602\pi\)
−0.551454 + 0.834205i \(0.685927\pi\)
\(390\) 0 0
\(391\) 6.05805e9i 0.259195i
\(392\) 0 0
\(393\) 3.43344e10 1.43933
\(394\) 0 0
\(395\) 9.43588e9 5.44781e9i 0.387609 0.223786i
\(396\) 0 0
\(397\) 6.29042e9 + 3.63177e9i 0.253231 + 0.146203i 0.621243 0.783618i \(-0.286628\pi\)
−0.368012 + 0.929821i \(0.619961\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.10853e9 + 1.92003e9i −0.0428716 + 0.0742558i −0.886665 0.462412i \(-0.846984\pi\)
0.843793 + 0.536668i \(0.180317\pi\)
\(402\) 0 0
\(403\) 1.57071e10 + 2.72054e10i 0.595490 + 1.03142i
\(404\) 0 0
\(405\) 8.04476e10i 2.99015i
\(406\) 0 0
\(407\) 2.95108e10 1.07548
\(408\) 0 0
\(409\) −2.93161e10 + 1.69256e10i −1.04764 + 0.604856i −0.921988 0.387218i \(-0.873436\pi\)
−0.125653 + 0.992074i \(0.540103\pi\)
\(410\) 0 0
\(411\) −8.62416e10 4.97916e10i −3.02238 1.74497i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.59449e9 + 4.49378e9i −0.0874700 + 0.151502i
\(416\) 0 0
\(417\) −3.00860e10 5.21104e10i −0.994993 1.72338i
\(418\) 0 0
\(419\) 3.14074e10i 1.01900i −0.860469 0.509502i \(-0.829830\pi\)
0.860469 0.509502i \(-0.170170\pi\)
\(420\) 0 0
\(421\) 1.95780e10 0.623217 0.311608 0.950211i \(-0.399132\pi\)
0.311608 + 0.950211i \(0.399132\pi\)
\(422\) 0 0
\(423\) −9.02672e10 + 5.21158e10i −2.81948 + 1.62783i
\(424\) 0 0
\(425\) 2.14727e10 + 1.23972e10i 0.658158 + 0.379988i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −2.51516e10 + 4.35639e10i −0.742569 + 1.28617i
\(430\) 0 0
\(431\) 9.90486e9 + 1.71557e10i 0.287038 + 0.497164i 0.973101 0.230377i \(-0.0739961\pi\)
−0.686063 + 0.727542i \(0.740663\pi\)
\(432\) 0 0
\(433\) 1.98951e10i 0.565972i −0.959124 0.282986i \(-0.908675\pi\)
0.959124 0.282986i \(-0.0913250\pi\)
\(434\) 0 0
\(435\) −1.73348e11 −4.84130
\(436\) 0 0
\(437\) −2.22258e9 + 1.28321e9i −0.0609441 + 0.0351861i
\(438\) 0 0
\(439\) 5.83968e10 + 3.37154e10i 1.57228 + 0.907759i 0.995888 + 0.0905878i \(0.0288746\pi\)
0.576396 + 0.817171i \(0.304459\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.57082e10 + 4.45279e10i −0.667508 + 1.15616i 0.311091 + 0.950380i \(0.399306\pi\)
−0.978599 + 0.205778i \(0.934028\pi\)
\(444\) 0 0
\(445\) −5.24762e9 9.08915e9i −0.133821 0.231784i
\(446\) 0 0
\(447\) 6.82667e10i 1.70993i
\(448\) 0 0
\(449\) −2.77031e9 −0.0681620 −0.0340810 0.999419i \(-0.510850\pi\)
−0.0340810 + 0.999419i \(0.510850\pi\)
\(450\) 0 0
\(451\) 2.71755e8 1.56898e8i 0.00656858 0.00379237i
\(452\) 0 0
\(453\) −5.40720e10 3.12185e10i −1.28404 0.741343i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.86662e10 3.23309e10i 0.427949 0.741229i −0.568742 0.822516i \(-0.692570\pi\)
0.996691 + 0.0812869i \(0.0259030\pi\)
\(458\) 0 0
\(459\) −2.84959e10 4.93563e10i −0.641994 1.11197i
\(460\) 0 0
\(461\) 3.50363e10i 0.775736i −0.921715 0.387868i \(-0.873212\pi\)
0.921715 0.387868i \(-0.126788\pi\)
\(462\) 0 0
\(463\) −7.33892e10 −1.59701 −0.798506 0.601986i \(-0.794376\pi\)
−0.798506 + 0.601986i \(0.794376\pi\)
\(464\) 0 0
