Properties

Label 2496.4.a.bt.1.3
Level $2496$
Weight $4$
Character 2496.1
Self dual yes
Analytic conductor $147.269$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2496,4,Mod(1,2496)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2496.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2496, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-12,0,2,0,10,0,36,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(147.268767374\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.236113.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 15x^{2} + 16x + 47 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 1248)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(4.01754\) of defining polynomial
Character \(\chi\) \(=\) 2496.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +6.51212 q^{5} +22.5823 q^{7} +9.00000 q^{9} -13.1609 q^{11} +13.0000 q^{13} -19.5364 q^{15} -125.275 q^{17} -32.9509 q^{19} -67.7469 q^{21} -116.368 q^{23} -82.5922 q^{25} -27.0000 q^{27} +260.556 q^{29} +77.2094 q^{31} +39.4827 q^{33} +147.059 q^{35} +61.4140 q^{37} -39.0000 q^{39} -17.5300 q^{41} -103.599 q^{43} +58.6091 q^{45} +415.804 q^{47} +166.960 q^{49} +375.824 q^{51} +86.9305 q^{53} -85.7053 q^{55} +98.8526 q^{57} +461.382 q^{59} +169.230 q^{61} +203.241 q^{63} +84.6576 q^{65} +20.0114 q^{67} +349.103 q^{69} +552.787 q^{71} +127.948 q^{73} +247.777 q^{75} -297.203 q^{77} +447.402 q^{79} +81.0000 q^{81} +568.017 q^{83} -815.804 q^{85} -781.669 q^{87} +128.368 q^{89} +293.570 q^{91} -231.628 q^{93} -214.580 q^{95} -791.936 q^{97} -118.448 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{3} + 2 q^{5} + 10 q^{7} + 36 q^{9} + 56 q^{11} + 52 q^{13} - 6 q^{15} + 36 q^{17} + 186 q^{19} - 30 q^{21} + 52 q^{23} - 32 q^{25} - 108 q^{27} + 316 q^{29} + 130 q^{31} - 168 q^{33} + 348 q^{35}+ \cdots + 504 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 6.51212 0.582462 0.291231 0.956653i \(-0.405935\pi\)
0.291231 + 0.956653i \(0.405935\pi\)
\(6\) 0 0
\(7\) 22.5823 1.21933 0.609665 0.792659i \(-0.291304\pi\)
0.609665 + 0.792659i \(0.291304\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −13.1609 −0.360741 −0.180371 0.983599i \(-0.557730\pi\)
−0.180371 + 0.983599i \(0.557730\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) −19.5364 −0.336285
\(16\) 0 0
\(17\) −125.275 −1.78727 −0.893634 0.448796i \(-0.851853\pi\)
−0.893634 + 0.448796i \(0.851853\pi\)
\(18\) 0 0
\(19\) −32.9509 −0.397866 −0.198933 0.980013i \(-0.563748\pi\)
−0.198933 + 0.980013i \(0.563748\pi\)
\(20\) 0 0
\(21\) −67.7469 −0.703980
\(22\) 0 0
\(23\) −116.368 −1.05497 −0.527485 0.849564i \(-0.676865\pi\)
−0.527485 + 0.849564i \(0.676865\pi\)
\(24\) 0 0
\(25\) −82.5922 −0.660738
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 260.556 1.66842 0.834209 0.551449i \(-0.185925\pi\)
0.834209 + 0.551449i \(0.185925\pi\)
\(30\) 0 0
\(31\) 77.2094 0.447330 0.223665 0.974666i \(-0.428198\pi\)
0.223665 + 0.974666i \(0.428198\pi\)
\(32\) 0 0
\(33\) 39.4827 0.208274
\(34\) 0 0
\(35\) 147.059 0.710213
\(36\) 0 0
\(37\) 61.4140 0.272876 0.136438 0.990649i \(-0.456435\pi\)
0.136438 + 0.990649i \(0.456435\pi\)
\(38\) 0 0
\(39\) −39.0000 −0.160128
\(40\) 0 0
\(41\) −17.5300 −0.0667737 −0.0333868 0.999443i \(-0.510629\pi\)
−0.0333868 + 0.999443i \(0.510629\pi\)
\(42\) 0 0
\(43\) −103.599 −0.367410 −0.183705 0.982981i \(-0.558809\pi\)
−0.183705 + 0.982981i \(0.558809\pi\)
\(44\) 0 0
\(45\) 58.6091 0.194154
\(46\) 0 0
\(47\) 415.804 1.29045 0.645226 0.763992i \(-0.276763\pi\)
0.645226 + 0.763992i \(0.276763\pi\)
\(48\) 0 0
\(49\) 166.960 0.486764
\(50\) 0 0
\(51\) 375.824 1.03188
\(52\) 0 0
\(53\) 86.9305 0.225298 0.112649 0.993635i \(-0.464066\pi\)
0.112649 + 0.993635i \(0.464066\pi\)
\(54\) 0 0
\(55\) −85.7053 −0.210118
\(56\) 0 0
\(57\) 98.8526 0.229708
\(58\) 0 0
\(59\) 461.382 1.01808 0.509040 0.860743i \(-0.330000\pi\)
0.509040 + 0.860743i \(0.330000\pi\)
\(60\) 0 0
\(61\) 169.230 0.355207 0.177604 0.984102i \(-0.443166\pi\)
0.177604 + 0.984102i \(0.443166\pi\)
\(62\) 0 0
\(63\) 203.241 0.406443
\(64\) 0 0
\(65\) 84.6576 0.161546
\(66\) 0 0
\(67\) 20.0114 0.0364892 0.0182446 0.999834i \(-0.494192\pi\)
