Defining parameters
Level: | \( N \) | = | \( 2500 = 2^{2} \cdot 5^{4} \) |
Weight: | \( k \) | = | \( 1 \) |
Nonzero newspaces: | \( 7 \) | ||
Newform subspaces: | \( 15 \) | ||
Sturm bound: | \(375000\) | ||
Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(2500))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3058 | 984 | 2074 |
Cusp forms | 308 | 216 | 92 |
Eisenstein series | 2750 | 768 | 1982 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 216 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(2500))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(2500))\) into lower level spaces
\( S_{1}^{\mathrm{old}}(\Gamma_1(2500)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(500))\)\(^{\oplus 2}\)