\(465\) 1.33261e11 7.69380e10i 2.85029 1.64562i
\(466\) 0 0
\(467\) −4.16603e10 2.40526e10i −0.875901 0.505702i −0.00659622 0.999978i \(-0.502100\pi\)
−0.869305 + 0.494277i \(0.835433\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 6.70805e10 1.16187e11i 1.36305 2.36088i
\(472\) 0 0
\(473\) 2.41885e10 + 4.18957e10i 0.483241 + 0.836998i
\(474\) 0 0
\(475\) 1.05039e10i 0.206336i
\(476\) 0 0
\(477\) 1.31663e11 2.54326
\(478\) 0 0
\(479\) 2.74061e10 1.58229e10i 0.520602 0.300570i −0.216579 0.976265i \(-0.569490\pi\)
0.737181 + 0.675696i \(0.236157\pi\)
\(480\) 0 0
\(481\) 6.22906e10 + 3.59635e10i 1.16370 + 0.671864i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.67857e10 + 4.63942e10i −0.484101 + 0.838487i
\(486\) 0 0
\(487\) 1.32231e10 + 2.29032e10i 0.235082 + 0.407173i 0.959296 0.282401i \(-0.0911309\pi\)
−0.724215 + 0.689575i \(0.757798\pi\)
\(488\) 0 0
\(489\) 8.71697e10i 1.52451i
\(490\) 0 0
\(491\) 8.51063e9 0.146432 0.0732159 0.997316i \(-0.476674\pi\)
0.0732159 + 0.997316i \(0.476674\pi\)
\(492\) 0 0
\(493\) 4.88063e10 2.81783e10i 0.826206 0.477010i
\(494\) 0 0
\(495\) 1.48443e11 + 8.57037e10i 2.47252 + 1.42751i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −3.21633e10 + 5.57084e10i −0.518750 + 0.898501i 0.481013 + 0.876714i \(0.340269\pi\)
−0.999763 + 0.0217874i \(0.993064\pi\)
\(500\) 0 0
\(501\) 5.11738e10 + 8.86357e10i 0.812264 + 1.40688i
\(502\) 0 0
\(503\) 1.04123e10i 0.162658i −0.996687 0.0813292i \(-0.974083\pi\)
0.996687 0.0813292i \(-0.0259165\pi\)
\(504\) 0 0
\(505\) 7.38174e10 1.13499
\(506\) 0 0
\(507\) −2.45631e9 + 1.41815e9i −0.0371751 + 0.0214631i
\(508\) 0 0
\(509\) 1.18781e10 + 6.85785e9i 0.176961 + 0.102168i 0.585864 0.810409i \(-0.300755\pi\)
−0.408903 + 0.912578i \(0.634089\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −1.20719e10 + 2.09091e10i −0.174303 + 0.301902i
\(514\) 0 0
\(515\) −6.13239e10 1.06216e11i −0.871768 1.50995i
\(516\) 0 0
\(517\) 8.24076e10i 1.15347i
\(518\) 0 0
\(519\) 6.85103e10 0.944249
\(520\) 0 0
\(521\) 7.79914e10 4.50284e10i 1.05851 0.611132i 0.133492 0.991050i \(-0.457381\pi\)
0.925020 + 0.379918i \(0.124048\pi\)
\(522\) 0 0
\(523\) 3.81036e10 + 2.19992e10i 0.509284 + 0.294035i 0.732539 0.680725i \(-0.238335\pi\)
−0.223255 + 0.974760i \(0.571668\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.50131e10 + 4.33240e10i −0.324284 + 0.561676i
\(528\) 0 0
\(529\) 3.04903e10 + 5.28107e10i 0.389349 + 0.674372i
\(530\) 0 0
\(531\) 5.61315e10i 0.706039i
\(532\) 0 0
\(533\) 7.64818e8 0.00947653
\(534\) 0 0
\(535\) 1.12716e11 6.50764e10i 1.37584 0.794344i
\(536\) 0 0
\(537\) −1.08364e11 6.25640e10i −1.30313 0.752363i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.90766e10 8.50031e10i 0.572908 0.992306i −0.423357 0.905963i \(-0.639148\pi\)
0.996265 0.0863435i \(-0.0275183\pi\)
\(542\) 0 0
\(543\) −5.44042e10 9.42309e10i −0.625797 1.08391i
\(544\) 0 0
\(545\) 7.42503e10i 0.841612i
\(546\) 0 0
\(547\) −9.97101e8 −0.0111376 −0.00556878 0.999984i \(-0.501773\pi\)
