Properties

Label 252.2.b.e.55.3
Level $252$
Weight $2$
Character 252.55
Analytic conductor $2.012$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,2,Mod(55,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.55"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 252.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1,0,1,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.01223013094\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.2312.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 55.3
Root \(1.28078 - 0.599676i\) of defining polynomial
Character \(\chi\) \(=\) 252.55
Dual form 252.2.b.e.55.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.28078 - 0.599676i) q^{2} +(1.28078 - 1.53610i) q^{4} -3.33513i q^{5} +(-1.56155 + 2.13578i) q^{7} +(0.719224 - 2.73546i) q^{8} +(-2.00000 - 4.27156i) q^{10} -0.936426i q^{11} +1.87285i q^{13} +(-0.719224 + 3.67188i) q^{14} +(-0.719224 - 3.93481i) q^{16} +5.20798i q^{17} +7.12311 q^{19} +(-5.12311 - 4.27156i) q^{20} +(-0.561553 - 1.19935i) q^{22} +0.936426i q^{23} -6.12311 q^{25} +(1.12311 + 2.39871i) q^{26} +(1.28078 + 5.13416i) q^{28} +2.00000 q^{29} +(-3.28078 - 4.60831i) q^{32} +(3.12311 + 6.67026i) q^{34} +(7.12311 + 5.20798i) q^{35} +1.12311 q^{37} +(9.12311 - 4.27156i) q^{38} +(-9.12311 - 2.39871i) q^{40} +1.46228i q^{41} +9.06897i q^{43} +(-1.43845 - 1.19935i) q^{44} +(0.561553 + 1.19935i) q^{46} -6.24621 q^{47} +(-2.12311 - 6.67026i) q^{49} +(-7.84233 + 3.67188i) q^{50} +(2.87689 + 2.39871i) q^{52} -12.2462 q^{53} -3.12311 q^{55} +(4.71922 + 5.80766i) q^{56} +(2.56155 - 1.19935i) q^{58} -4.00000 q^{59} +4.79741i q^{61} +(-6.96543 - 3.93481i) q^{64} +6.24621 q^{65} -10.9418i q^{67} +(8.00000 + 6.67026i) q^{68} +(12.2462 + 2.39871i) q^{70} +3.86098i q^{71} +6.67026i q^{73} +(1.43845 - 0.673500i) q^{74} +(9.12311 - 10.9418i) q^{76} +(2.00000 + 1.46228i) q^{77} -2.39871i q^{79} +(-13.1231 + 2.39871i) q^{80} +(0.876894 + 1.87285i) q^{82} +10.2462 q^{83} +17.3693 q^{85} +(5.43845 + 11.6153i) q^{86} +(-2.56155 - 0.673500i) q^{88} -1.46228i q^{89} +(-4.00000 - 2.92456i) q^{91} +(1.43845 + 1.19935i) q^{92} +(-8.00000 + 3.74571i) q^{94} -23.7565i q^{95} -10.4160i q^{97} +(-6.71922 - 7.26994i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + q^{4} + 2 q^{7} + 7 q^{8} - 8 q^{10} - 7 q^{14} - 7 q^{16} + 12 q^{19} - 4 q^{20} + 6 q^{22} - 8 q^{25} - 12 q^{26} + q^{28} + 8 q^{29} - 9 q^{32} - 4 q^{34} + 12 q^{35} - 12 q^{37} + 20 q^{38}+ \cdots - 31 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.28078 0.599676i 0.905646 0.424035i
\(3\) 0 0
\(4\) 1.28078 1.53610i 0.640388 0.768051i
\(5\) 3.33513i 1.49152i −0.666217 0.745758i \(-0.732087\pi\)
0.666217 0.745758i \(-0.267913\pi\)
\(6\) 0 0
\(7\) −1.56155 + 2.13578i −0.590211 + 0.807249i
\(8\) 0.719224 2.73546i 0.254284 0.967130i
\(9\) 0 0
\(10\) −2.00000 4.27156i −0.632456 1.35079i
\(11\) 0.936426i 0.282343i −0.989985 0.141172i \(-0.954913\pi\)
0.989985 0.141172i \(-0.0450869\pi\)
\(12\) 0 0
\(13\) 1.87285i 0.519436i 0.965685 + 0.259718i \(0.0836296\pi\)
−0.965685 + 0.259718i \(0.916370\pi\)
\(14\) −0.719224 + 3.67188i −0.192221 + 0.981352i
\(15\) 0 0
\(16\) −0.719224 3.93481i −0.179806 0.983702i
\(17\) 5.20798i 1.26312i 0.775326 + 0.631561i \(0.217585\pi\)
−0.775326 + 0.631561i \(0.782415\pi\)
\(18\) 0 0
\(19\) 7.12311 1.63415 0.817076 0.576530i \(-0.195593\pi\)
0.817076 + 0.576530i \(0.195593\pi\)
\(20\) −5.12311 4.27156i −1.14556 0.955149i
\(21\) 0 0
\(22\) −0.561553 1.19935i −0.119723 0.255703i
\(23\) 0.936426i 0.195258i 0.995223 + 0.0976292i \(0.0311259\pi\)
−0.995223 + 0.0976292i \(0.968874\pi\)
\(24\) 0 0
\(25\) −6.12311 −1.22462
\(26\) 1.12311 + 2.39871i 0.220259 + 0.470425i
\(27\) 0 0
\(28\) 1.28078 + 5.13416i 0.242044 + 0.970265i
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −3.28078 4.60831i −0.579965 0.814642i
\(33\) 0 0
\(34\) 3.12311 + 6.67026i 0.535608 + 1.14394i
\(35\) 7.12311 + 5.20798i 1.20402 + 0.880310i
\(36\) 0 0
\(37\) 1.12311 0.184637 0.0923187 0.995730i \(-0.470572\pi\)
0.0923187 + 0.995730i \(0.470572\pi\)
\(38\) 9.12311 4.27156i 1.47996 0.692938i
\(39\) 0 0
\(40\) −9.12311 2.39871i −1.44249 0.379269i
\(41\) 1.46228i 0.228370i 0.993460 + 0.114185i \(0.0364256\pi\)
−0.993460 + 0.114185i \(0.963574\pi\)
\(42\) 0 0
\(43\) 9.06897i 1.38300i 0.722374 + 0.691502i \(0.243051\pi\)
−0.722374 + 0.691502i \(0.756949\pi\)
\(44\) −1.43845 1.19935i −0.216854 0.180809i
\(45\) 0 0
\(46\) 0.561553 + 1.19935i 0.0827964 + 0.176835i
\(47\) −6.24621 −0.911104 −0.455552 0.890209i \(-0.650558\pi\)
−0.455552 + 0.890209i \(0.650558\pi\)
\(48\) 0 0
\(49\) −2.12311 6.67026i −0.303301 0.952895i
\(50\) −7.84233 + 3.67188i −1.10907 + 0.519283i
\(51\) 0 0
\(52\) 2.87689 + 2.39871i 0.398953 + 0.332641i
\(53\) −12.2462 −1.68215 −0.841073 0.540921i \(-0.818076\pi\)
−0.841073 + 0.540921i \(0.818076\pi\)
\(54\) 0 0
\(55\) −3.12311 −0.421119
\(56\) 4.71922 + 5.80766i 0.630633 + 0.776081i
\(57\) 0 0
\(58\) 2.56155 1.19935i 0.336348 0.157483i
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) 4.79741i 0.614246i 0.951670 + 0.307123i \(0.0993662\pi\)
−0.951670 + 0.307123i \(0.900634\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −6.96543 3.93481i −0.870679 0.491851i
\(65\) 6.24621 0.774747
\(66\) 0 0
\(67\) 10.9418i 1.33676i −0.743822 0.668378i \(-0.766989\pi\)
0.743822 0.668378i \(-0.233011\pi\)
\(68\) 8.00000 + 6.67026i 0.970143 + 0.808888i
\(69\) 0 0
\(70\) 12.2462 + 2.39871i 1.46370 + 0.286700i
\(71\) 3.86098i 0.458215i 0.973401 + 0.229107i \(0.0735807\pi\)
−0.973401 + 0.229107i \(0.926419\pi\)
\(72\) 0 0
