Defining parameters
Level: | \( N \) | \(=\) | \( 2496 = 2^{6} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2496.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 58 \) | ||
Sturm bound: | \(1792\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(2496))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1368 | 144 | 1224 |
Cusp forms | 1320 | 144 | 1176 |
Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(13\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(18\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(18\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(16\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(20\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(18\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(18\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(20\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(16\) |
Plus space | \(+\) | \(76\) | ||
Minus space | \(-\) | \(68\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(2496))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(2496))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(2496)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 14}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(192))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(416))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(624))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(832))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(1248))\)\(^{\oplus 2}\)