−0.00556878 + 0.999984i \(0.501773\pi\)
\(548\) 0 0
\(549\) −1.82858e11 + 1.05573e11i −2.01291 + 1.16216i
\(550\) 0 0
\(551\) −2.06762e10 1.19374e10i −0.224318 0.129510i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 1.76160e11 3.05118e11i 1.85667 3.21585i
\(556\) 0 0
\(557\) −1.76931e10 3.06454e10i −0.183816 0.318379i 0.759361 0.650670i \(-0.225512\pi\)
−0.943177 + 0.332291i \(0.892178\pi\)
\(558\) 0 0
\(559\) 1.17910e11i 1.20754i
\(560\) 0 0
\(561\) −8.01066e10 −0.808755
\(562\) 0 0
\(563\) −1.54756e11 + 8.93482e10i −1.54033 + 0.889308i −0.541509 + 0.840695i \(0.682147\pi\)
−0.998818 + 0.0486136i \(0.984520\pi\)
\(564\) 0 0
\(565\) −7.68783e10 4.43857e10i −0.754414 0.435561i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.58381e10 7.93940e10i 0.437298 0.757423i −0.560182 0.828370i \(-0.689269\pi\)
0.997480 + 0.0709466i \(0.0226020\pi\)
\(570\) 0 0
\(571\) −8.30890e9 1.43914e10i −0.0781626 0.135382i 0.824295 0.566161i \(-0.191572\pi\)
−0.902457 + 0.430779i \(0.858239\pi\)
\(572\) 0 0
\(573\) 5.10549e10i 0.473608i
\(574\) 0 0
\(575\) 7.09303e10 0.648874
\(576\) 0 0
\(577\) −1.17744e11 + 6.79795e10i −1.06227 + 0.613303i −0.926060 0.377377i \(-0.876826\pi\)
−0.136212 + 0.990680i \(0.543493\pi\)
\(578\) 0 0
\(579\) 6.32400e10 + 3.65116e10i 0.562701 + 0.324875i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 5.20477e10 9.01492e10i 0.450533 0.780347i
\(584\) 0 0
\(585\) 2.08886e11 + 3.61802e11i 1.78356 + 3.08921i
\(586\) 0 0
\(587\) 2.24512e10i 0.189098i 0.995520 + 0.0945491i \(0.0301409\pi\)
−0.995520 + 0.0945491i \(0.969859\pi\)
\(588\) 0 0
\(589\) 2.11929e10 0.176088
\(590\) 0 0
\(591\) −3.80788e10 + 2.19848e10i −0.312128 + 0.180207i
\(592\) 0 0
\(593\) −2.08225e11 1.20219e11i −1.68389 0.972196i −0.959031 0.283301i \(-0.908571\pi\)
−0.724861 0.688895i \(-0.758096\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −5.06687e9 + 8.77608e9i −0.0398880 + 0.0690881i
\(598\) 0 0
\(599\) 1.81295e10 + 3.14012e10i 0.140825 + 0.243915i 0.927807 0.373060i \(-0.121691\pi\)
−0.786983 + 0.616975i \(0.788358\pi\)
\(600\) 0 0
\(601\) 1.88260e11i 1.44298i −0.692426 0.721488i \(-0.743458\pi\)
0.692426 0.721488i \(-0.256542\pi\)
\(602\) 0 0
\(603\) 1.14308e11 0.864582
\(604\) 0 0
\(605\) −6.16074e10 + 3.55691e10i −0.459845 + 0.265492i
\(606\) 0 0
\(607\) −2.56421e10 1.48045e10i −0.188886 0.109053i 0.402575 0.915387i \(-0.368115\pi\)
−0.591461 + 0.806334i \(0.701449\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.00426e11 + 1.73944e11i −0.720582 + 1.24808i
\(612\) 0 0
\(613\) −1.14545e11 1.98398e11i −0.811211 1.40506i −0.912017 0.410152i \(-0.865476\pi\)
0.100806 0.994906i \(-0.467858\pi\)
\(614\) 0 0
\(615\) 3.74631e9i 0.0261881i
\(616\) 0 0
\(617\) 2.19299e11 1.51320 0.756598 0.653880i \(-0.226860\pi\)
0.756598 + 0.653880i \(0.226860\pi\)
\(618\) 0 0
\(619\) −5.21137e10 + 3.00878e10i −0.354968 + 0.204941i −0.666871 0.745173i \(-0.732367\pi\)
0.311903 + 0.950114i \(0.399034\pi\)