\(73\) 6.67026i 0.780695i 0.920668 + 0.390348i \(0.127645\pi\)
−0.920668 + 0.390348i \(0.872355\pi\)
\(74\) 1.43845 0.673500i 0.167216 0.0782928i
\(75\) 0 0
\(76\) 9.12311 10.9418i 1.04649 1.25511i
\(77\) 2.00000 + 1.46228i 0.227921 + 0.166642i
\(78\) 0 0
\(79\) 2.39871i 0.269875i −0.990854 0.134938i \(-0.956917\pi\)
0.990854 0.134938i \(-0.0430834\pi\)
\(80\) −13.1231 + 2.39871i −1.46721 + 0.268183i
\(81\) 0 0
\(82\) 0.876894 + 1.87285i 0.0968368 + 0.206822i
\(83\) 10.2462 1.12467 0.562334 0.826910i \(-0.309904\pi\)
0.562334 + 0.826910i \(0.309904\pi\)
\(84\) 0 0
\(85\) 17.3693 1.88397
\(86\) 5.43845 + 11.6153i 0.586443 + 1.25251i
\(87\) 0 0
\(88\) −2.56155 0.673500i −0.273062 0.0717953i
\(89\) 1.46228i 0.155001i −0.996992 0.0775006i \(-0.975306\pi\)
0.996992 0.0775006i \(-0.0246940\pi\)
\(90\) 0 0
\(91\) −4.00000 2.92456i −0.419314 0.306577i
\(92\) 1.43845 + 1.19935i 0.149968 + 0.125041i
\(93\) 0 0
\(94\) −8.00000 + 3.74571i −0.825137 + 0.386340i
\(95\) 23.7565i 2.43737i
\(96\) 0 0
\(97\) 10.4160i 1.05758i −0.848752 0.528791i \(-0.822646\pi\)
0.848752 0.528791i \(-0.177354\pi\)
\(98\) −6.71922 7.26994i −0.678744 0.734375i
\(99\) 0 0
\(100\) −7.84233 + 9.40572i −0.784233 + 0.940572i
\(101\) 13.7511i 1.36829i −0.729348 0.684143i \(-0.760176\pi\)
0.729348 0.684143i \(-0.239824\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 5.12311 + 1.34700i 0.502362 + 0.132084i
\(105\) 0 0
\(106\) −15.6847 + 7.34376i −1.52343 + 0.713289i
\(107\) 9.47954i 0.916422i 0.888843 + 0.458211i \(0.151510\pi\)
−0.888843 + 0.458211i \(0.848490\pi\)
\(108\) 0 0
\(109\) −8.24621 −0.789844 −0.394922 0.918715i \(-0.629228\pi\)
−0.394922 + 0.918715i \(0.629228\pi\)
\(110\) −4.00000 + 1.87285i −0.381385 + 0.178570i
\(111\) 0 0
\(112\) 9.52699 + 4.60831i 0.900216 + 0.435444i
\(113\) 4.24621 0.399450 0.199725 0.979852i \(-0.435995\pi\)
0.199725 + 0.979852i \(0.435995\pi\)
\(114\) 0 0
\(115\) 3.12311 0.291231
\(116\) 2.56155 3.07221i 0.237834 0.285247i
\(117\) 0 0
\(118\) −5.12311 + 2.39871i −0.471620 + 0.220819i
\(119\) −11.1231 8.13254i −1.01965 0.745509i
\(120\) 0 0
\(121\) 10.1231 0.920282
\(122\) 2.87689 + 6.14441i 0.260462 + 0.556289i
\(123\) 0 0
\(124\) 0 0
\(125\) 3.74571i 0.335026i
\(126\) 0 0
\(127\) 9.89012i 0.877606i −0.898583 0.438803i \(-0.855403\pi\)
0.898583 0.438803i \(-0.144597\pi\)
\(128\) −11.2808 0.862603i −0.997089 0.0762440i
\(129\) 0 0
\(130\) 8.00000 3.74571i 0.701646 0.328520i
\(131\) −5.75379 −0.502711 −0.251355 0.967895i \(-0.580876\pi\)
−0.251355 + 0.967895i \(0.580876\pi\)
\(132\) 0 0
\(133\) −11.1231 + 15.2134i −0.964496 + 1.31917i
\(134\) −6.56155 14.0140i −0.566832 1.21063i
\(135\) 0 0
\(136\) 14.2462 + 3.74571i 1.22160 + 0.321192i
\(137\) −0.246211 −0.0210352 −0.0105176 0.999945i \(-0.503348\pi\)
−0.0105176 + 0.999945i \(0.503348\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 17.1231 4.27156i 1.44717 0.361013i
\(141\) 0 0
\(142\) 2.31534 + 4.94506i 0.194299 + 0.414980i
\(143\) 1.75379 0.146659
\(144\) 0 0
\(145\) 6.67026i 0.553935i
\(146\) 4.00000 + 8.54312i 0.331042 + 0.707033i
\(147\) 0 0
\(148\) 1.43845 1.72521i 0.118240 0.141811i
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) 9.06897i 0.738022i −0.929425 0.369011i \(-0.879696\pi\)
0.929425 0.369011i \(-0.120304\pi\)
\(152\) 5.12311 19.4849i 0.415539 1.58044i
\(153\) 0 0
\(154\) 3.43845 + 0.673500i 0.277078 + 0.0542722i
\(155\) 0 0
\(156\) 0 0
\(157\) 21.8836i 1.74650i −0.487268 0.873252i \(-0.662007\pi\)
0.487268 0.873252i \(-0.337993\pi\)
\(158\) −1.43845 3.07221i −0.114437 0.244412i
\(159\) 0 0
\(160\) −15.3693 + 10.9418i −1.21505 + 0.865027i
\(161\) −2.00000 1.46228i −0.157622 0.115244i
\(162\) 0 0
\(163\) 15.7392i 1.23279i 0.787436 + 0.616396i \(0.211408\pi\)
−0.787436 + 0.616396i \(0.788592\pi\)
\(164\) 2.24621 + 1.87285i 0.175400 + 0.146245i
\(165\) 0 0
\(166\) 13.1231 6.14441i 1.01855 0.476899i
\(167\) −14.2462 −1.10240 −0.551202 0.834372i \(-0.685831\pi\)
−0.551202 + 0.834372i \(0.685831\pi\)
\(168\) 0 0
\(169\) 9.49242 0.730186
\(170\) 22.2462 10.4160i 1.70621 0.798868i
\(171\) 0 0
\(172\) 13.9309 + 11.6153i 1.06222 + 0.885660i
\(173\) 16.6757i 1.26783i 0.773404 + 0.633913i \(0.218552\pi\)
−0.773404 + 0.633913i \(0.781448\pi\)
\(174\) 0 0
\(175\) 9.56155 13.0776i 0.722785 0.988574i
\(176\) −3.68466 + 0.673500i −0.277742 + 0.0507670i
\(177\) 0 0
\(178\) −0.876894 1.87285i −0.0657260 0.140376i
\(179\) 16.1498i 1.20709i 0.797328 + 0.603547i \(0.206246\pi\)
−0.797328 + 0.603547i \(0.793754\pi\)
\(180\) 0 0
\(181\) 1.87285i 0.139208i −0.997575 0.0696040i \(-0.977826\pi\)
0.997575 0.0696040i \(-0.0221736\pi\)
\(182\) −6.87689 1.34700i −0.509749 0.0998463i
\(183\) 0 0
\(184\) 2.56155 + 0.673500i 0.188840 + 0.0496511i
\(185\) 3.74571i 0.275390i
\(186\) 0 0
\(187\) 4.87689 0.356634
\(188\) −8.00000 + 9.59482i −0.583460 + 0.699774i
\(189\) 0 0
\(190\) −14.2462 30.4268i −1.03353 2.20739i
\(191\) 2.80928i 0.203272i −0.994822 0.101636i \(-0.967592\pi\)
0.994822 0.101636i \(-0.0324078\pi\)
\(192\) 0 0
\(193\) −15.3693 −1.10631 −0.553154 0.833079i \(-0.686576\pi\)
−0.553154 + 0.833079i \(0.686576\pi\)
\(194\) −6.24621 13.3405i −0.448452 0.957794i
\(195\) 0 0
\(196\) −12.9654 5.28181i −0.926102 0.377272i
\(197\) 16.2462 1.15749 0.578747 0.815507i \(-0.303542\pi\)
0.578747 + 0.815507i \(0.303542\pi\)
\(198\) 0 0
\(199\) −3.12311 −0.221391 −0.110696 0.993854i \(-0.535308\pi\)
−0.110696 + 0.993854i \(0.535308\pi\)
\(200\) −4.40388 + 16.7495i −0.311401 + 1.18437i
\(201\) 0 0
\(202\) −8.24621 17.6121i −0.580201 1.23918i
\(203\) −3.12311 + 4.27156i −0.219199 + 0.299805i