0.0182446 + 0.999834i \(0.494192\pi\)
\(68\) 0 0
\(69\) 349.103 0.609087
\(70\) 0 0
\(71\) 552.787 0.923997 0.461998 0.886881i \(-0.347133\pi\)
0.461998 + 0.886881i \(0.347133\pi\)
\(72\) 0 0
\(73\) 127.948 0.205139 0.102569 0.994726i \(-0.467294\pi\)
0.102569 + 0.994726i \(0.467294\pi\)
\(74\) 0 0
\(75\) 247.777 0.381477
\(76\) 0 0
\(77\) −297.203 −0.439863
\(78\) 0 0
\(79\) 447.402 0.637173 0.318587 0.947894i \(-0.396792\pi\)
0.318587 + 0.947894i \(0.396792\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 568.017 0.751181 0.375590 0.926786i \(-0.377440\pi\)
0.375590 + 0.926786i \(0.377440\pi\)
\(84\) 0 0
\(85\) −815.804 −1.04102
\(86\) 0 0
\(87\) −781.669 −0.963261
\(88\) 0 0
\(89\) 128.368 0.152887 0.0764436 0.997074i \(-0.475643\pi\)
0.0764436 + 0.997074i \(0.475643\pi\)
\(90\) 0 0
\(91\) 293.570 0.338181
\(92\) 0 0
\(93\) −231.628 −0.258266
\(94\) 0 0
\(95\) −214.580 −0.231742
\(96\) 0 0
\(97\) −791.936 −0.828958 −0.414479 0.910059i \(-0.636036\pi\)
−0.414479 + 0.910059i \(0.636036\pi\)
\(98\) 0 0
\(99\) −118.448 −0.120247
\(100\) 0 0
\(101\) 1133.39 1.11660 0.558298 0.829641i \(-0.311455\pi\)
0.558298 + 0.829641i \(0.311455\pi\)
\(102\) 0 0
\(103\) −1089.54 −1.04229 −0.521144 0.853469i \(-0.674494\pi\)
−0.521144 + 0.853469i \(0.674494\pi\)
\(104\) 0 0
\(105\) −441.176 −0.410042
\(106\) 0 0
\(107\) 1650.59 1.49129 0.745647 0.666341i \(-0.232140\pi\)
0.745647 + 0.666341i \(0.232140\pi\)
\(108\) 0 0
\(109\) −1013.17 −0.890311 −0.445155 0.895453i \(-0.646852\pi\)
−0.445155 + 0.895453i \(0.646852\pi\)
\(110\) 0 0
\(111\) −184.242 −0.157545
\(112\) 0 0
\(113\) 308.918 0.257173 0.128586 0.991698i \(-0.458956\pi\)
0.128586 + 0.991698i \(0.458956\pi\)
\(114\) 0 0
\(115\) −757.800 −0.614480
\(116\) 0 0
\(117\) 117.000 0.0924500
\(118\) 0 0
\(119\) −2828.99 −2.17927
\(120\) 0 0
\(121\) −1157.79 −0.869866
\(122\) 0 0
\(123\) 52.5899 0.0385518
\(124\) 0 0
\(125\) −1351.87 −0.967317
\(126\) 0 0
\(127\) −1580.96 −1.10462 −0.552312 0.833637i \(-0.686254\pi\)
−0.552312 + 0.833637i \(0.686254\pi\)
\(128\) 0 0
\(129\) 310.796 0.212124
\(130\) 0 0
\(131\) 1193.91 0.796280 0.398140 0.917325i \(-0.369656\pi\)
0.398140 + 0.917325i \(0.369656\pi\)
\(132\) 0 0
\(133\) −744.106 −0.485129
\(134\) 0 0
\(135\) −175.827 −0.112095
\(136\) 0 0
\(137\) −1717.73 −1.07121 −0.535606 0.844468i \(-0.679917\pi\)
−0.535606 + 0.844468i \(0.679917\pi\)
\(138\) 0 0
\(139\) 2604.90 1.58953 0.794764 0.606918i \(-0.207594\pi\)
0.794764 + 0.606918i \(0.207594\pi\)
\(140\) 0 0
\(141\) −1247.41 −0.745043
\(142\) 0 0
\(143\) −171.092 −0.100052
\(144\) 0 0
\(145\) 1696.78 0.971790
\(146\) 0 0
\(147\) −500.880 −0.281033
\(148\) 0 0
\(149\) 2360.00 1.29758 0.648789 0.760968i \(-0.275276\pi\)
0.648789 + 0.760968i \(0.275276\pi\)
\(150\) 0 0
\(151\) 2579.82 1.39035 0.695174 0.718842i \(-0.255327\pi\)
0.695174 + 0.718842i \(0.255327\pi\)
\(152\) 0 0
\(153\) −1127.47 −0.595756
\(154\) 0 0
\(155\) 502.797 0.260553
\(156\) 0 0
\(157\) 1051.22 0.534371 0.267185 0.963645i \(-0.413906\pi\)
0.267185 + 0.963645i \(0.413906\pi\)
\(158\) 0 0
\(159\) −260.791 −0.130076
\(160\) 0 0
\(161\) −2627.85 −1.28636
\(162\) 0 0
\(163\) 277.072 0.133141 0.0665703 0.997782i \(-0.478794\pi\)
0.0665703 + 0.997782i \(0.478794\pi\)
\(164\) 0 0
\(165\) 257.116 0.121312
\(166\) 0 0
\(167\) 2486.70 1.15226 0.576128 0.817359i \(-0.304563\pi\)
0.576128 + 0.817359i \(0.304563\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) −296.558 −0.132622
\(172\) 0 0
\(173\) −2381.25 −1.04649 −0.523245 0.852182i \(-0.675279\pi\)
−0.523245 + 0.852182i \(0.675279\pi\)
\(174\) 0 0
\(175\) −1865.12 −0.805657
\(176\) 0 0
\(177\) −1384.14 −0.587789
\(178\) 0 0
\(179\) 1712.08 0.714898 0.357449 0.933933i \(-0.383647\pi\)
0.357449 + 0.933933i \(0.383647\pi\)
\(180\) 0 0
\(181\) −1549.09 −0.636151 −0.318075 0.948065i \(-0.603037\pi\)
−0.318075 + 0.948065i \(0.603037\pi\)
\(182\) 0 0
\(183\) −507.689 −0.205079
\(184\) 0 0
\(185\) 399.936 0.158940
\(186\) 0 0
\(187\) 1648.72 0.644742
\(188\) 0 0
\(189\) −609.722 −0.234660
\(190\) 0 0
\(191\) 3577.70 1.35536 0.677679 0.735358i \(-0.262986\pi\)
0.677679 + 0.735358i \(0.262986\pi\)
\(192\) 0 0