\(620\) 0 0
\(621\) −1.41195e11 8.15189e10i −0.949407 0.548140i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 3.63760e10 6.30050e10i 0.238393 0.412910i
\(626\) 0 0
\(627\) 1.69681e10 + 2.93895e10i 0.109790 + 0.190161i
\(628\) 0 0
\(629\) 1.14542e11i 0.731748i
\(630\) 0 0
\(631\) −1.82301e11 −1.14993 −0.574965 0.818178i \(-0.694984\pi\)
−0.574965 + 0.818178i \(0.694984\pi\)
\(632\) 0 0
\(633\) 1.75621e11 1.01395e11i 1.09386 0.631540i
\(634\) 0 0
\(635\) 3.11233e11 + 1.79691e11i 1.91422 + 1.10517i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.18956e9 2.06038e9i 0.00713483 0.0123579i
\(640\) 0 0
\(641\) 1.19484e11 + 2.06952e11i 0.707746 + 1.22585i 0.965691 + 0.259693i \(0.0836213\pi\)
−0.257945 + 0.966160i \(0.583045\pi\)
\(642\) 0 0
\(643\) 2.67685e11i 1.56596i −0.622046 0.782980i \(-0.713698\pi\)
0.622046 0.782980i \(-0.286302\pi\)
\(644\) 0 0
\(645\) 5.77557e11 3.33700
\(646\) 0 0
\(647\) 1.69051e9 9.76018e8i 0.00964720 0.00556981i −0.495169 0.868797i \(-0.664894\pi\)
0.504816 + 0.863227i \(0.331560\pi\)
\(648\) 0 0
\(649\) 3.84331e10 + 2.21894e10i 0.216634 + 0.125074i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.26140e11 2.18481e11i 0.693744 1.20160i −0.276858 0.960911i \(-0.589293\pi\)
0.970602 0.240690i \(-0.0773736\pi\)
\(654\) 0 0
\(655\) −1.12723e11 1.95242e11i −0.612417 1.06074i
\(656\) 0 0
\(657\) 5.82770e11i 3.12778i
\(658\) 0 0
\(659\) −2.72053e11 −1.44249 −0.721244 0.692681i \(-0.756429\pi\)
−0.721244 + 0.692681i \(0.756429\pi\)
\(660\) 0 0
\(661\) −2.10482e11 + 1.21522e11i −1.10258 + 0.636574i −0.936897 0.349605i \(-0.886316\pi\)
−0.165682 + 0.986179i \(0.552982\pi\)
\(662\) 0 0
\(663\) −1.69087e11 9.76223e10i −0.875096 0.505237i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8.06106e10 1.39622e11i 0.407276 0.705422i
\(668\) 0 0
\(669\) −2.63599e11 4.56567e11i −1.31595 2.27929i
\(670\) 0 0
\(671\) 1.66937e11i 0.823496i
\(672\) 0 0
\(673\) 4.27524e9 0.0208401 0.0104201 0.999946i \(-0.496683\pi\)
0.0104201 + 0.999946i \(0.496683\pi\)
\(674\) 0 0
\(675\) 5.77884e11 3.33642e11i 2.78372 1.60718i
\(676\) 0 0
\(677\) 1.72104e11 + 9.93640e10i 0.819285 + 0.473014i 0.850170 0.526508i \(-0.176499\pi\)
−0.0308848 + 0.999523i \(0.509832\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.06608e11 + 1.84651e11i −0.495682 + 0.858546i
\(682\) 0 0
\(683\) 8.36179e10 + 1.44830e11i 0.384252 + 0.665544i 0.991665 0.128842i \(-0.0411260\pi\)
−0.607413 + 0.794386i \(0.707793\pi\)
\(684\) 0 0
\(685\) 6.53880e11i 2.96986i
\(686\) 0 0
\(687\) −6.44731e11 −2.89436
\(688\) 0 0
\(689\) 2.19722e11 1.26856e11i 0.974980 0.562905i
\(690\) 0 0
\(691\) −2.09552e11 1.20985e11i −0.919135 0.530663i −0.0357762 0.999360i \(-0.511390\pi\)
−0.883359 + 0.468697i \(0.844724\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.97550e11 + 3.42166e11i −0.846714 + 1.46655i
\(696\) 0 0
\(697\) 6.08976e8 + 1.05478e9i 0.00258030 + 0.00446920i
\(698\) 0 0
\(699\) 3.69003e11i 1.54568i
\(700\) 0 0