\(204\) 0 0
\(205\) 4.87689 0.340617
\(206\) −10.2462 + 4.79741i −0.713887 + 0.334251i
\(207\) 0 0
\(208\) 7.36932 1.34700i 0.510970 0.0933976i
\(209\) 6.67026i 0.461392i
\(210\) 0 0
\(211\) 12.8147i 0.882199i 0.897458 + 0.441099i \(0.145411\pi\)
−0.897458 + 0.441099i \(0.854589\pi\)
\(212\) −15.6847 + 18.8114i −1.07723 + 1.29197i
\(213\) 0 0
\(214\) 5.68466 + 12.1412i 0.388595 + 0.829954i
\(215\) 30.2462 2.06277
\(216\) 0 0
\(217\) 0 0
\(218\) −10.5616 + 4.94506i −0.715319 + 0.334922i
\(219\) 0 0
\(220\) −4.00000 + 4.79741i −0.269680 + 0.323441i
\(221\) −9.75379 −0.656111
\(222\) 0 0
\(223\) 27.1231 1.81630 0.908149 0.418648i \(-0.137496\pi\)
0.908149 + 0.418648i \(0.137496\pi\)
\(224\) 14.9654 + 0.189103i 0.999920 + 0.0126350i
\(225\) 0 0
\(226\) 5.43845 2.54635i 0.361760 0.169381i
\(227\) 16.4924 1.09464 0.547320 0.836923i \(-0.315648\pi\)
0.547320 + 0.836923i \(0.315648\pi\)
\(228\) 0 0
\(229\) 5.61856i 0.371285i 0.982617 + 0.185642i \(0.0594366\pi\)
−0.982617 + 0.185642i \(0.940563\pi\)
\(230\) 4.00000 1.87285i 0.263752 0.123492i
\(231\) 0 0
\(232\) 1.43845 5.47091i 0.0944387 0.359183i
\(233\) −22.4924 −1.47353 −0.736764 0.676150i \(-0.763647\pi\)
−0.736764 + 0.676150i \(0.763647\pi\)
\(234\) 0 0
\(235\) 20.8319i 1.35893i
\(236\) −5.12311 + 6.14441i −0.333486 + 0.399967i
\(237\) 0 0
\(238\) −19.1231 3.74571i −1.23957 0.242798i
\(239\) 16.1498i 1.04464i −0.852748 0.522322i \(-0.825066\pi\)
0.852748 0.522322i \(-0.174934\pi\)
\(240\) 0 0
\(241\) 23.7565i 1.53029i 0.643858 + 0.765145i \(0.277333\pi\)
−0.643858 + 0.765145i \(0.722667\pi\)
\(242\) 12.9654 6.07059i 0.833450 0.390232i
\(243\) 0 0
\(244\) 7.36932 + 6.14441i 0.471772 + 0.393356i
\(245\) −22.2462 + 7.08084i −1.42126 + 0.452378i
\(246\) 0 0
\(247\) 13.3405i 0.848837i
\(248\) 0 0
\(249\) 0 0
\(250\) 2.24621 + 4.79741i 0.142063 + 0.303415i
\(251\) 5.75379 0.363176 0.181588 0.983375i \(-0.441876\pi\)
0.181588 + 0.983375i \(0.441876\pi\)
\(252\) 0 0
\(253\) 0.876894 0.0551299
\(254\) −5.93087 12.6670i −0.372136 0.794800i
\(255\) 0 0
\(256\) −14.9654 + 5.66001i −0.935340 + 0.353751i
\(257\) 2.28343i 0.142436i −0.997461 0.0712181i \(-0.977311\pi\)
0.997461 0.0712181i \(-0.0226886\pi\)
\(258\) 0 0
\(259\) −1.75379 + 2.39871i −0.108975 + 0.149048i
\(260\) 8.00000 9.59482i 0.496139 0.595046i
\(261\) 0 0
\(262\) −7.36932 + 3.45041i −0.455278 + 0.213167i
\(263\) 24.6929i 1.52263i 0.648382 + 0.761315i \(0.275446\pi\)
−0.648382 + 0.761315i \(0.724554\pi\)
\(264\) 0 0
\(265\) 40.8427i 2.50895i
\(266\) −5.12311 + 26.1552i −0.314118 + 1.60368i
\(267\) 0 0
\(268\) −16.8078 14.0140i −1.02670 0.856043i
\(269\) 10.8265i 0.660106i 0.943962 + 0.330053i \(0.107067\pi\)
−0.943962 + 0.330053i \(0.892933\pi\)
\(270\) 0 0
\(271\) −28.4924 −1.73079 −0.865396 0.501089i \(-0.832933\pi\)
−0.865396 + 0.501089i \(0.832933\pi\)
\(272\) 20.4924 3.74571i 1.24254 0.227117i
\(273\) 0 0
\(274\) −0.315342 + 0.147647i −0.0190505 + 0.00891969i
\(275\) 5.73384i 0.345763i
\(276\) 0 0
\(277\) −5.12311 −0.307818 −0.153909 0.988085i \(-0.549186\pi\)
−0.153909 + 0.988085i \(0.549186\pi\)
\(278\) −15.3693 + 7.19612i −0.921790 + 0.431594i
\(279\) 0 0
\(280\) 19.3693 15.7392i 1.15754 0.940599i
\(281\) −16.2462 −0.969168 −0.484584 0.874745i \(-0.661029\pi\)
−0.484584 + 0.874745i \(0.661029\pi\)
\(282\) 0 0
\(283\) 8.87689 0.527677 0.263838 0.964567i \(-0.415011\pi\)
0.263838 + 0.964567i \(0.415011\pi\)
\(284\) 5.93087 + 4.94506i 0.351932 + 0.293435i
\(285\) 0 0
\(286\) 2.24621 1.05171i 0.132821 0.0621887i
\(287\) −3.12311 2.28343i −0.184351 0.134786i
\(288\) 0 0
\(289\) −10.1231 −0.595477
\(290\) −4.00000 8.54312i −0.234888 0.501669i
\(291\) 0 0
\(292\) 10.2462 + 8.54312i 0.599614 + 0.499948i
\(293\) 13.7511i 0.803348i −0.915783 0.401674i \(-0.868429\pi\)
0.915783 0.401674i \(-0.131571\pi\)
\(294\) 0 0
\(295\) 13.3405i 0.776716i
\(296\) 0.807764 3.07221i 0.0469503 0.178568i
\(297\) 0 0
\(298\) 12.8078 5.99676i 0.741934 0.347383i
\(299\) −1.75379 −0.101424
\(300\) 0 0
\(301\) −19.3693 14.1617i −1.11643 0.816265i
\(302\) −5.43845 11.6153i −0.312947 0.668387i
\(303\) 0 0
\(304\) −5.12311 28.0281i −0.293830 1.60752i
\(305\) 16.0000 0.916157
\(306\) 0 0
\(307\) 19.6155 1.11952 0.559759 0.828656i \(-0.310894\pi\)
0.559759 + 0.828656i \(0.310894\pi\)
\(308\) 4.80776 1.19935i 0.273948 0.0683395i
\(309\) 0 0
\(310\) 0 0
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 0 0
\(313\) 22.9354i 1.29638i −0.761478 0.648191i \(-0.775526\pi\)
0.761478 0.648191i \(-0.224474\pi\)
\(314\) −13.1231 28.0281i −0.740580 1.58171i
\(315\) 0 0
\(316\) −3.68466 3.07221i −0.207278 0.172825i
\(317\) 14.4924 0.813976 0.406988 0.913434i \(-0.366579\pi\)
0.406988 + 0.913434i \(0.366579\pi\)
\(318\) 0 0
\(319\) 1.87285i 0.104860i
\(320\) −13.1231 + 23.2306i −0.733604 + 1.29863i
\(321\) 0 0
\(322\) −3.43845 0.673500i −0.191617 0.0375327i
\(323\) 37.0970i 2.06413i
\(324\) 0 0
\(325\) 11.4677i 0.636112i
\(326\) 9.43845 + 20.1584i 0.522747 + 1.11647i
\(327\) 0 0
\(328\) 4.00000 + 1.05171i 0.220863 + 0.0580707i
\(329\) 9.75379 13.3405i 0.537744 0.735487i
\(330\) 0 0
\(331\) 17.6121i 0.968048i −0.875055 0.484024i \(-0.839175\pi\)
0.875055 0.484024i \(-0.160825\pi\)
\(332\) 13.1231 15.7392i 0.720224 0.863803i
\(333\) 0 0
\(334\) −18.2462 + 8.54312i −0.998388 + 0.467459i
\(335\) −36.4924 −1.99379
\(336\) 0 0
\(337\) 8.24621 0.449200 0.224600 0.974451i \(-0.427892\pi\)
0.224600 + 0.974451i \(0.427892\pi\)
\(338\) 12.1577 5.69238i 0.661290 0.309625i
\(339\) 0 0
\(340\) 22.2462 26.6811i 1.20647 1.44698i
\(341\) 0 0
\(342\) 0 0
\(343\) 17.5616 + 5.88148i 0.948235 + 0.317570i
