Newspace parameters
Level: | \( N \) | \(=\) | \( 2500 = 2^{2} \cdot 5^{4} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 2500.h (of order \(10\), degree \(4\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.24766253158\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{10})\) |
Coefficient field: | \(\Q(\zeta_{20})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - x^{6} + x^{4} - x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 100) |
Projective image: | \(D_{5}\) |
Projective field: | Galois closure of 5.1.6250000.1 |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2500\mathbb{Z}\right)^\times\).
\(n\) | \(1251\) | \(1877\) |
\(\chi(n)\) | \(-1\) | \(\zeta_{20}^{6}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
499.1 |
|
−0.951057 | + | 0.309017i | 0 | 0.809017 | − | 0.587785i | 0 | 0 | 0 | −0.587785 | + | 0.809017i | −0.309017 | + | 0.951057i | 0 | ||||||||||||||||||||||||||||||||||
499.2 | 0.951057 | − | 0.309017i | 0 | 0.809017 | − | 0.587785i | 0 | 0 | 0 | 0.587785 | − | 0.809017i | −0.309017 | + | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||
999.1 | −0.587785 | − | 0.809017i | 0 | −0.309017 | + | 0.951057i | 0 | 0 | 0 | 0.951057 | − | 0.309017i | 0.809017 | + | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||
999.2 | 0.587785 | + | 0.809017i | 0 | −0.309017 | + | 0.951057i | 0 | 0 | 0 | −0.951057 | + | 0.309017i | 0.809017 | + | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||
1499.1 | −0.587785 | + | 0.809017i | 0 | −0.309017 | − | 0.951057i | 0 | 0 | 0 | 0.951057 | + | 0.309017i | 0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||
1499.2 | 0.587785 | − | 0.809017i | 0 | −0.309017 | − | 0.951057i | 0 | 0 | 0 | −0.951057 | − | 0.309017i | 0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||||||||||||||||
1999.1 | −0.951057 | − | 0.309017i | 0 | 0.809017 | + | 0.587785i | 0 | 0 | 0 | −0.587785 | − | 0.809017i | −0.309017 | − | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||
1999.2 | 0.951057 | + | 0.309017i | 0 | 0.809017 | + | 0.587785i | 0 | 0 | 0 | 0.587785 | + | 0.809017i | −0.309017 | − | 0.951057i | 0 | |||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-1}) \) |
5.b | even | 2 | 1 | inner |
20.d | odd | 2 | 1 | inner |
25.d | even | 5 | 1 | inner |
25.e | even | 10 | 1 | inner |
100.h | odd | 10 | 1 | inner |
100.j | odd | 10 | 1 | inner |
Twists
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3} \)
acting on \(S_{1}^{\mathrm{new}}(2500, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} - T^{6} + T^{4} - T^{2} + 1 \)
$3$
\( T^{8} \)
$5$
\( T^{8} \)
$7$
\( T^{8} \)
$11$
\( T^{8} \)
$13$
\( T^{8} + T^{6} + 6 T^{4} - 4 T^{2} + 1 \)
$17$
\( T^{8} + T^{6} + 6 T^{4} - 4 T^{2} + 1 \)
$19$
\( T^{8} \)
$23$
\( T^{8} \)
$29$
\( (T^{4} + 3 T^{3} + 4 T^{2} + 2 T + 1)^{2} \)
$31$
\( T^{8} \)
$37$
\( T^{8} - 4 T^{6} + 6 T^{4} + T^{2} + 1 \)
$41$
\( (T^{4} - 3 T^{3} + 4 T^{2} - 2 T + 1)^{2} \)
$43$
\( T^{8} \)
$47$
\( T^{8} \)
$53$
\( T^{8} - 4 T^{6} + 6 T^{4} + T^{2} + 1 \)
$59$
\( T^{8} \)
$61$
\( (T^{4} - 3 T^{3} + 4 T^{2} - 2 T + 1)^{2} \)
$67$
\( T^{8} \)
$71$
\( T^{8} \)
$73$
\( T^{8} + T^{6} + 6 T^{4} - 4 T^{2} + 1 \)
$79$
\( T^{8} \)
$83$
\( T^{8} \)
$89$
\( (T^{4} - 2 T^{3} + 4 T^{2} - 3 T + 1)^{2} \)
$97$
\( T^{8} + T^{6} + 6 T^{4} - 4 T^{2} + 1 \)
show more
show less