\(701\) −3.65999e11 −1.51568 −0.757840 0.652441i \(-0.773745\pi\)
−0.757840 + 0.652441i \(0.773745\pi\)
\(702\) 0 0
\(703\) 4.20231e10 2.42621e10i 0.172055 0.0993360i
\(704\) 0 0
\(705\) 8.52029e11 + 4.91919e11i 3.44904 + 1.99130i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.87001e11 + 3.23895e11i −0.740045 + 1.28180i 0.212429 + 0.977176i \(0.431863\pi\)
−0.952474 + 0.304619i \(0.901471\pi\)
\(710\) 0 0
\(711\) 8.47407e10 + 1.46775e11i 0.331599 + 0.574347i
\(712\) 0 0
\(713\) 1.43111e11i 0.553753i
\(714\) 0 0
\(715\) 3.30300e11 1.26382
\(716\) 0 0
\(717\) −1.76404e11 + 1.01847e11i −0.667470 + 0.385364i
\(718\) 0 0
\(719\) 9.07180e9 + 5.23760e9i 0.0339451 + 0.0195982i 0.516877 0.856060i \(-0.327095\pi\)
−0.482931 + 0.875658i \(0.660428\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.47235e11 2.55018e11i 0.538837 0.933292i
\(724\) 0 0
\(725\) 3.29924e11 + 5.71445e11i 1.19416 + 2.06834i
\(726\) 0 0
\(727\) 4.11284e11i 1.47233i −0.676804 0.736163i \(-0.736636\pi\)
0.676804 0.736163i \(-0.263364\pi\)
\(728\) 0 0
\(729\) −5.83421e10 −0.206572
\(730\) 0 0
\(731\) −1.62612e11 + 9.38840e10i −0.569485 + 0.328793i
\(732\) 0 0
\(733\) −4.22981e11 2.44208e11i −1.46523 0.845950i −0.465982 0.884794i \(-0.654299\pi\)
−0.999245 + 0.0388444i \(0.987632\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.51870e10 7.82661e10i 0.153159 0.265280i
\(738\) 0 0
\(739\) 1.44034e11 + 2.49474e11i 0.482932 + 0.836463i 0.999808 0.0195972i \(-0.00623838\pi\)
−0.516876 + 0.856060i \(0.672905\pi\)
\(740\) 0 0
\(741\) 8.27128e10i 0.274347i
\(742\) 0 0
\(743\) 2.14288e11 0.703142 0.351571 0.936161i \(-0.385648\pi\)
0.351571 + 0.936161i \(0.385648\pi\)
\(744\) 0 0
\(745\) 3.88197e11 2.24125e11i 1.26016 0.727555i
\(746\) 0 0
\(747\) −6.99009e10 4.03573e10i −0.224492 0.129610i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −9.27393e10 + 1.60629e11i −0.291544 + 0.504969i −0.974175 0.225794i \(-0.927502\pi\)
0.682631 + 0.730763i \(0.260836\pi\)
\(752\) 0 0
\(753\) −5.30530e11 9.18904e11i −1.65017 2.85819i
\(754\) 0 0
\(755\) 4.09972e11i 1.26173i
\(756\) 0 0
\(757\) 6.69254e10 0.203802 0.101901 0.994795i \(-0.467508\pi\)
0.101901 + 0.994795i \(0.467508\pi\)
\(758\) 0 0
\(759\) −1.98461e11 + 1.14582e11i −0.598010 + 0.345261i
\(760\) 0 0
\(761\) −3.95980e10 2.28619e10i −0.118069 0.0681670i 0.439803 0.898094i \(-0.355048\pi\)
−0.557871 + 0.829927i \(0.688382\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −3.32646e11 + 5.76160e11i −0.971263 + 1.68228i
\(766\) 0 0
\(767\) 5.40823e10 + 9.36733e10i 0.156269 + 0.270667i
\(768\) 0 0
\(769\) 4.25562e11i 1.21691i 0.793589 + 0.608454i \(0.208210\pi\)
−0.793589 + 0.608454i \(0.791790\pi\)
\(770\) 0 0
\(771\) 1.12323e11 0.317872
\(772\) 0 0
\(773\) −1.40014e11 + 8.08370e10i −0.392151 + 0.226408i −0.683092 0.730333i \(-0.739365\pi\)
0.290941 + 0.956741i \(0.406032\pi\)
\(774\) 0 0
\(775\) −5.07255e11 2.92864e11i −1.40611 0.811819i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.57985e8 4.46843e8i 0.000700558 0.00121340i