\(344\) 24.8078 + 6.52262i 1.33754 + 0.351676i
\(345\) 0 0
\(346\) 10.0000 + 21.3578i 0.537603 + 1.14820i
\(347\) 20.1261i 1.08042i −0.841529 0.540212i \(-0.818344\pi\)
0.841529 0.540212i \(-0.181656\pi\)
\(348\) 0 0
\(349\) 21.8836i 1.17140i −0.810526 0.585702i \(-0.800819\pi\)
0.810526 0.585702i \(-0.199181\pi\)
\(350\) 4.40388 22.4833i 0.235397 1.20178i
\(351\) 0 0
\(352\) −4.31534 + 3.07221i −0.230008 + 0.163749i
\(353\) 28.9645i 1.54162i 0.637063 + 0.770812i \(0.280149\pi\)
−0.637063 + 0.770812i \(0.719851\pi\)
\(354\) 0 0
\(355\) 12.8769 0.683435
\(356\) −2.24621 1.87285i −0.119049 0.0992610i
\(357\) 0 0
\(358\) 9.68466 + 20.6843i 0.511850 + 1.09320i
\(359\) 22.8201i 1.20440i −0.798346 0.602199i \(-0.794292\pi\)
0.798346 0.602199i \(-0.205708\pi\)
\(360\) 0 0
\(361\) 31.7386 1.67045
\(362\) −1.12311 2.39871i −0.0590291 0.126073i
\(363\) 0 0
\(364\) −9.61553 + 2.39871i −0.503991 + 0.125726i
\(365\) 22.2462 1.16442
\(366\) 0 0
\(367\) −33.3693 −1.74186 −0.870932 0.491403i \(-0.836484\pi\)
−0.870932 + 0.491403i \(0.836484\pi\)
\(368\) 3.68466 0.673500i 0.192076 0.0351086i
\(369\) 0 0
\(370\) −2.24621 4.79741i −0.116775 0.249406i
\(371\) 19.1231 26.1552i 0.992822 1.35791i
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 6.24621 2.92456i 0.322984 0.151225i
\(375\) 0 0
\(376\) −4.49242 + 17.0862i −0.231679 + 0.881155i
\(377\) 3.74571i 0.192914i
\(378\) 0 0
\(379\) 25.1035i 1.28948i −0.764402 0.644740i \(-0.776966\pi\)
0.764402 0.644740i \(-0.223034\pi\)
\(380\) −36.4924 30.4268i −1.87202 1.56086i
\(381\) 0 0
\(382\) −1.68466 3.59806i −0.0861946 0.184093i
\(383\) 9.75379 0.498395 0.249198 0.968453i \(-0.419833\pi\)
0.249198 + 0.968453i \(0.419833\pi\)
\(384\) 0 0
\(385\) 4.87689 6.67026i 0.248550 0.339948i
\(386\) −19.6847 + 9.21662i −1.00192 + 0.469113i
\(387\) 0 0
\(388\) −16.0000 13.3405i −0.812277 0.677263i
\(389\) 16.2462 0.823716 0.411858 0.911248i \(-0.364880\pi\)
0.411858 + 0.911248i \(0.364880\pi\)
\(390\) 0 0
\(391\) −4.87689 −0.246635
\(392\) −19.7732 + 1.01025i −0.998697 + 0.0510253i
\(393\) 0 0
\(394\) 20.8078 9.74247i 1.04828 0.490819i
\(395\) −8.00000 −0.402524
\(396\) 0 0
\(397\) 18.1379i 0.910317i 0.890410 + 0.455159i \(0.150417\pi\)
−0.890410 + 0.455159i \(0.849583\pi\)
\(398\) −4.00000 + 1.87285i −0.200502 + 0.0938776i
\(399\) 0 0
\(400\) 4.40388 + 24.0932i 0.220194 + 1.20466i
\(401\) −8.24621 −0.411796 −0.205898 0.978573i \(-0.566012\pi\)
−0.205898 + 0.978573i \(0.566012\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −21.1231 17.6121i −1.05091 0.876234i
\(405\) 0 0
\(406\) −1.43845 + 7.34376i −0.0713889 + 0.364465i
\(407\) 1.05171i 0.0521311i
\(408\) 0 0
\(409\) 0.821147i 0.0406031i −0.999794 0.0203016i \(-0.993537\pi\)
0.999794 0.0203016i \(-0.00646263\pi\)
\(410\) 6.24621 2.92456i 0.308478 0.144434i
\(411\) 0 0
\(412\) −10.2462 + 12.2888i −0.504795 + 0.605427i
\(413\) 6.24621 8.54312i 0.307356 0.420379i
\(414\) 0 0
\(415\) 34.1725i 1.67746i
\(416\) 8.63068 6.14441i 0.423154 0.301255i
\(417\) 0 0
\(418\) −4.00000 8.54312i −0.195646 0.417858i
\(419\) 16.4924 0.805708 0.402854 0.915264i \(-0.368018\pi\)
0.402854 + 0.915264i \(0.368018\pi\)
\(420\) 0 0
\(421\) 10.8769 0.530107 0.265054 0.964234i \(-0.414610\pi\)
0.265054 + 0.964234i \(0.414610\pi\)
\(422\) 7.68466 + 16.4127i 0.374083 + 0.798959i
\(423\) 0 0
\(424\) −8.80776 + 33.4990i −0.427743 + 1.62685i
\(425\) 31.8890i 1.54685i
\(426\) 0 0
\(427\) −10.2462 7.49141i −0.495849 0.362535i
\(428\) 14.5616 + 12.1412i 0.703859 + 0.586866i
\(429\) 0 0
\(430\) 38.7386 18.1379i 1.86814 0.874689i
\(431\) 4.68213i 0.225530i 0.993622 + 0.112765i \(0.0359708\pi\)
−0.993622 + 0.112765i \(0.964029\pi\)
\(432\) 0 0
\(433\) 13.3405i 0.641105i −0.947231 0.320552i \(-0.896131\pi\)
0.947231 0.320552i \(-0.103869\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −10.5616 + 12.6670i −0.505807 + 0.606641i
\(437\) 6.67026i 0.319082i
\(438\) 0 0
\(439\) −6.63068 −0.316465 −0.158233 0.987402i \(-0.550580\pi\)
−0.158233 + 0.987402i \(0.550580\pi\)
\(440\) −2.24621 + 8.54312i −0.107084 + 0.407277i
\(441\) 0 0
\(442\) −12.4924 + 5.84912i −0.594204 + 0.278214i
\(443\) 18.8438i 0.895296i −0.894210 0.447648i \(-0.852262\pi\)
0.894210 0.447648i \(-0.147738\pi\)
\(444\) 0 0
\(445\) −4.87689 −0.231187
\(446\) 34.7386 16.2651i 1.64492 0.770174i
\(447\) 0 0
\(448\) 19.2808 8.73222i 0.910931 0.412559i
\(449\) −11.7538 −0.554696 −0.277348 0.960770i \(-0.589455\pi\)
−0.277348 + 0.960770i \(0.589455\pi\)
\(450\) 0 0
\(451\) 1.36932 0.0644786
\(452\) 5.43845 6.52262i 0.255803 0.306798i
\(453\) 0 0
\(454\) 21.1231 9.89012i 0.991356 0.464166i
\(455\) −9.75379 + 13.3405i −0.457265 + 0.625414i
\(456\) 0 0
\(457\) 0.246211 0.0115173 0.00575864 0.999983i \(-0.498167\pi\)
0.00575864 + 0.999983i \(0.498167\pi\)
\(458\) 3.36932 + 7.19612i 0.157438 + 0.336252i
\(459\) 0 0
\(460\) 4.00000 4.79741i 0.186501 0.223680i
\(461\) 6.25969i 0.291543i 0.989318 + 0.145771i \(0.0465664\pi\)
−0.989318 + 0.145771i \(0.953434\pi\)
\(462\) 0 0
\(463\) 39.2652i 1.82481i 0.409292 + 0.912404i \(0.365776\pi\)
−0.409292 + 0.912404i \(0.634224\pi\)
\(464\) −1.43845 7.86962i −0.0667782 0.365338i
\(465\) 0 0
\(466\) −28.8078 + 13.4882i −1.33449 + 0.624828i
\(467\) −34.2462 −1.58473 −0.792363 0.610050i \(-0.791149\pi\)
−0.792363 + 0.610050i \(0.791149\pi\)
\(468\) 0 0
\(469\) 23.3693 + 17.0862i 1.07909 + 0.788969i
\(470\) 12.4924 + 26.6811i 0.576232 + 1.23071i
\(471\) 0 0
\(472\) −2.87689 + 10.9418i −0.132420 + 0.503638i
\(473\) 8.49242 0.390482
\(474\) 0 0
\(475\) −43.6155 −2.00122
\(476\) −26.7386 + 6.67026i −1.22556 + 0.305731i