\(193\) 4139.79 1.54398 0.771990 0.635634i \(-0.219261\pi\)
0.771990 + 0.635634i \(0.219261\pi\)
\(194\) 0 0
\(195\) −253.973 −0.0932686
\(196\) 0 0
\(197\) −688.709 −0.249079 −0.124539 0.992215i \(-0.539745\pi\)
−0.124539 + 0.992215i \(0.539745\pi\)
\(198\) 0 0
\(199\) 1245.05 0.443513 0.221757 0.975102i \(-0.428821\pi\)
0.221757 + 0.975102i \(0.428821\pi\)
\(200\) 0 0
\(201\) −60.0341 −0.0210671
\(202\) 0 0
\(203\) 5883.96 2.03435
\(204\) 0 0
\(205\) −114.157 −0.0388931
\(206\) 0 0
\(207\) −1047.31 −0.351657
\(208\) 0 0
\(209\) 433.663 0.143527
\(210\) 0 0
\(211\) 2470.01 0.805889 0.402945 0.915224i \(-0.367987\pi\)
0.402945 + 0.915224i \(0.367987\pi\)
\(212\) 0 0
\(213\) −1658.36 −0.533470
\(214\) 0 0
\(215\) −674.647 −0.214003
\(216\) 0 0
\(217\) 1743.57 0.545442
\(218\) 0 0
\(219\) −383.843 −0.118437
\(220\) 0 0
\(221\) −1628.57 −0.495699
\(222\) 0 0
\(223\) −6281.55 −1.88630 −0.943148 0.332373i \(-0.892151\pi\)
−0.943148 + 0.332373i \(0.892151\pi\)
\(224\) 0 0
\(225\) −743.330 −0.220246
\(226\) 0 0
\(227\) 1321.57 0.386413 0.193206 0.981158i \(-0.438111\pi\)
0.193206 + 0.981158i \(0.438111\pi\)
\(228\) 0 0
\(229\) −1499.85 −0.432809 −0.216404 0.976304i \(-0.569433\pi\)
−0.216404 + 0.976304i \(0.569433\pi\)
\(230\) 0 0
\(231\) 891.609 0.253955
\(232\) 0 0
\(233\) −5601.84 −1.57506 −0.787530 0.616276i \(-0.788640\pi\)
−0.787530 + 0.616276i \(0.788640\pi\)
\(234\) 0 0
\(235\) 2707.77 0.751639
\(236\) 0 0
\(237\) −1342.21 −0.367872
\(238\) 0 0
\(239\) −445.036 −0.120448 −0.0602238 0.998185i \(-0.519181\pi\)
−0.0602238 + 0.998185i \(0.519181\pi\)
\(240\) 0 0
\(241\) 2507.44 0.670202 0.335101 0.942182i \(-0.391230\pi\)
0.335101 + 0.942182i \(0.391230\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 1087.26 0.283522
\(246\) 0 0
\(247\) −428.361 −0.110348
\(248\) 0 0
\(249\) −1704.05 −0.433694
\(250\) 0 0
\(251\) −3702.60 −0.931099 −0.465549 0.885022i \(-0.654143\pi\)
−0.465549 + 0.885022i \(0.654143\pi\)
\(252\) 0 0
\(253\) 1531.50 0.380572
\(254\) 0 0
\(255\) 2447.41 0.601031
\(256\) 0 0
\(257\) 612.839 0.148747 0.0743733 0.997230i \(-0.476304\pi\)
0.0743733 + 0.997230i \(0.476304\pi\)
\(258\) 0 0
\(259\) 1386.87 0.332726
\(260\) 0 0
\(261\) 2345.01 0.556139
\(262\) 0 0
\(263\) 1552.09 0.363901 0.181950 0.983308i \(-0.441759\pi\)
0.181950 + 0.983308i \(0.441759\pi\)
\(264\) 0 0
\(265\) 566.102 0.131228
\(266\) 0 0
\(267\) −385.103 −0.0882694
\(268\) 0 0
\(269\) −1668.83 −0.378254 −0.189127 0.981953i \(-0.560566\pi\)
−0.189127 + 0.981953i \(0.560566\pi\)
\(270\) 0 0
\(271\) −452.859 −0.101510 −0.0507550 0.998711i \(-0.516163\pi\)
−0.0507550 + 0.998711i \(0.516163\pi\)
\(272\) 0 0
\(273\) −880.709 −0.195249
\(274\) 0 0
\(275\) 1086.99 0.238356
\(276\) 0 0
\(277\) 5103.35 1.10697 0.553484 0.832860i \(-0.313298\pi\)
0.553484 + 0.832860i \(0.313298\pi\)
\(278\) 0 0
\(279\) 694.885 0.149110
\(280\) 0 0
\(281\) 5683.36 1.20655 0.603275 0.797533i \(-0.293862\pi\)
0.603275 + 0.797533i \(0.293862\pi\)
\(282\) 0 0
\(283\) −3307.47 −0.694730 −0.347365 0.937730i \(-0.612923\pi\)
−0.347365 + 0.937730i \(0.612923\pi\)
\(284\) 0 0
\(285\) 643.741 0.133796
\(286\) 0 0
\(287\) −395.867 −0.0814191
\(288\) 0 0
\(289\) 10780.7 2.19433
\(290\) 0 0
\(291\) 2375.81 0.478599
\(292\) 0 0
\(293\) 2748.84 0.548085 0.274043 0.961718i \(-0.411639\pi\)
0.274043 + 0.961718i \(0.411639\pi\)
\(294\) 0 0
\(295\) 3004.57 0.592993
\(296\) 0 0
\(297\) 355.344 0.0694247
\(298\) 0 0
\(299\) −1512.78 −0.292596
\(300\) 0 0
\(301\) −2339.50 −0.447994
\(302\) 0 0
\(303\) −3400.16 −0.644666
\(304\) 0 0
\(305\) 1102.04 0.206895
\(306\) 0 0
\(307\) 7534.52 1.40071 0.700355 0.713795i \(-0.253025\pi\)
0.700355 + 0.713795i \(0.253025\pi\)
\(308\) 0 0
\(309\) 3268.62 0.601765
\(310\) 0 0
\(311\) 6582.52 1.20019 0.600097 0.799927i \(-0.295128\pi\)
0.600097 + 0.799927i \(0.295128\pi\)
\(312\) 0 0
\(313\) 1766.54 0.319012 0.159506 0.987197i \(-0.449010\pi\)
0.159506 + 0.987197i \(0.449010\pi\)
\(314\) 0 0
\(315\) 1323.53 0.236738
\(316\) 0 0
\(317\) 5966.06 1.05706 0.528529 0.848915i \(-0.322744\pi\)
0.528529 + 0.848915i \(0.322744\pi\)
\(318\) 0 0
\(319\) −3429.15 −0.601868
\(320\) 0 0
\(321\) −4951.77 −0.860999
\(322\) 0 0