\(780\) 0 0
\(781\) −9.40491e8 1.62898e9i −0.00252785 0.00437836i
\(782\) 0 0
\(783\) 1.51670e12i 4.03509i
\(784\) 0 0
\(785\) −8.80924e11 −2.31985
\(786\) 0 0
\(787\) −2.69667e11 + 1.55692e11i −0.702957 + 0.405852i −0.808448 0.588568i \(-0.799692\pi\)
0.105491 + 0.994420i \(0.466359\pi\)
\(788\) 0 0
\(789\) 7.85204e11 + 4.53338e11i 2.02616 + 1.16981i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.03438e11 + 3.52365e11i −0.514446 + 0.891047i
\(794\) 0 0
\(795\) −6.21381e11 1.07626e12i −1.55557 2.69432i
\(796\) 0 0
\(797\) 5.39201e11i 1.33634i 0.744008 + 0.668171i \(0.232922\pi\)
−0.744008 + 0.668171i \(0.767078\pi\)
\(798\) 0 0
\(799\) −3.19853e11 −0.784808
\(800\) 0 0
\(801\) 1.41382e11 8.16269e10i 0.343450 0.198291i
\(802\) 0 0
\(803\) −3.99021e11 2.30375e11i −0.959696 0.554081i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −4.70941e11 + 8.15693e11i −1.11038 + 1.92324i
\(808\) 0 0
\(809\) 1.86129e11 + 3.22384e11i 0.434530 + 0.752627i 0.997257 0.0740152i \(-0.0235813\pi\)
−0.562728 + 0.826642i \(0.690248\pi\)
\(810\) 0 0
\(811\) 6.84823e11i 1.58305i −0.611137 0.791525i \(-0.709287\pi\)
0.611137 0.791525i \(-0.290713\pi\)
\(812\) 0 0
\(813\) −7.57914e11 −1.73483
\(814\) 0 0
\(815\) −4.95688e11 + 2.86186e11i −1.12351 + 0.648660i
\(816\) 0 0
\(817\) 6.88884e10 + 3.97727e10i 0.154617 + 0.0892683i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.03381e11 + 3.52267e11i −0.447650 + 0.775353i −0.998233 0.0594279i \(-0.981072\pi\)
0.550582 + 0.834781i \(0.314406\pi\)
\(822\) 0 0
\(823\) −2.80981e11 4.86673e11i −0.612459 1.06081i −0.990825 0.135154i \(-0.956847\pi\)
0.378366 0.925656i \(-0.376486\pi\)
\(824\) 0 0
\(825\) 9.37922e11i 2.02465i
\(826\) 0 0
\(827\) −1.56518e11 −0.334612 −0.167306 0.985905i \(-0.553507\pi\)
−0.167306 + 0.985905i \(0.553507\pi\)
\(828\) 0 0
\(829\) −5.91496e11 + 3.41500e11i −1.25237 + 0.723058i −0.971580 0.236710i \(-0.923931\pi\)
−0.280793 + 0.959768i \(0.590597\pi\)
\(830\) 0 0
\(831\) −8.05648e11 4.65141e11i −1.68944 0.975396i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 3.36016e11 5.81997e11i 0.691216 1.19722i
\(836\) 0 0
\(837\) 6.73167e11 + 1.16596e12i 1.37158 + 2.37564i
\(838\) 0 0
\(839\) 6.02058e11i 1.21504i 0.794304 + 0.607520i \(0.207836\pi\)
−0.794304 + 0.607520i \(0.792164\pi\)
\(840\) 0 0
\(841\) 9.99557e11 1.99813
\(842\) 0 0
\(843\) 2.68658e11 1.55110e11i 0.531974 0.307135i
\(844\) 0 0
\(845\) 1.61286e10 + 9.31184e9i 0.0316351 + 0.0182645i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 3.77634e11 6.54081e11i 0.726842 1.25893i
\(850\) 0 0
\(851\) 1.63837e11 + 2.83773e11i 0.312387 + 0.541070i
\(852\) 0 0
\(853\) 2.62751e11i 0.496305i 0.968721 + 0.248153i \(0.0798235\pi\)
−0.968721 + 0.248153i \(0.920177\pi\)
\(854\) 0 0
\(855\) 2.81842e11 0.527402
\(856\) 0 0
\(857\) 4.08594e10 2.35902e10i 0.0757476 0.0437329i −0.461648 0.887063i \(-0.652742\pi\)
0.537395 + 0.843330i \(0.319408\pi\)
\(858\) 0 0