\(477\) 0 0
\(478\) −9.68466 20.6843i −0.442966 0.946077i
\(479\) −12.4924 −0.570793 −0.285397 0.958409i \(-0.592125\pi\)
−0.285397 + 0.958409i \(0.592125\pi\)
\(480\) 0 0
\(481\) 2.10341i 0.0959073i
\(482\) 14.2462 + 30.4268i 0.648897 + 1.38590i
\(483\) 0 0
\(484\) 12.9654 15.5501i 0.589338 0.706824i
\(485\) −34.7386 −1.57740
\(486\) 0 0
\(487\) 1.57756i 0.0714860i −0.999361 0.0357430i \(-0.988620\pi\)
0.999361 0.0357430i \(-0.0113798\pi\)
\(488\) 13.1231 + 3.45041i 0.594055 + 0.156193i
\(489\) 0 0
\(490\) −24.2462 + 22.4095i −1.09533 + 1.01236i
\(491\) 11.3524i 0.512326i −0.966634 0.256163i \(-0.917542\pi\)
0.966634 0.256163i \(-0.0824585\pi\)
\(492\) 0 0
\(493\) 10.4160i 0.469112i
\(494\) 8.00000 + 17.0862i 0.359937 + 0.768746i
\(495\) 0 0
\(496\) 0 0
\(497\) −8.24621 6.02913i −0.369893 0.270444i
\(498\) 0 0
\(499\) 13.8664i 0.620744i −0.950615 0.310372i \(-0.899546\pi\)
0.950615 0.310372i \(-0.100454\pi\)
\(500\) 5.75379 + 4.79741i 0.257317 + 0.214547i
\(501\) 0 0
\(502\) 7.36932 3.45041i 0.328909 0.153999i
\(503\) 26.7386 1.19222 0.596108 0.802904i \(-0.296713\pi\)
0.596108 + 0.802904i \(0.296713\pi\)
\(504\) 0 0
\(505\) −45.8617 −2.04082
\(506\) 1.12311 0.525853i 0.0499281 0.0233770i
\(507\) 0 0
\(508\) −15.1922 12.6670i −0.674046 0.562008i
\(509\) 3.33513i 0.147827i 0.997265 + 0.0739136i \(0.0235489\pi\)
−0.997265 + 0.0739136i \(0.976451\pi\)
\(510\) 0 0
\(511\) −14.2462 10.4160i −0.630215 0.460775i
\(512\) −15.7732 + 16.2236i −0.697083 + 0.716990i
\(513\) 0 0
\(514\) −1.36932 2.92456i −0.0603980 0.128997i
\(515\) 26.6811i 1.17571i
\(516\) 0 0
\(517\) 5.84912i 0.257244i
\(518\) −0.807764 + 4.12391i −0.0354911 + 0.181194i
\(519\) 0 0
\(520\) 4.49242 17.0862i 0.197006 0.749281i
\(521\) 29.7856i 1.30493i −0.757818 0.652466i \(-0.773734\pi\)
0.757818 0.652466i \(-0.226266\pi\)
\(522\) 0 0
\(523\) 32.4924 1.42079 0.710397 0.703801i \(-0.248515\pi\)
0.710397 + 0.703801i \(0.248515\pi\)
\(524\) −7.36932 + 8.83841i −0.321930 + 0.386108i
\(525\) 0 0
\(526\) 14.8078 + 31.6261i 0.645649 + 1.37896i
\(527\) 0 0
\(528\) 0 0
\(529\) 22.1231 0.961874
\(530\) 24.4924 + 52.3104i 1.06388 + 2.27222i
\(531\) 0 0
\(532\) 9.12311 + 36.5712i 0.395537 + 1.58556i
\(533\) −2.73863 −0.118623
\(534\) 0 0
\(535\) 31.6155 1.36686
\(536\) −29.9309 7.86962i −1.29282 0.339916i
\(537\) 0 0
\(538\) 6.49242 + 13.8664i 0.279908 + 0.597822i
\(539\) −6.24621 + 1.98813i −0.269043 + 0.0856349i
\(540\) 0 0
\(541\) 2.87689 0.123687 0.0618437 0.998086i \(-0.480302\pi\)
0.0618437 + 0.998086i \(0.480302\pi\)
\(542\) −36.4924 + 17.0862i −1.56748 + 0.733917i
\(543\) 0 0
\(544\) 24.0000 17.0862i 1.02899 0.732566i
\(545\) 27.5022i 1.17806i
\(546\) 0 0
\(547\) 16.7909i 0.717929i −0.933351 0.358964i \(-0.883130\pi\)
0.933351 0.358964i \(-0.116870\pi\)
\(548\) −0.315342 + 0.378206i −0.0134707 + 0.0161562i
\(549\) 0 0
\(550\) 3.43845 + 7.34376i 0.146616 + 0.313139i
\(551\) 14.2462 0.606909
\(552\) 0 0
\(553\) 5.12311 + 3.74571i 0.217857 + 0.159284i
\(554\) −6.56155 + 3.07221i −0.278774 + 0.130526i
\(555\) 0 0
\(556\) −15.3693 + 18.4332i −0.651804 + 0.781743i
\(557\) −14.0000 −0.593199 −0.296600 0.955002i \(-0.595853\pi\)
−0.296600 + 0.955002i \(0.595853\pi\)
\(558\) 0 0
\(559\) −16.9848 −0.718382
\(560\) 15.3693 31.7738i 0.649472 1.34269i
\(561\) 0 0
\(562\) −20.8078 + 9.74247i −0.877723 + 0.410961i
\(563\) −2.24621 −0.0946665 −0.0473333 0.998879i \(-0.515072\pi\)
−0.0473333 + 0.998879i \(0.515072\pi\)
\(564\) 0 0
\(565\) 14.1617i 0.595786i
\(566\) 11.3693 5.32326i 0.477888 0.223753i
\(567\) 0 0
\(568\) 10.5616 + 2.77691i 0.443153 + 0.116517i
\(569\) 30.9848 1.29895 0.649476 0.760382i \(-0.274988\pi\)
0.649476 + 0.760382i \(0.274988\pi\)
\(570\) 0 0
\(571\) 8.83841i 0.369876i −0.982750 0.184938i \(-0.940792\pi\)
0.982750 0.184938i \(-0.0592084\pi\)
\(572\) 2.24621 2.69400i 0.0939188 0.112642i
\(573\) 0 0
\(574\) −5.36932 1.05171i −0.224111 0.0438973i
\(575\) 5.73384i 0.239118i
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −12.9654 + 6.07059i −0.539291 + 0.252503i
\(579\) 0 0
\(580\) −10.2462 8.54312i −0.425451 0.354734i
\(581\) −16.0000 + 21.8836i −0.663792 + 0.907887i
\(582\) 0 0
\(583\) 11.4677i 0.474943i
\(584\) 18.2462 + 4.79741i 0.755034 + 0.198518i
\(585\) 0 0
\(586\) −8.24621 17.6121i −0.340648 0.727549i
\(587\) 21.7538 0.897875 0.448937 0.893563i \(-0.351803\pi\)
0.448937 + 0.893563i \(0.351803\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 8.00000 + 17.0862i 0.329355 + 0.703429i
\(591\) 0 0
\(592\) −0.807764 4.41921i −0.0331989 0.181628i
\(593\) 26.0399i 1.06933i 0.845064 + 0.534666i \(0.179562\pi\)
−0.845064 + 0.534666i \(0.820438\pi\)
\(594\) 0 0
\(595\) −27.1231 + 37.0970i −1.11194 + 1.52083i
\(596\) 12.8078 15.3610i 0.524626 0.629212i
\(597\) 0 0
\(598\) −2.24621 + 1.05171i −0.0918544 + 0.0430074i
\(599\) 17.2015i 0.702835i 0.936219 + 0.351417i \(0.114300\pi\)
−0.936219 + 0.351417i \(0.885700\pi\)
\(600\) 0 0
\(601\) 17.0862i 0.696962i −0.937316 0.348481i \(-0.886698\pi\)
0.937316 0.348481i \(-0.113302\pi\)
\(602\) −33.3002 6.52262i −1.35721 0.265842i
\(603\) 0 0
\(604\) −13.9309 11.6153i −0.566839 0.472621i
\(605\) 33.7619i 1.37262i
\(606\) 0 0
\(607\) 7.61553 0.309105 0.154552 0.987985i \(-0.450606\pi\)
0.154552 + 0.987985i \(0.450606\pi\)
\(608\) −23.3693 32.8255i −0.947751 1.33125i
\(609\) 0 0
\(610\) 20.4924 9.59482i 0.829714 0.388483i
\(611\) 11.6982i 0.473260i
\(612\) 0 0
\(613\) 8.73863 0.352950 0.176475 0.984305i \(-0.443531\pi\)
0.176475 + 0.984305i \(0.443531\pi\)
\(614\) 25.1231 11.7630i 1.01389 0.474715i
\(615\) 0 0