\(323\) 4127.91 0.711093
\(324\) 0 0
\(325\) −1073.70 −0.183256
\(326\) 0 0
\(327\) 3039.50 0.514021
\(328\) 0 0
\(329\) 9389.81 1.57349
\(330\) 0 0
\(331\) 8087.52 1.34299 0.671496 0.741008i \(-0.265652\pi\)
0.671496 + 0.741008i \(0.265652\pi\)
\(332\) 0 0
\(333\) 552.726 0.0909586
\(334\) 0 0
\(335\) 130.317 0.0212536
\(336\) 0 0
\(337\) −9553.64 −1.54427 −0.772137 0.635457i \(-0.780812\pi\)
−0.772137 + 0.635457i \(0.780812\pi\)
\(338\) 0 0
\(339\) −926.753 −0.148479
\(340\) 0 0
\(341\) −1016.14 −0.161370
\(342\) 0 0
\(343\) −3975.39 −0.625804
\(344\) 0 0
\(345\) 2273.40 0.354770
\(346\) 0 0
\(347\) 3345.46 0.517561 0.258781 0.965936i \(-0.416679\pi\)
0.258781 + 0.965936i \(0.416679\pi\)
\(348\) 0 0
\(349\) 331.054 0.0507763 0.0253881 0.999678i \(-0.491918\pi\)
0.0253881 + 0.999678i \(0.491918\pi\)
\(350\) 0 0
\(351\) −351.000 −0.0533761
\(352\) 0 0
\(353\) 1412.78 0.213016 0.106508 0.994312i \(-0.466033\pi\)
0.106508 + 0.994312i \(0.466033\pi\)
\(354\) 0 0
\(355\) 3599.82 0.538193
\(356\) 0 0
\(357\) 8486.97 1.25820
\(358\) 0 0
\(359\) −5722.37 −0.841267 −0.420634 0.907231i \(-0.638192\pi\)
−0.420634 + 0.907231i \(0.638192\pi\)
\(360\) 0 0
\(361\) −5773.24 −0.841703
\(362\) 0 0
\(363\) 3473.37 0.502217
\(364\) 0 0
\(365\) 833.210 0.119486
\(366\) 0 0
\(367\) 12313.9 1.75144 0.875721 0.482818i \(-0.160387\pi\)
0.875721 + 0.482818i \(0.160387\pi\)
\(368\) 0 0
\(369\) −157.770 −0.0222579
\(370\) 0 0
\(371\) 1963.09 0.274713
\(372\) 0 0
\(373\) 1198.51 0.166371 0.0831855 0.996534i \(-0.473491\pi\)
0.0831855 + 0.996534i \(0.473491\pi\)
\(374\) 0 0
\(375\) 4055.60 0.558481
\(376\) 0 0
\(377\) 3387.23 0.462736
\(378\) 0 0
\(379\) −8328.75 −1.12881 −0.564405 0.825498i \(-0.690894\pi\)
−0.564405 + 0.825498i \(0.690894\pi\)
\(380\) 0 0
\(381\) 4742.87 0.637755
\(382\) 0 0
\(383\) −8173.12 −1.09041 −0.545205 0.838303i \(-0.683548\pi\)
−0.545205 + 0.838303i \(0.683548\pi\)
\(384\) 0 0
\(385\) −1935.42 −0.256203
\(386\) 0 0
\(387\) −932.388 −0.122470
\(388\) 0 0
\(389\) 13705.5 1.78637 0.893183 0.449694i \(-0.148467\pi\)
0.893183 + 0.449694i \(0.148467\pi\)
\(390\) 0 0
\(391\) 14577.9 1.88551
\(392\) 0 0
\(393\) −3581.74 −0.459733
\(394\) 0 0
\(395\) 2913.54 0.371129
\(396\) 0 0
\(397\) −12455.3 −1.57459 −0.787294 0.616578i \(-0.788519\pi\)
−0.787294 + 0.616578i \(0.788519\pi\)
\(398\) 0 0
\(399\) 2232.32 0.280090
\(400\) 0 0
\(401\) −11270.2 −1.40351 −0.701755 0.712418i \(-0.747600\pi\)
−0.701755 + 0.712418i \(0.747600\pi\)
\(402\) 0 0
\(403\) 1003.72 0.124067
\(404\) 0 0
\(405\) 527.482 0.0647180
\(406\) 0 0
\(407\) −808.263 −0.0984377
\(408\) 0 0
\(409\) −10185.5 −1.23139 −0.615697 0.787983i \(-0.711126\pi\)
−0.615697 + 0.787983i \(0.711126\pi\)
\(410\) 0 0
\(411\) 5153.20 0.618464
\(412\) 0 0
\(413\) 10419.1 1.24138
\(414\) 0 0
\(415\) 3699.00 0.437534
\(416\) 0 0
\(417\) −7814.69 −0.917715
\(418\) 0 0
\(419\) 2008.02 0.234124 0.117062 0.993125i \(-0.462652\pi\)
0.117062 + 0.993125i \(0.462652\pi\)
\(420\) 0 0
\(421\) −11699.1 −1.35435 −0.677175 0.735822i \(-0.736796\pi\)
−0.677175 + 0.735822i \(0.736796\pi\)
\(422\) 0 0
\(423\) 3742.23 0.430151
\(424\) 0 0
\(425\) 10346.7 1.18092
\(426\) 0 0
\(427\) 3821.59 0.433114
\(428\) 0 0
\(429\) 513.275 0.0577649
\(430\) 0 0
\(431\) 15665.6 1.75078 0.875388 0.483421i \(-0.160606\pi\)
0.875388 + 0.483421i \(0.160606\pi\)
\(432\) 0 0
\(433\) 12046.0 1.33694 0.668470 0.743739i \(-0.266949\pi\)
0.668470 + 0.743739i \(0.266949\pi\)
\(434\) 0 0
\(435\) −5090.33 −0.561063
\(436\) 0 0
\(437\) 3834.41 0.419737
\(438\) 0 0
\(439\) 15371.0 1.67112 0.835558 0.549403i \(-0.185145\pi\)
0.835558 + 0.549403i \(0.185145\pi\)
\(440\) 0 0
\(441\) 1502.64 0.162255
\(442\) 0 0
\(443\) −16694.2 −1.79044 −0.895221 0.445622i \(-0.852982\pi\)
−0.895221 + 0.445622i \(0.852982\pi\)
\(444\) 0 0
\(445\) 835.947 0.0890510
\(446\) 0 0
\(447\) −7080.01 −0.749157
\(448\) 0 0
\(449\) −14300.7 −1.50310 −0.751551 0.659674i \(-0.770694\pi\)
−0.751551 + 0.659674i \(0.770694\pi\)
\(450\) 0 0
\(451\) 230.710 0.0240880
\(452\) 0 0
\(453\) −7739.45 −0.802717
\(454\) 0 0
\(455\) 1911.76 0.196978
\(456\) 0 0
\(457\) 15350.3 1.57124 0.785620 0.618709i \(-0.212344\pi\)