\(859\) 4.42290e11 + 2.55356e11i 0.812334 + 0.469001i 0.847766 0.530371i \(-0.177947\pi\)
−0.0354317 + 0.999372i \(0.511281\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.84748e10 + 3.19993e10i −0.0333071 + 0.0576896i −0.882198 0.470878i \(-0.843937\pi\)
0.848891 + 0.528567i \(0.177271\pi\)
\(864\) 0 0
\(865\) −2.24925e11 3.89582e11i −0.401767 0.695880i
\(866\) 0 0
\(867\) 7.13281e11i 1.26236i
\(868\) 0 0
\(869\) 1.33995e11 0.234969
\(870\) 0 0
\(871\) 1.90759e11 1.10135e11i 0.331445 0.191360i
\(872\) 0 0
\(873\) −7.21662e11 4.16652e11i −1.24244 0.717325i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 4.84174e11 8.38613e11i 0.818470 1.41763i −0.0883394 0.996090i \(-0.528156\pi\)
0.906809 0.421541i \(-0.138511\pi\)
\(878\) 0 0
\(879\) 5.58132e11 + 9.66714e11i 0.934936 + 1.61936i
\(880\) 0 0
\(881\) 9.95652e11i 1.65274i −0.563129 0.826369i \(-0.690403\pi\)
0.563129 0.826369i \(-0.309597\pi\)
\(882\) 0 0
\(883\) 5.84931e10 0.0962192 0.0481096 0.998842i \(-0.484680\pi\)
0.0481096 + 0.998842i \(0.484680\pi\)
\(884\) 0 0
\(885\) 4.58841e11 2.64912e11i 0.747978 0.431845i
\(886\) 0 0
\(887\) −4.25692e11 2.45773e11i −0.687702 0.397045i 0.115048 0.993360i \(-0.463298\pi\)
−0.802751 + 0.596315i \(0.796631\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −4.94676e11 + 8.56805e11i −0.784893 + 1.35947i
\(892\) 0 0
\(893\) 6.77508e10 + 1.17348e11i 0.106539 + 0.184531i
\(894\) 0 0
\(895\) 8.21612e11i 1.28049i
\(896\) 0 0
\(897\) −5.58542e11 −0.862751
\(898\) 0 0
\(899\) −1.15297e12 + 6.65666e11i −1.76514 + 1.01910i
\(900\) 0 0
\(901\) 3.49901e11 + 2.02015e11i 0.530940 + 0.306539i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.57227e11 + 6.18736e11i −0.532538 + 0.922383i
\(906\) 0 0
\(907\) −1.85310e11 3.20966e11i −0.273823 0.474275i 0.696015 0.718027i \(-0.254955\pi\)
−0.969837 + 0.243753i \(0.921621\pi\)
\(908\) 0 0
\(909\) 1.14823e12i 1.68180i
\(910\) 0 0
\(911\) 7.13289e11 1.03560 0.517800 0.855502i \(-0.326751\pi\)
0.517800 + 0.855502i \(0.326751\pi\)
\(912\) 0 0
\(913\) −5.52650e10 + 3.19073e10i −0.0795366 + 0.0459205i
\(914\) 0 0
\(915\) 1.72599e12 + 9.96503e11i 2.46238 + 1.42165i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.78054e11 3.08399e11i 0.249626 0.432365i −0.713796 0.700354i \(-0.753026\pi\)
0.963422 + 0.267988i \(0.0863589\pi\)
\(920\) 0 0
\(921\) −9.63946e11 1.66960e12i −1.33972 2.32046i
\(922\) 0 0
\(923\) 4.58454e9i 0.00631668i
\(924\) 0 0
\(925\) −1.34110e12 −1.83187
\(926\) 0 0
\(927\) 1.65219e12 9.53894e11i 2.23739 1.29176i
\(928\) 0 0
\(929\) 1.06799e12 + 6.16605e11i 1.43385 + 0.827836i 0.997412 0.0718969i \(-0.0229053\pi\)
0.436441 + 0.899733i \(0.356239\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.10177e12 1.90832e12i 1.45400 2.51840i
\(934\) 0 0
\(935\) 2.62997e11 + 4.55524e11i 0.344115 + 0.596025i
\(936\) 0 0
\(937\) 1.10549e12i 1.43415i 0.696994 + 0.717077i \(0.254521\pi\)
−0.696994 + 0.717077i \(0.745479\pi\)
\(938\) 0 0
\(939\) 1.19921e12 1.54252
\(940\) 0 0