\(616\) 5.43845 4.41921i 0.219121 0.178055i
\(617\) −32.2462 −1.29818 −0.649092 0.760710i \(-0.724851\pi\)
−0.649092 + 0.760710i \(0.724851\pi\)
\(618\) 0 0
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −10.2462 + 4.79741i −0.410836 + 0.192359i
\(623\) 3.12311 + 2.28343i 0.125125 + 0.0914835i
\(624\) 0 0
\(625\) −18.1231 −0.724924
\(626\) −13.7538 29.3751i −0.549712 1.17406i
\(627\) 0 0
\(628\) −33.6155 28.0281i −1.34141 1.11844i
\(629\) 5.84912i 0.233220i
\(630\) 0 0
\(631\) 40.3169i 1.60499i −0.596659 0.802495i \(-0.703506\pi\)
0.596659 0.802495i \(-0.296494\pi\)
\(632\) −6.56155 1.72521i −0.261005 0.0686250i
\(633\) 0 0
\(634\) 18.5616 8.69076i 0.737173 0.345154i
\(635\) −32.9848 −1.30896
\(636\) 0 0
\(637\) 12.4924 3.97626i 0.494968 0.157545i
\(638\) −1.12311 2.39871i −0.0444642 0.0949657i
\(639\) 0 0
\(640\) −2.87689 + 37.6229i −0.113719 + 1.48717i
\(641\) 42.4924 1.67835 0.839175 0.543862i \(-0.183038\pi\)
0.839175 + 0.543862i \(0.183038\pi\)
\(642\) 0 0
\(643\) −11.6155 −0.458072 −0.229036 0.973418i \(-0.573557\pi\)
−0.229036 + 0.973418i \(0.573557\pi\)
\(644\) −4.80776 + 1.19935i −0.189452 + 0.0472611i
\(645\) 0 0
\(646\) 22.2462 + 47.5130i 0.875265 + 1.86937i
\(647\) 32.9848 1.29677 0.648384 0.761313i \(-0.275445\pi\)
0.648384 + 0.761313i \(0.275445\pi\)
\(648\) 0 0
\(649\) 3.74571i 0.147032i
\(650\) −6.87689 14.6875i −0.269734 0.576092i
\(651\) 0 0
\(652\) 24.1771 + 20.1584i 0.946848 + 0.789465i
\(653\) −16.7386 −0.655033 −0.327517 0.944845i \(-0.606212\pi\)
−0.327517 + 0.944845i \(0.606212\pi\)
\(654\) 0 0
\(655\) 19.1896i 0.749801i
\(656\) 5.75379 1.05171i 0.224648 0.0410622i
\(657\) 0 0
\(658\) 4.49242 22.9354i 0.175133 0.894113i
\(659\) 26.7963i 1.04384i −0.852995 0.521919i \(-0.825217\pi\)
0.852995 0.521919i \(-0.174783\pi\)
\(660\) 0 0
\(661\) 8.54312i 0.332289i 0.986101 + 0.166144i \(0.0531318\pi\)
−0.986101 + 0.166144i \(0.946868\pi\)
\(662\) −10.5616 22.5571i −0.410486 0.876708i
\(663\) 0 0
\(664\) 7.36932 28.0281i 0.285985 1.08770i
\(665\) 50.7386 + 37.0970i 1.96756 + 1.43856i
\(666\) 0 0
\(667\) 1.87285i 0.0725171i
\(668\) −18.2462 + 21.8836i −0.705967 + 0.846704i
\(669\) 0 0
\(670\) −46.7386 + 21.8836i −1.80567 + 0.845439i
\(671\) 4.49242 0.173428
\(672\) 0 0
\(673\) −27.8617 −1.07399 −0.536996 0.843585i \(-0.680441\pi\)
−0.536996 + 0.843585i \(0.680441\pi\)
\(674\) 10.5616 4.94506i 0.406816 0.190477i
\(675\) 0 0
\(676\) 12.1577 14.5813i 0.467603 0.560821i
\(677\) 9.18425i 0.352979i −0.984302 0.176490i \(-0.943526\pi\)
0.984302 0.176490i \(-0.0564742\pi\)
\(678\) 0 0
\(679\) 22.2462 + 16.2651i 0.853731 + 0.624197i
\(680\) 12.4924 47.5130i 0.479063 1.82204i
\(681\) 0 0
\(682\) 0 0
\(683\) 32.1843i 1.23150i −0.787942 0.615750i \(-0.788853\pi\)
0.787942 0.615750i \(-0.211147\pi\)
\(684\) 0 0
\(685\) 0.821147i 0.0313744i
\(686\) 26.0194 2.99838i 0.993426 0.114479i
\(687\) 0 0
\(688\) 35.6847 6.52262i 1.36046 0.248672i
\(689\) 22.9354i 0.873767i
\(690\) 0 0
\(691\) 12.0000 0.456502 0.228251 0.973602i \(-0.426699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(692\) 25.6155 + 21.3578i 0.973756 + 0.811901i
\(693\) 0 0
\(694\) −12.0691 25.7770i −0.458138 0.978481i
\(695\) 40.0216i 1.51811i
\(696\) 0 0
\(697\) −7.61553 −0.288459
\(698\) −13.1231 28.0281i −0.496717 1.06088i
\(699\) 0 0
\(700\) −7.84233 31.4370i −0.296412 1.18821i
\(701\) 34.0000 1.28416 0.642081 0.766637i \(-0.278071\pi\)
0.642081 + 0.766637i \(0.278071\pi\)
\(702\) 0 0
\(703\) 8.00000 0.301726
\(704\) −3.68466 + 6.52262i −0.138871 + 0.245830i
\(705\) 0 0
\(706\) 17.3693 + 37.0970i 0.653703 + 1.39616i
\(707\) 29.3693 + 21.4731i 1.10455 + 0.807578i
\(708\) 0 0
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) 16.4924 7.72197i 0.618950 0.289800i
\(711\) 0 0
\(712\) −4.00000 1.05171i −0.149906 0.0394143i
\(713\) 0 0
\(714\) 0 0
\(715\) 5.84912i 0.218745i
\(716\) 24.8078 + 20.6843i 0.927110 + 0.773008i
\(717\) 0 0
\(718\) −13.6847 29.2274i −0.510707 1.09076i
\(719\) −28.4924 −1.06259 −0.531294 0.847187i \(-0.678294\pi\)
−0.531294 + 0.847187i \(0.678294\pi\)
\(720\) 0 0
\(721\) 12.4924 17.0862i 0.465242 0.636325i
\(722\) 40.6501 19.0329i 1.51284 0.708332i
\(723\) 0 0
\(724\) −2.87689 2.39871i −0.106919 0.0891472i
\(725\) −12.2462 −0.454813
\(726\) 0 0
\(727\) 32.9848 1.22334 0.611670 0.791113i \(-0.290498\pi\)
0.611670 + 0.791113i \(0.290498\pi\)
\(728\) −10.8769 + 8.83841i −0.403125 + 0.327573i
\(729\) 0 0
\(730\) 28.4924 13.3405i 1.05455 0.493755i
\(731\) −47.2311 −1.74690
\(732\) 0 0
\(733\) 36.0453i 1.33136i 0.746235 + 0.665682i \(0.231859\pi\)
−0.746235 + 0.665682i \(0.768141\pi\)
\(734\) −42.7386 + 20.0108i −1.57751 + 0.738612i
\(735\) 0 0
\(736\) 4.31534 3.07221i 0.159066 0.113243i
\(737\) −10.2462 −0.377424
\(738\) 0 0
\(739\) 36.5712i 1.34529i 0.739964 + 0.672646i \(0.234842\pi\)
−0.739964 + 0.672646i \(0.765158\pi\)
\(740\) −5.75379 4.79741i −0.211513 0.176356i
\(741\) 0 0
\(742\) 8.80776 44.9666i 0.323343 1.65078i
\(743\) 35.1089i 1.28802i 0.765017 + 0.644010i \(0.222731\pi\)
−0.765017 + 0.644010i \(0.777269\pi\)
\(744\) 0 0
\(745\) 33.3513i 1.22190i
\(746\) −12.8078 + 5.99676i −0.468926 + 0.219557i
\(747\) 0 0
\(748\) 6.24621 7.49141i 0.228384 0.273913i
\(749\) −20.2462 14.8028i −0.739780 0.540883i
\(750\) 0 0
\(751\) 28.8492i 1.05272i 0.850261 + 0.526361i \(0.176444\pi\)
−0.850261 + 0.526361i \(0.823556\pi\)
\(752\) 4.49242 + 24.5776i 0.163822 + 0.896254i
\(753\) 0 0
\(754\) 2.24621 + 4.79741i 0.0818022 + 0.174711i
\(755\) −30.2462 −1.10077
\(756\) 0 0
\(757\) −34.9848 −1.27155 −0.635773 0.771876i \(-0.719319\pi\)