0.785620 + 0.618709i \(0.212344\pi\)
\(458\) 0 0
\(459\) 3382.41 0.343960
\(460\) 0 0
\(461\) 12323.5 1.24504 0.622520 0.782604i \(-0.286109\pi\)
0.622520 + 0.782604i \(0.286109\pi\)
\(462\) 0 0
\(463\) 8439.91 0.847162 0.423581 0.905858i \(-0.360773\pi\)
0.423581 + 0.905858i \(0.360773\pi\)
\(464\) 0 0
\(465\) −1508.39 −0.150430
\(466\) 0 0
\(467\) 3609.28 0.357639 0.178820 0.983882i \(-0.442772\pi\)
0.178820 + 0.983882i \(0.442772\pi\)
\(468\) 0 0
\(469\) 451.903 0.0444924
\(470\) 0 0
\(471\) −3153.65 −0.308519
\(472\) 0 0
\(473\) 1363.45 0.132540
\(474\) 0 0
\(475\) 2721.49 0.262885
\(476\) 0 0
\(477\) 782.374 0.0750995
\(478\) 0 0
\(479\) 12736.9 1.21496 0.607478 0.794336i \(-0.292181\pi\)
0.607478 + 0.794336i \(0.292181\pi\)
\(480\) 0 0
\(481\) 798.383 0.0756822
\(482\) 0 0
\(483\) 7883.54 0.742678
\(484\) 0 0
\(485\) −5157.18 −0.482836
\(486\) 0 0
\(487\) 6441.08 0.599329 0.299664 0.954045i \(-0.403125\pi\)
0.299664 + 0.954045i \(0.403125\pi\)
\(488\) 0 0
\(489\) −831.215 −0.0768688
\(490\) 0 0
\(491\) 4176.71 0.383895 0.191947 0.981405i \(-0.438520\pi\)
0.191947 + 0.981405i \(0.438520\pi\)
\(492\) 0 0
\(493\) −32641.1 −2.98191
\(494\) 0 0
\(495\) −771.348 −0.0700394
\(496\) 0 0
\(497\) 12483.2 1.12666
\(498\) 0 0
\(499\) −11691.3 −1.04885 −0.524423 0.851458i \(-0.675719\pi\)
−0.524423 + 0.851458i \(0.675719\pi\)
\(500\) 0 0
\(501\) −7460.11 −0.665256
\(502\) 0 0
\(503\) 6431.16 0.570082 0.285041 0.958515i \(-0.407993\pi\)
0.285041 + 0.958515i \(0.407993\pi\)
\(504\) 0 0
\(505\) 7380.75 0.650374
\(506\) 0 0
\(507\) −507.000 −0.0444116
\(508\) 0 0
\(509\) 3233.43 0.281570 0.140785 0.990040i \(-0.455037\pi\)
0.140785 + 0.990040i \(0.455037\pi\)
\(510\) 0 0
\(511\) 2889.35 0.250132
\(512\) 0 0
\(513\) 889.674 0.0765693
\(514\) 0 0
\(515\) −7095.22 −0.607093
\(516\) 0 0
\(517\) −5472.35 −0.465519
\(518\) 0 0
\(519\) 7143.74 0.604191
\(520\) 0 0
\(521\) −17045.9 −1.43338 −0.716691 0.697390i \(-0.754344\pi\)
−0.716691 + 0.697390i \(0.754344\pi\)
\(522\) 0 0
\(523\) 9386.30 0.784769 0.392384 0.919801i \(-0.371650\pi\)
0.392384 + 0.919801i \(0.371650\pi\)
\(524\) 0 0
\(525\) 5595.37 0.465146
\(526\) 0 0
\(527\) −9672.38 −0.799498
\(528\) 0 0
\(529\) 1374.42 0.112963
\(530\) 0 0
\(531\) 4152.43 0.339360
\(532\) 0 0
\(533\) −227.890 −0.0185197
\(534\) 0 0
\(535\) 10748.8 0.868623
\(536\) 0 0
\(537\) −5136.24 −0.412747
\(538\) 0 0
\(539\) −2197.34 −0.175596
\(540\) 0 0
\(541\) −6637.81 −0.527508 −0.263754 0.964590i \(-0.584961\pi\)
−0.263754 + 0.964590i \(0.584961\pi\)
\(542\) 0 0
\(543\) 4647.28 0.367282
\(544\) 0 0
\(545\) −6597.87 −0.518572
\(546\) 0 0
\(547\) −16415.4 −1.28313 −0.641565 0.767069i \(-0.721714\pi\)
−0.641565 + 0.767069i \(0.721714\pi\)
\(548\) 0 0
\(549\) 1523.07 0.118402
\(550\) 0 0
\(551\) −8585.56 −0.663806
\(552\) 0 0
\(553\) 10103.4 0.776924
\(554\) 0 0
\(555\) −1199.81 −0.0917640
\(556\) 0 0
\(557\) −13742.1 −1.04537 −0.522686 0.852525i \(-0.675070\pi\)
−0.522686 + 0.852525i \(0.675070\pi\)
\(558\) 0 0
\(559\) −1346.78 −0.101901
\(560\) 0 0
\(561\) −4946.17 −0.372242
\(562\) 0 0
\(563\) 10957.2 0.820233 0.410117 0.912033i \(-0.365488\pi\)
0.410117 + 0.912033i \(0.365488\pi\)
\(564\) 0 0
\(565\) 2011.71 0.149793
\(566\) 0 0
\(567\) 1829.17 0.135481
\(568\) 0 0
\(569\) 10525.2 0.775466 0.387733 0.921772i \(-0.373258\pi\)
0.387733 + 0.921772i \(0.373258\pi\)
\(570\) 0 0
\(571\) 7781.17 0.570284 0.285142 0.958485i \(-0.407959\pi\)
0.285142 + 0.958485i \(0.407959\pi\)
\(572\) 0 0
\(573\) −10733.1 −0.782516
\(574\) 0 0
\(575\) 9611.06 0.697059
\(576\) 0 0
\(577\) −2079.07 −0.150005 −0.0750025 0.997183i \(-0.523896\pi\)
−0.0750025 + 0.997183i \(0.523896\pi\)
\(578\) 0 0
\(579\) −12419.4 −0.891418
\(580\) 0 0
\(581\) 12827.1 0.915937
\(582\) 0 0
\(583\) −1144.08 −0.0812745
\(584\) 0 0
\(585\) 761.919 0.0538486
\(586\) 0 0
\(587\) −14632.4 −1.02887 −0.514434 0.857530i \(-0.671998\pi\)
−0.514434 + 0.857530i \(0.671998\pi\)
\(588\) 0 0
\(589\) −2544.12 −0.177977
\(590\) 0 0
\(591\) 2066.13 0.143806
\(592\) 0 0
\(593\) 1047.10 0.0725114 0.0362557 0.999343i \(-0.488457\pi\)
0.0362557 + 0.999343i \(0.488457\pi\)
\(594\) 0 0
\(595\) −18422.7 −1.26934