\(941\) 6.51461e11 3.76121e11i 0.830864 0.479700i −0.0232842 0.999729i \(-0.507412\pi\)
0.854149 + 0.520029i \(0.174079\pi\)
\(942\) 0 0
\(943\) 3.01743e9 + 1.74212e9i 0.00381585 + 0.00220308i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.50836e11 + 7.80870e11i −0.560555 + 0.970910i 0.436893 + 0.899513i \(0.356079\pi\)
−0.997448 + 0.0713963i \(0.977255\pi\)
\(948\) 0 0
\(949\) −5.61495e11 9.72538e11i −0.692279 1.19906i
\(950\) 0 0
\(951\) 5.28587e11i 0.646240i
\(952\) 0 0
\(953\) 5.66082e11 0.686290 0.343145 0.939282i \(-0.388508\pi\)
0.343145 + 0.939282i \(0.388508\pi\)
\(954\) 0 0
\(955\) 2.90322e11 1.67618e11i 0.349033 0.201514i
\(956\) 0 0
\(957\) −1.84624e12 1.06593e12i −2.20110 1.27081i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.64447e11 2.84830e11i 0.192811 0.333958i
\(962\) 0 0
\(963\) 1.01226e12 + 1.75329e12i 1.17703 + 2.03868i
\(964\) 0 0
\(965\) 4.79483e11i 0.552922i
\(966\) 0 0
\(967\) 8.41824e11 0.962754 0.481377 0.876514i \(-0.340137\pi\)
0.481377 + 0.876514i \(0.340137\pi\)
\(968\) 0 0
\(969\) −1.14071e11 + 6.58590e10i −0.129384 + 0.0746999i
\(970\) 0 0
\(971\) 3.65564e11 + 2.11059e11i 0.411232 + 0.237425i 0.691319 0.722550i \(-0.257030\pi\)
−0.280087 + 0.959975i \(0.590363\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 1.14300e12 1.97974e12i 1.26482 2.19073i
\(976\) 0 0
\(977\) 7.19959e10 + 1.24701e11i 0.0790187 + 0.136864i 0.902827 0.430004i \(-0.141488\pi\)
−0.823808 + 0.566869i \(0.808155\pi\)
\(978\) 0 0
\(979\) 1.29072e11i 0.140508i
\(980\) 0 0
\(981\) 1.15496e12 1.24707
\(982\) 0 0
\(983\) 1.46173e12 8.43932e11i 1.56550 0.903844i 0.568820 0.822462i \(-0.307400\pi\)
0.996683 0.0813819i \(-0.0259334\pi\)
\(984\) 0 0
\(985\) 2.50032e11 + 1.44356e11i 0.265614 + 0.153352i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.68577e11 + 4.65188e11i −0.280726 + 0.486232i
\(990\) 0 0
\(991\) 3.04469e11 + 5.27355e11i 0.315681 + 0.546775i 0.979582 0.201045i \(-0.0644339\pi\)
−0.663901 + 0.747820i \(0.731101\pi\)
\(992\) 0 0
\(993\) 2.50392e12i 2.57527i
\(994\) 0 0
\(995\) 6.65399e10 0.0678875
\(996\) 0 0
\(997\) −5.55067e11 + 3.20468e11i −0.561778 + 0.324343i −0.753859 0.657036i \(-0.771810\pi\)
0.192081 + 0.981379i \(0.438476\pi\)
\(998\) 0 0
\(999\) 2.66962e12 + 1.54131e12i 2.68033 + 1.54749i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.9.h.b.117.6 12
7.2 even 3 28.9.b.a.13.6 yes 6
7.3 odd 6 inner 196.9.h.b.129.6 12
7.4 even 3 inner 196.9.h.b.129.1 12
7.5 odd 6 28.9.b.a.13.1 6
7.6 odd 2 inner 196.9.h.b.117.1 12
21.2 odd 6 252.9.d.b.181.1 6
21.5 even 6 252.9.d.b.181.6 6
28.19 even 6 112.9.c.d.97.6 6
28.23 odd 6 112.9.c.d.97.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.9.b.a.13.1 6 7.5 odd 6
28.9.b.a.13.6 yes 6 7.2 even 3
112.9.c.d.97.1 6 28.23 odd 6
112.9.c.d.97.6 6 28.19 even 6
196.9.h.b.117.1 12 7.6 odd 2 inner
196.9.h.b.117.6 12 1.1 even 1 trivial
196.9.h.b.129.1 12 7.4 even 3 inner
196.9.h.b.129.6 12 7.3 odd 6 inner
252.9.d.b.181.1 6 21.2 odd 6
252.9.d.b.181.6 6 21.5 even 6