−0.635773 + 0.771876i \(0.719319\pi\)
\(758\) −15.0540 32.1520i −0.546785 1.16781i
\(759\) 0 0
\(760\) −64.9848 17.0862i −2.35725 0.619783i
\(761\) 29.7856i 1.07973i 0.841752 + 0.539864i \(0.181524\pi\)
−0.841752 + 0.539864i \(0.818476\pi\)
\(762\) 0 0
\(763\) 12.8769 17.6121i 0.466175 0.637600i
\(764\) −4.31534 3.59806i −0.156124 0.130173i
\(765\) 0 0
\(766\) 12.4924 5.84912i 0.451370 0.211337i
\(767\) 7.49141i 0.270499i
\(768\) 0 0
\(769\) 32.5302i 1.17307i −0.809925 0.586534i \(-0.800492\pi\)
0.809925 0.586534i \(-0.199508\pi\)
\(770\) 2.24621 11.4677i 0.0809478 0.413266i
\(771\) 0 0
\(772\) −19.6847 + 23.6089i −0.708466 + 0.849701i
\(773\) 3.33513i 0.119956i −0.998200 0.0599782i \(-0.980897\pi\)
0.998200 0.0599782i \(-0.0191031\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −28.4924 7.49141i −1.02282 0.268926i
\(777\) 0 0
\(778\) 20.8078 9.74247i 0.745994 0.349284i
\(779\) 10.4160i 0.373191i
\(780\) 0 0
\(781\) 3.61553 0.129374
\(782\) −6.24621 + 2.92456i −0.223364 + 0.104582i
\(783\) 0 0
\(784\) −24.7192 + 13.1514i −0.882829 + 0.469694i
\(785\) −72.9848 −2.60494
\(786\) 0 0
\(787\) −44.9848 −1.60354 −0.801768 0.597635i \(-0.796107\pi\)
−0.801768 + 0.597635i \(0.796107\pi\)
\(788\) 20.8078 24.9559i 0.741246 0.889015i
\(789\) 0 0
\(790\) −10.2462 + 4.79741i −0.364544 + 0.170684i
\(791\) −6.63068 + 9.06897i −0.235760 + 0.322455i
\(792\) 0 0
\(793\) −8.98485 −0.319061
\(794\) 10.8769 + 23.2306i 0.386007 + 0.824425i
\(795\) 0 0
\(796\) −4.00000 + 4.79741i −0.141776 + 0.170040i
\(797\) 39.6110i 1.40309i −0.712623 0.701547i \(-0.752493\pi\)
0.712623 0.701547i \(-0.247507\pi\)
\(798\) 0 0
\(799\) 32.5302i 1.15083i
\(800\) 20.0885 + 28.2172i 0.710237 + 0.997627i
\(801\) 0 0
\(802\) −10.5616 + 4.94506i −0.372941 + 0.174616i
\(803\) 6.24621 0.220424
\(804\) 0 0
\(805\) −4.87689 + 6.67026i −0.171888 + 0.235096i
\(806\) 0 0
\(807\) 0 0
\(808\) −37.6155 9.89012i −1.32331 0.347933i
\(809\) −22.4924 −0.790791 −0.395396 0.918511i \(-0.629393\pi\)
−0.395396 + 0.918511i \(0.629393\pi\)
\(810\) 0 0
\(811\) 0.492423 0.0172913 0.00864565 0.999963i \(-0.497248\pi\)
0.00864565 + 0.999963i \(0.497248\pi\)
\(812\) 2.56155 + 10.2683i 0.0898929 + 0.360347i
\(813\) 0 0
\(814\) −0.630683 1.34700i −0.0221054 0.0472123i
\(815\) 52.4924 1.83873
\(816\) 0 0
\(817\) 64.5992i 2.26004i
\(818\) −0.492423 1.05171i −0.0172171 0.0367720i
\(819\) 0 0
\(820\) 6.24621 7.49141i 0.218127 0.261611i
\(821\) 57.2311 1.99738 0.998689 0.0511922i \(-0.0163021\pi\)
0.998689 + 0.0511922i \(0.0163021\pi\)
\(822\) 0 0
\(823\) 13.0452i 0.454728i 0.973810 + 0.227364i \(0.0730108\pi\)
−0.973810 + 0.227364i \(0.926989\pi\)
\(824\) −5.75379 + 21.8836i −0.200443 + 0.762353i
\(825\) 0 0
\(826\) 2.87689 14.6875i 0.100100 0.511044i
\(827\) 55.9408i 1.94525i −0.232373 0.972627i \(-0.574649\pi\)
0.232373 0.972627i \(-0.425351\pi\)
\(828\) 0 0
\(829\) 21.0625i 0.731531i 0.930707 + 0.365765i \(0.119193\pi\)
−0.930707 + 0.365765i \(0.880807\pi\)
\(830\) −20.4924 43.7673i −0.711302 1.51918i
\(831\) 0 0
\(832\) 7.36932 13.0452i 0.255485 0.452262i
\(833\) 34.7386 11.0571i 1.20362 0.383106i
\(834\) 0 0
\(835\) 47.5130i 1.64426i
\(836\) −10.2462 8.54312i −0.354373 0.295470i
\(837\) 0 0
\(838\) 21.1231 9.89012i 0.729686 0.341648i
\(839\) 42.7386 1.47550 0.737751 0.675073i \(-0.235888\pi\)
0.737751 + 0.675073i \(0.235888\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 13.9309 6.52262i 0.480089 0.224784i
\(843\) 0 0
\(844\) 19.6847 + 16.4127i 0.677574 + 0.564950i
\(845\) 31.6585i 1.08908i
\(846\) 0 0
\(847\) −15.8078 + 21.6207i −0.543161 + 0.742897i
\(848\) 8.80776 + 48.1865i 0.302460 + 1.65473i
\(849\) 0 0
\(850\) −19.1231 40.8427i −0.655917 1.40089i
\(851\) 1.05171i 0.0360520i
\(852\) 0 0
\(853\) 50.2070i 1.71905i 0.511090 + 0.859527i \(0.329242\pi\)
−0.511090 + 0.859527i \(0.670758\pi\)
\(854\) −17.6155 3.45041i −0.602791 0.118071i
\(855\) 0 0
\(856\) 25.9309 + 6.81791i 0.886299 + 0.233031i
\(857\) 56.4667i 1.92887i 0.264329 + 0.964433i \(0.414850\pi\)
−0.264329 + 0.964433i \(0.585150\pi\)
\(858\) 0 0
\(859\) −25.8617 −0.882391 −0.441196 0.897411i \(-0.645445\pi\)
−0.441196 + 0.897411i \(0.645445\pi\)
\(860\) 38.7386 46.4613i 1.32098 1.58432i
\(861\) 0 0
\(862\) 2.80776 + 5.99676i 0.0956328 + 0.204251i
\(863\) 8.65840i 0.294735i −0.989082 0.147368i \(-0.952920\pi\)
0.989082 0.147368i \(-0.0470800\pi\)
\(864\) 0 0
\(865\) 55.6155 1.89098
\(866\) −8.00000 17.0862i −0.271851 0.580614i
\(867\) 0 0
\(868\) 0 0
\(869\) −2.24621 −0.0761975
\(870\) 0 0
\(871\) 20.4924 0.694359
\(872\) −5.93087 + 22.5571i −0.200845 + 0.763881i
\(873\) 0 0
\(874\) 4.00000 + 8.54312i 0.135302 + 0.288975i
\(875\) −8.00000 5.84912i −0.270449 0.197736i
\(876\) 0 0
\(877\) 36.2462 1.22395 0.611974 0.790878i \(-0.290376\pi\)
0.611974 + 0.790878i \(0.290376\pi\)
\(878\) −8.49242 + 3.97626i −0.286605 + 0.134192i
\(879\) 0 0
\(880\) 2.24621 + 12.2888i 0.0757198 + 0.414256i
\(881\) 46.8719i 1.57915i −0.613652 0.789577i \(-0.710300\pi\)
0.613652 0.789577i \(-0.289700\pi\)
\(882\) 0 0
\(883\) 18.6638i 0.628087i 0.949409 + 0.314043i \(0.101684\pi\)
−0.949409 + 0.314043i \(0.898316\pi\)
\(884\) −12.4924 + 14.9828i −0.420166 + 0.503927i
\(885\) 0 0
\(886\) −11.3002 24.1347i −0.379637 0.810821i
\(887\) 26.7386 0.897795 0.448898 0.893583i \(-0.351817\pi\)
0.448898 + 0.893583i \(0.351817\pi\)
\(888\) 0 0
\(889\) 21.1231 + 15.4439i 0.708446 + 0.517973i
\(890\) −6.24621 + 2.92456i −0.209373 + 0.0980314i
\(891\) 0 0
\(892\) 34.7386 41.6639i 1.16314 1.39501i
\(893\) −44.4924 −1.48888
\(894\) 0 0
\(895\) 53.8617 1.80040
\(896\) 19.4579 22.7462i 0.650041 0.759899i