\(596\) 0 0
\(597\) −3735.15 −0.256063
\(598\) 0 0
\(599\) 8729.16 0.595432 0.297716 0.954655i \(-0.403775\pi\)
0.297716 + 0.954655i \(0.403775\pi\)
\(600\) 0 0
\(601\) 758.735 0.0514966 0.0257483 0.999668i \(-0.491803\pi\)
0.0257483 + 0.999668i \(0.491803\pi\)
\(602\) 0 0
\(603\) 180.102 0.0121631
\(604\) 0 0
\(605\) −7539.68 −0.506664
\(606\) 0 0
\(607\) −7230.78 −0.483506 −0.241753 0.970338i \(-0.577722\pi\)
−0.241753 + 0.970338i \(0.577722\pi\)
\(608\) 0 0
\(609\) −17651.9 −1.17453
\(610\) 0 0
\(611\) 5405.45 0.357907
\(612\) 0 0
\(613\) 10545.4 0.694822 0.347411 0.937713i \(-0.387061\pi\)
0.347411 + 0.937713i \(0.387061\pi\)
\(614\) 0 0
\(615\) 342.472 0.0224550
\(616\) 0 0
\(617\) 16441.2 1.07277 0.536384 0.843974i \(-0.319790\pi\)
0.536384 + 0.843974i \(0.319790\pi\)
\(618\) 0 0
\(619\) −10865.8 −0.705550 −0.352775 0.935708i \(-0.614762\pi\)
−0.352775 + 0.935708i \(0.614762\pi\)
\(620\) 0 0
\(621\) 3141.92 0.203029
\(622\) 0 0
\(623\) 2898.84 0.186420
\(624\) 0 0
\(625\) 1520.51 0.0973124
\(626\) 0 0
\(627\) −1300.99 −0.0828652
\(628\) 0 0
\(629\) −7693.62 −0.487702
\(630\) 0 0
\(631\) 13405.8 0.845762 0.422881 0.906185i \(-0.361019\pi\)
0.422881 + 0.906185i \(0.361019\pi\)
\(632\) 0 0
\(633\) −7410.04 −0.465281
\(634\) 0 0
\(635\) −10295.4 −0.643402
\(636\) 0 0
\(637\) 2170.48 0.135004
\(638\) 0 0
\(639\) 4975.09 0.307999
\(640\) 0 0
\(641\) 1407.18 0.0867085 0.0433542 0.999060i \(-0.486196\pi\)
0.0433542 + 0.999060i \(0.486196\pi\)
\(642\) 0 0
\(643\) 13866.2 0.850432 0.425216 0.905092i \(-0.360198\pi\)
0.425216 + 0.905092i \(0.360198\pi\)
\(644\) 0 0
\(645\) 2023.94 0.123554
\(646\) 0 0
\(647\) 1556.99 0.0946086 0.0473043 0.998881i \(-0.484937\pi\)
0.0473043 + 0.998881i \(0.484937\pi\)
\(648\) 0 0
\(649\) −6072.19 −0.367264
\(650\) 0 0
\(651\) −5230.70 −0.314911
\(652\) 0 0
\(653\) 11808.5 0.707659 0.353830 0.935310i \(-0.384879\pi\)
0.353830 + 0.935310i \(0.384879\pi\)
\(654\) 0 0
\(655\) 7774.91 0.463803
\(656\) 0 0
\(657\) 1151.53 0.0683796
\(658\) 0 0
\(659\) −21323.7 −1.26048 −0.630238 0.776402i \(-0.717043\pi\)
−0.630238 + 0.776402i \(0.717043\pi\)
\(660\) 0 0
\(661\) −10085.6 −0.593471 −0.296735 0.954960i \(-0.595898\pi\)
−0.296735 + 0.954960i \(0.595898\pi\)
\(662\) 0 0
\(663\) 4885.71 0.286192
\(664\) 0 0
\(665\) −4845.71 −0.282570
\(666\) 0 0
\(667\) −30320.3 −1.76013
\(668\) 0 0
\(669\) 18844.7 1.08905
\(670\) 0 0
\(671\) −2227.21 −0.128138
\(672\) 0 0
\(673\) 18383.1 1.05292 0.526461 0.850199i \(-0.323518\pi\)
0.526461 + 0.850199i \(0.323518\pi\)
\(674\) 0 0
\(675\) 2229.99 0.127159
\(676\) 0 0
\(677\) 15609.9 0.886170 0.443085 0.896480i \(-0.353884\pi\)
0.443085 + 0.896480i \(0.353884\pi\)
\(678\) 0 0
\(679\) −17883.7 −1.01077
\(680\) 0 0
\(681\) −3964.71 −0.223095
\(682\) 0 0
\(683\) −22909.0 −1.28344 −0.641720 0.766939i \(-0.721779\pi\)
−0.641720 + 0.766939i \(0.721779\pi\)
\(684\) 0 0
\(685\) −11186.1 −0.623940
\(686\) 0 0
\(687\) 4499.56 0.249882
\(688\) 0 0
\(689\) 1130.10 0.0624866
\(690\) 0 0
\(691\) 32473.9 1.78780 0.893898 0.448271i \(-0.147960\pi\)
0.893898 + 0.448271i \(0.147960\pi\)
\(692\) 0 0
\(693\) −2674.83 −0.146621
\(694\) 0 0
\(695\) 16963.4 0.925840
\(696\) 0 0
\(697\) 2196.06 0.119342
\(698\) 0 0
\(699\) 16805.5 0.909361
\(700\) 0 0
\(701\) 23789.4 1.28176 0.640881 0.767640i \(-0.278569\pi\)
0.640881 + 0.767640i \(0.278569\pi\)
\(702\) 0 0
\(703\) −2023.65 −0.108568
\(704\) 0 0
\(705\) −8123.30 −0.433959
\(706\) 0 0
\(707\) 25594.5 1.36150
\(708\) 0 0
\(709\) −21638.2 −1.14618 −0.573088 0.819494i \(-0.694255\pi\)
−0.573088 + 0.819494i \(0.694255\pi\)
\(710\) 0 0
\(711\) 4026.62 0.212391
\(712\) 0 0
\(713\) −8984.68 −0.471920
\(714\) 0 0
\(715\) −1114.17 −0.0582763
\(716\) 0 0
\(717\) 1335.11 0.0695405
\(718\) 0 0
\(719\) 3482.57 0.180637 0.0903185 0.995913i \(-0.471211\pi\)
0.0903185 + 0.995913i \(0.471211\pi\)
\(720\) 0 0
\(721\) −24604.3 −1.27089
\(722\) 0 0
\(723\) −7522.33 −0.386941
\(724\) 0 0
\(725\) −21519.9 −1.10239
\(726\) 0 0
\(727\) −13591.7 −0.693381 −0.346690 0.937980i \(-0.612695\pi\)
−0.346690 + 0.937980i \(0.612695\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 12978.3 0.656661
\(732\) 0 0
\(733\) −18531.9 −0.933820 −0.466910 0.884305i \(-0.654633\pi\)
−0.466910 + 0.884305i \(0.654633\pi\)
\(734\) 0 0
\(735\) −3261.79 −0.163691
\(736\) 0 0
\(737\) −263.367 −0.0131632
\(738\) 0 0
\(739\) 5161.20 0.256912 0.128456 0.991715i \(-0.458998\pi\)
0.128456 + 0.991715i \(0.458998\pi\)
\(740\) 0 0
\(741\) 1285.08 0.0637095
\(742\) 0 0
\(743\) −16650.3 −0.822128 −0.411064 0.911607i \(-0.634843\pi\)
−0.411064 + 0.911607i \(0.634843\pi\)
\(744\) 0 0
\(745\) 15368.6 0.755790
\(746\) 0 0
\(747\) 5112.16 0.250394
\(748\) 0 0
\(749\) 37274.1 1.81838
\(750\) 0 0
\(751\) −9917.76 −0.481896 −0.240948 0.970538i \(-0.577458\pi\)
−0.240948 + 0.970538i \(0.577458\pi\)
\(752\) 0 0
\(753\) 11107.8 0.537570
\(754\) 0 0
\(755\) 16800.1 0.809825
\(756\) 0 0
\(757\) 7455.62 0.357965 0.178982 0.983852i \(-0.442720\pi\)
0.178982 + 0.983852i \(0.442720\pi\)
\(758\) 0 0
\(759\) −4594.50 −0.219723
\(760\) 0 0
\(761\) −6527.00 −0.310912 −0.155456 0.987843i \(-0.549685\pi\)
−0.155456 + 0.987843i \(0.549685\pi\)
\(762\) 0 0
\(763\) −22879.6 −1.08558
\(764\) 0 0
\(765\) −7342.24 −0.347005
\(766\) 0 0
\(767\) 5997.96 0.282365
\(768\) 0 0
\(769\) −15895.1 −0.745371 −0.372685 0.927958i \(-0.621563\pi\)
−0.372685 + 0.927958i \(0.621563\pi\)
\(770\) 0 0
\(771\) −1838.52 −0.0858788
\(772\) 0 0
\(773\) 19104.6 0.888932 0.444466 0.895796i \(-0.353394\pi\)
0.444466 + 0.895796i \(0.353394\pi\)
\(774\) 0 0
\(775\) −6376.90 −0.295568
\(776\) 0 0
\(777\) −4160.61 −0.192099
\(778\) 0 0
\(779\) 577.628 0.0265670
\(780\) 0 0
\(781\) −7275.17 −0.333324
\(782\) 0 0
\(783\) −7035.02 −0.321087
\(784\) 0 0
\(785\) 6845.65 0.311251
\(786\) 0 0
\(787\) 42737.1 1.93572 0.967861 0.251484i \(-0.0809185\pi\)
0.967861 + 0.251484i \(0.0809185\pi\)
\(788\) 0 0
\(789\) −4656.27 −0.210098
\(790\) 0 0
\(791\) 6976.07 0.313579
\(792\) 0 0
\(793\) 2199.99 0.0985167
\(794\) 0 0
\(795\) −1698.31 −0.0757644
\(796\) 0 0
\(797\) 38280.1 1.70132 0.850660 0.525716i \(-0.176203\pi\)
0.850660 + 0.525716i \(0.176203\pi\)
\(798\) 0 0
\(799\) −52089.7 −2.30638
\(800\) 0 0
\(801\) 1155.31 0.0509624
\(802\) 0 0
\(803\) −1683.90 −0.0740020
\(804\) 0 0
\(805\) −17112.9 −0.749254
\(806\) 0 0
\(807\) 5006.48 0.218385
\(808\) 0 0
\(809\) 15897.5 0.690885 0.345443 0.938440i \(-0.387729\pi\)
0.345443 + 0.938440i \(0.387729\pi\)
\(810\) 0 0
\(811\) −32091.5 −1.38950 −0.694750 0.719251i \(-0.744485\pi\)
−0.694750 + 0.719251i \(0.744485\pi\)
\(812\) 0 0
\(813\) 1358.58 0.0586068
\(814\) 0 0
\(815\) 1804.33 0.0775494
\(816\) 0 0
\(817\) 3413.67 0.146180
\(818\) 0 0
\(819\) 2642.13 0.112727
\(820\) 0 0
\(821\) 25323.7 1.07650 0.538248 0.842786i \(-0.319086\pi\)
0.538248 + 0.842786i \(0.319086\pi\)
\(822\) 0 0
\(823\) 45147.5 1.91220 0.956102 0.293033i \(-0.0946645\pi\)
0.956102 + 0.293033i \(0.0946645\pi\)
\(824\) 0 0
\(825\) −3260.96 −0.137615
\(826\) 0 0
\(827\) −45428.3 −1.91016 −0.955078 0.296356i \(-0.904229\pi\)
−0.955078 + 0.296356i \(0.904229\pi\)
\(828\) 0 0
\(829\) −4979.31 −0.208611 −0.104306 0.994545i \(-0.533262\pi\)
−0.104306 + 0.994545i \(0.533262\pi\)
\(830\) 0 0
\(831\) −15310.0 −0.639109
\(832\) 0 0
\(833\) −20915.9 −0.869978
\(834\) 0 0
\(835\) 16193.7 0.671146
\(836\) 0 0
\(837\) −2084.65 −0.0860887
\(838\) 0 0
\(839\) 22087.3 0.908865 0.454432 0.890781i \(-0.349842\pi\)
0.454432 + 0.890781i \(0.349842\pi\)
\(840\) 0 0
\(841\) 43500.7 1.78362
\(842\) 0 0
\(843\) −17050.1 −0.696602
\(844\) 0 0
\(845\) 1100.55 0.0448048
\(846\) 0 0
\(847\) −26145.6 −1.06065
\(848\) 0 0
\(849\) 9922.40 0.401102
\(850\) 0 0
\(851\) −7146.60 −0.287876
\(852\) 0 0
\(853\) −27493.8 −1.10360 −0.551799 0.833977i \(-0.686058\pi\)
−0.551799 + 0.833977i \(0.686058\pi\)
\(854\) 0 0
\(855\) −1931.22 −0.0772473
\(856\) 0 0
\(857\) 22693.2 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(858\) 0 0
\(859\) 4842.18 0.192332 0.0961660 0.995365i \(-0.469342\pi\)
0.0961660 + 0.995365i \(0.469342\pi\)
\(860\) 0 0
\(861\) 1187.60 0.0470073
\(862\) 0 0
\(863\) −18433.4 −0.727094 −0.363547 0.931576i \(-0.618434\pi\)
−0.363547 + 0.931576i \(0.618434\pi\)
\(864\) 0 0
\(865\) −15507.0 −0.609541
\(866\) 0 0
\(867\) −32342.2 −1.26690
\(868\) 0 0
\(869\) −5888.21 −0.229855
\(870\) 0 0