\(897\) 0 0
\(898\) −15.0540 + 7.04847i −0.502358 + 0.235210i
\(899\) 0 0
\(900\) 0 0
\(901\) 63.7781i 2.12476i
\(902\) 1.75379 0.821147i 0.0583948 0.0273412i
\(903\) 0 0
\(904\) 3.05398 11.6153i 0.101574 0.386320i
\(905\) −6.24621 −0.207631
\(906\) 0 0
\(907\) 38.4440i 1.27651i −0.769824 0.638256i \(-0.779656\pi\)
0.769824 0.638256i \(-0.220344\pi\)
\(908\) 21.1231 25.3341i 0.700995 0.840740i
\(909\) 0 0
\(910\) −4.49242 + 22.9354i −0.148922 + 0.760299i
\(911\) 5.73384i 0.189971i −0.995479 0.0949853i \(-0.969720\pi\)
0.995479 0.0949853i \(-0.0302804\pi\)
\(912\) 0 0
\(913\) 9.59482i 0.317542i
\(914\) 0.315342 0.147647i 0.0104306 0.00488373i
\(915\) 0 0
\(916\) 8.63068 + 7.19612i 0.285166 + 0.237766i
\(917\) 8.98485 12.2888i 0.296706 0.405813i
\(918\) 0 0
\(919\) 9.06897i 0.299158i −0.988750 0.149579i \(-0.952208\pi\)
0.988750 0.149579i \(-0.0477918\pi\)
\(920\) 2.24621 8.54312i 0.0740554 0.281658i
\(921\) 0 0
\(922\) 3.75379 + 8.01726i 0.123624 + 0.264035i
\(923\) −7.23106 −0.238013
\(924\) 0 0
\(925\) −6.87689 −0.226111
\(926\) 23.5464 + 50.2899i 0.773783 + 1.65263i
\(927\) 0 0
\(928\) −6.56155 9.21662i −0.215394 0.302550i
\(929\) 3.56569i 0.116987i 0.998288 + 0.0584933i \(0.0186296\pi\)
−0.998288 + 0.0584933i \(0.981370\pi\)
\(930\) 0 0
\(931\) −15.1231 47.5130i −0.495640 1.55718i
\(932\) −28.8078 + 34.5507i −0.943630 + 1.13174i
\(933\) 0 0
\(934\) −43.8617 + 20.5366i −1.43520 + 0.671980i
\(935\) 16.2651i 0.531925i
\(936\) 0 0
\(937\) 28.7845i 0.940348i 0.882574 + 0.470174i \(0.155809\pi\)
−0.882574 + 0.470174i \(0.844191\pi\)
\(938\) 40.1771 + 7.86962i 1.31183 + 0.256952i
\(939\) 0 0
\(940\) 32.0000 + 26.6811i 1.04372 + 0.870240i
\(941\) 53.7727i 1.75294i 0.481457 + 0.876470i \(0.340108\pi\)
−0.481457 + 0.876470i \(0.659892\pi\)
\(942\) 0 0
\(943\) −1.36932 −0.0445911
\(944\) 2.87689 + 15.7392i 0.0936349 + 0.512268i
\(945\) 0 0
\(946\) 10.8769 5.09271i 0.353638 0.165578i
\(947\) 48.6800i 1.58189i 0.611889 + 0.790943i \(0.290410\pi\)
−0.611889 + 0.790943i \(0.709590\pi\)
\(948\) 0 0
\(949\) −12.4924 −0.405521
\(950\) −55.8617 + 26.1552i −1.81239 + 0.848587i
\(951\) 0 0
\(952\) −30.2462 + 24.5776i −0.980285 + 0.796566i
\(953\) 21.2311 0.687741 0.343871 0.939017i \(-0.388262\pi\)
0.343871 + 0.939017i \(0.388262\pi\)
\(954\) 0 0
\(955\) −9.36932 −0.303184
\(956\) −24.8078 20.6843i −0.802340 0.668978i
\(957\) 0 0
\(958\) −16.0000 + 7.49141i −0.516937 + 0.242037i
\(959\) 0.384472 0.525853i 0.0124152 0.0169807i
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 1.26137 + 2.69400i 0.0406681 + 0.0868580i
\(963\) 0 0
\(964\) 36.4924 + 30.4268i 1.17534 + 0.979980i
\(965\) 51.2587i 1.65008i
\(966\) 0 0
\(967\) 8.83841i 0.284224i 0.989851 + 0.142112i \(0.0453893\pi\)
−0.989851 + 0.142112i \(0.954611\pi\)
\(968\) 7.28078 27.6913i 0.234013 0.890032i
\(969\) 0 0
\(970\) −44.4924 + 20.8319i −1.42857 + 0.668873i
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 0 0
\(973\) 18.7386 25.6294i 0.600733 0.821639i
\(974\) −0.946025 2.02050i −0.0303126 0.0647410i
\(975\) 0 0
\(976\) 18.8769 3.45041i 0.604235 0.110445i
\(977\) 11.2614 0.360283 0.180142 0.983641i \(-0.442344\pi\)
0.180142 + 0.983641i \(0.442344\pi\)
\(978\) 0 0
\(979\) −1.36932 −0.0437636
\(980\) −17.6155 + 43.2414i −0.562707 + 1.38130i
\(981\) 0 0
\(982\) −6.80776 14.5399i −0.217244 0.463986i
\(983\) −5.26137 −0.167812 −0.0839058 0.996474i \(-0.526739\pi\)
−0.0839058 + 0.996474i \(0.526739\pi\)
\(984\) 0 0
\(985\) 54.1833i 1.72642i
\(986\) 6.24621 + 13.3405i 0.198920 + 0.424849i
\(987\) 0 0
\(988\) 20.4924 + 17.0862i 0.651951 + 0.543586i
\(989\) −8.49242 −0.270043
\(990\) 0 0
\(991\) 0.525853i 0.0167043i 0.999965 + 0.00835213i \(0.00265860\pi\)
−0.999965 + 0.00835213i \(0.997341\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −14.1771 2.77691i −0.449670 0.0880783i
\(995\) 10.4160i 0.330208i
\(996\) 0 0
\(997\) 19.7802i 0.626446i −0.949680 0.313223i \(-0.898591\pi\)
0.949680 0.313223i \(-0.101409\pi\)
\(998\) −8.31534 17.7597i −0.263218 0.562175i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.2.b.e.55.3 4
3.2 odd 2 84.2.b.a.55.2 yes 4
4.3 odd 2 252.2.b.d.55.4 4
7.6 odd 2 252.2.b.d.55.3 4
8.3 odd 2 4032.2.b.j.3583.4 4
8.5 even 2 4032.2.b.n.3583.4 4
12.11 even 2 84.2.b.b.55.1 yes 4
21.2 odd 6 588.2.o.c.31.4 8
21.5 even 6 588.2.o.a.31.4 8
21.11 odd 6 588.2.o.c.19.2 8
21.17 even 6 588.2.o.a.19.2 8
21.20 even 2 84.2.b.b.55.2 yes 4
24.5 odd 2 1344.2.b.f.895.1 4
24.11 even 2 1344.2.b.e.895.1 4
28.27 even 2 inner 252.2.b.e.55.4 4
56.13 odd 2 4032.2.b.j.3583.1 4
56.27 even 2 4032.2.b.n.3583.1 4
84.11 even 6 588.2.o.a.19.4 8
84.23 even 6 588.2.o.a.31.2 8
84.47 odd 6 588.2.o.c.31.2 8
84.59 odd 6 588.2.o.c.19.4 8
84.83 odd 2 84.2.b.a.55.1 4
168.83 odd 2 1344.2.b.f.895.4 4
168.125 even 2 1344.2.b.e.895.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.b.a.55.1 4 84.83 odd 2
84.2.b.a.55.2 yes 4 3.2 odd 2
84.2.b.b.55.1 yes 4 12.11 even 2
84.2.b.b.55.2 yes 4 21.20 even 2
252.2.b.d.55.3 4 7.6 odd 2
252.2.b.d.55.4 4 4.3 odd 2
252.2.b.e.55.3 4 1.1 even 1 trivial
252.2.b.e.55.4 4 28.27 even 2 inner
588.2.o.a.19.2 8 21.17 even 6
588.2.o.a.19.4 8 84.11 even 6
588.2.o.a.31.2 8 84.23 even 6
588.2.o.a.31.4 8 21.5 even 6
588.2.o.c.19.2 8 21.11 odd 6
588.2.o.c.19.4 8 84.59 odd 6
588.2.o.c.31.2 8 84.47 odd 6
588.2.o.c.31.4 8 21.2 odd 6
1344.2.b.e.895.1 4 24.11 even 2
1344.2.b.e.895.4 4 168.125 even 2
1344.2.b.f.895.1 4 24.5 odd 2
1344.2.b.f.895.4 4 168.83 odd 2
4032.2.b.j.3583.1 4 56.13 odd 2
4032.2.b.j.3583.4 4 8.3 odd 2
4032.2.b.n.3583.1 4 56.27 even 2
4032.2.b.n.3583.4 4 8.5 even 2