\(871\) 260.148 0.0101203
\(872\) 0 0
\(873\) −7127.42 −0.276319
\(874\) 0 0
\(875\) −30528.2 −1.17948
\(876\) 0 0
\(877\) −37558.1 −1.44612 −0.723059 0.690786i \(-0.757264\pi\)
−0.723059 + 0.690786i \(0.757264\pi\)
\(878\) 0 0
\(879\) −8246.52 −0.316437
\(880\) 0 0
\(881\) 20119.9 0.769418 0.384709 0.923038i \(-0.374302\pi\)
0.384709 + 0.923038i \(0.374302\pi\)
\(882\) 0 0
\(883\) −33843.1 −1.28982 −0.644911 0.764258i \(-0.723105\pi\)
−0.644911 + 0.764258i \(0.723105\pi\)
\(884\) 0 0
\(885\) −9013.72 −0.342365
\(886\) 0 0
\(887\) −42015.1 −1.59045 −0.795225 0.606315i \(-0.792647\pi\)
−0.795225 + 0.606315i \(0.792647\pi\)
\(888\) 0 0
\(889\) −35701.6 −1.34690
\(890\) 0 0
\(891\) −1066.03 −0.0400824
\(892\) 0 0
\(893\) −13701.1 −0.513427
\(894\) 0 0
\(895\) 11149.3 0.416401
\(896\) 0 0
\(897\) 4538.34 0.168930
\(898\) 0 0
\(899\) 20117.4 0.746333
\(900\) 0 0
\(901\) −10890.2 −0.402669
\(902\) 0 0
\(903\) 7018.49 0.258650
\(904\) 0 0
\(905\) −10087.9 −0.370534
\(906\) 0 0
\(907\) 11281.8 0.413017 0.206508 0.978445i \(-0.433790\pi\)
0.206508 + 0.978445i \(0.433790\pi\)
\(908\) 0 0
\(909\) 10200.5 0.372198
\(910\) 0 0
\(911\) −9299.64 −0.338212 −0.169106 0.985598i \(-0.554088\pi\)
−0.169106 + 0.985598i \(0.554088\pi\)
\(912\) 0 0
\(913\) −7475.61 −0.270982
\(914\) 0 0
\(915\) −3306.13 −0.119451
\(916\) 0 0
\(917\) 26961.3 0.970928
\(918\) 0 0
\(919\) −52240.0 −1.87512 −0.937562 0.347818i \(-0.886923\pi\)
−0.937562 + 0.347818i \(0.886923\pi\)
\(920\) 0 0
\(921\) −22603.6 −0.808700
\(922\) 0 0
\(923\) 7186.23 0.256271
\(924\) 0 0
\(925\) −5072.32 −0.180299
\(926\) 0 0
\(927\) −9805.86 −0.347429
\(928\) 0 0
\(929\) 26925.4 0.950907 0.475453 0.879741i \(-0.342284\pi\)
0.475453 + 0.879741i \(0.342284\pi\)
\(930\) 0 0
\(931\) −5501.48 −0.193667
\(932\) 0 0
\(933\) −19747.6 −0.692933
\(934\) 0 0
\(935\) 10736.7 0.375538
\(936\) 0 0
\(937\) −27026.2 −0.942272 −0.471136 0.882061i \(-0.656156\pi\)
−0.471136 + 0.882061i \(0.656156\pi\)
\(938\) 0 0
\(939\) −5299.61 −0.184181
\(940\) 0 0
\(941\) −30867.1 −1.06933 −0.534665 0.845064i \(-0.679562\pi\)
−0.534665 + 0.845064i \(0.679562\pi\)
\(942\) 0 0
\(943\) 2039.92 0.0704442
\(944\) 0 0
\(945\) −3970.59 −0.136681
\(946\) 0 0
\(947\) 32287.0 1.10791 0.553953 0.832548i \(-0.313119\pi\)
0.553953 + 0.832548i \(0.313119\pi\)
\(948\) 0 0
\(949\) 1663.32 0.0568952
\(950\) 0 0
\(951\) −17898.2 −0.610293
\(952\) 0 0
\(953\) 11157.2 0.379240 0.189620 0.981858i \(-0.439274\pi\)
0.189620 + 0.981858i \(0.439274\pi\)
\(954\) 0 0
\(955\) 23298.4 0.789444
\(956\) 0 0
\(957\) 10287.5 0.347488
\(958\) 0 0
\(959\) −38790.4 −1.30616
\(960\) 0 0
\(961\) −23829.7 −0.799896
\(962\) 0 0
\(963\) 14855.3 0.497098
\(964\) 0 0
\(965\) 26958.8 0.899310
\(966\) 0 0
\(967\) −3135.64 −0.104277 −0.0521383 0.998640i \(-0.516604\pi\)
−0.0521383 + 0.998640i \(0.516604\pi\)
\(968\) 0 0
\(969\) −12383.7 −0.410550
\(970\) 0 0
\(971\) −9327.09 −0.308260 −0.154130 0.988051i \(-0.549257\pi\)
−0.154130 + 0.988051i \(0.549257\pi\)
\(972\) 0 0
\(973\) 58824.6 1.93816
\(974\) 0 0
\(975\) 3221.10 0.105803
\(976\) 0 0
\(977\) 364.050 0.0119212 0.00596058 0.999982i \(-0.498103\pi\)
0.00596058 + 0.999982i \(0.498103\pi\)
\(978\) 0 0
\(979\) −1689.43 −0.0551527
\(980\) 0 0
\(981\) −9118.51 −0.296770
\(982\) 0 0
\(983\) −7203.60 −0.233733 −0.116866 0.993148i \(-0.537285\pi\)
−0.116866 + 0.993148i \(0.537285\pi\)
\(984\) 0 0
\(985\) −4484.96 −0.145079
\(986\) 0 0
\(987\) −28169.4 −0.908452
\(988\) 0 0
\(989\) 12055.5 0.387607
\(990\) 0 0
\(991\) −19971.0 −0.640163 −0.320081 0.947390i \(-0.603710\pi\)
−0.320081 + 0.947390i \(0.603710\pi\)
\(992\) 0 0
\(993\) −24262.6 −0.775377
\(994\) 0 0
\(995\) 8107.91 0.258330
\(996\) 0 0
\(997\) 8654.50 0.274915 0.137458 0.990508i \(-0.456107\pi\)
0.137458 + 0.990508i \(0.456107\pi\)
\(998\) 0 0
\(999\) −1658.18 −0.0525150
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.4.a.bt.1.3 4
4.3 odd 2 2496.4.a.bv.1.3 4
8.3 odd 2 1248.4.a.c.1.2 4
8.5 even 2 1248.4.a.e.1.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1248.4.a.c.1.2 4 8.3 odd 2
1248.4.a.e.1.2 yes 4 8.5 even 2
2496.4.a.bt.1.3 4 1.1 even 1 trivial
2496.4.a.bv.1.3 4 4.3 odd 2