Properties

Label 2496.4.a.bi
Level $2496$
Weight $4$
Character orbit 2496.a
Self dual yes
Analytic conductor $147.269$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,4,Mod(1,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(147.268767374\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{55}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 55 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{55}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + (\beta + 2) q^{5} + ( - \beta + 10) q^{7} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{3} + (\beta + 2) q^{5} + ( - \beta + 10) q^{7} + 9 q^{9} + (2 \beta + 10) q^{11} + 13 q^{13} + (3 \beta + 6) q^{15} + (2 \beta - 34) q^{17} + ( - \beta - 14) q^{19} + ( - 3 \beta + 30) q^{21} + ( - 4 \beta + 60) q^{23} + (4 \beta + 99) q^{25} + 27 q^{27} + 6 q^{29} + (3 \beta + 230) q^{31} + (6 \beta + 30) q^{33} + (8 \beta - 200) q^{35} + (2 \beta - 114) q^{37} + 39 q^{39} + (11 \beta + 46) q^{41} + ( - 10 \beta - 216) q^{43} + (9 \beta + 18) q^{45} + ( - 8 \beta + 358) q^{47} + ( - 20 \beta - 23) q^{49} + (6 \beta - 102) q^{51} + (16 \beta + 178) q^{53} + (14 \beta + 460) q^{55} + ( - 3 \beta - 42) q^{57} - 78 q^{59} + (48 \beta + 102) q^{61} + ( - 9 \beta + 90) q^{63} + (13 \beta + 26) q^{65} + ( - 51 \beta - 102) q^{67} + ( - 12 \beta + 180) q^{69} + (6 \beta - 302) q^{71} + (22 \beta + 242) q^{73} + (12 \beta + 297) q^{75} + (10 \beta - 340) q^{77} + ( - 20 \beta + 880) q^{79} + 81 q^{81} + ( - 20 \beta + 134) q^{83} + ( - 30 \beta + 372) q^{85} + 18 q^{87} + (93 \beta + 38) q^{89} + ( - 13 \beta + 130) q^{91} + (9 \beta + 690) q^{93} + ( - 16 \beta - 248) q^{95} + ( - 54 \beta + 2) q^{97} + (18 \beta + 90) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} + 4 q^{5} + 20 q^{7} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 6 q^{3} + 4 q^{5} + 20 q^{7} + 18 q^{9} + 20 q^{11} + 26 q^{13} + 12 q^{15} - 68 q^{17} - 28 q^{19} + 60 q^{21} + 120 q^{23} + 198 q^{25} + 54 q^{27} + 12 q^{29} + 460 q^{31} + 60 q^{33} - 400 q^{35} - 228 q^{37} + 78 q^{39} + 92 q^{41} - 432 q^{43} + 36 q^{45} + 716 q^{47} - 46 q^{49} - 204 q^{51} + 356 q^{53} + 920 q^{55} - 84 q^{57} - 156 q^{59} + 204 q^{61} + 180 q^{63} + 52 q^{65} - 204 q^{67} + 360 q^{69} - 604 q^{71} + 484 q^{73} + 594 q^{75} - 680 q^{77} + 1760 q^{79} + 162 q^{81} + 268 q^{83} + 744 q^{85} + 36 q^{87} + 76 q^{89} + 260 q^{91} + 1380 q^{93} - 496 q^{95} + 4 q^{97} + 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−7.41620
7.41620
0 3.00000 0 −12.8324 0 24.8324 0 9.00000 0
1.2 0 3.00000 0 16.8324 0 −4.83240 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2496.4.a.bi 2
4.b odd 2 1 2496.4.a.x 2
8.b even 2 1 312.4.a.b 2
8.d odd 2 1 624.4.a.n 2
24.f even 2 1 1872.4.a.bd 2
24.h odd 2 1 936.4.a.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.4.a.b 2 8.b even 2 1
624.4.a.n 2 8.d odd 2 1
936.4.a.h 2 24.h odd 2 1
1872.4.a.bd 2 24.f even 2 1
2496.4.a.x 2 4.b odd 2 1
2496.4.a.bi 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2496))\):

\( T_{5}^{2} - 4T_{5} - 216 \) Copy content Toggle raw display
\( T_{7}^{2} - 20T_{7} - 120 \) Copy content Toggle raw display
\( T_{11}^{2} - 20T_{11} - 780 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 4T - 216 \) Copy content Toggle raw display
$7$ \( T^{2} - 20T - 120 \) Copy content Toggle raw display
$11$ \( T^{2} - 20T - 780 \) Copy content Toggle raw display
$13$ \( (T - 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 68T + 276 \) Copy content Toggle raw display
$19$ \( T^{2} + 28T - 24 \) Copy content Toggle raw display
$23$ \( T^{2} - 120T + 80 \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 460T + 50920 \) Copy content Toggle raw display
$37$ \( T^{2} + 228T + 12116 \) Copy content Toggle raw display
$41$ \( T^{2} - 92T - 24504 \) Copy content Toggle raw display
$43$ \( T^{2} + 432T + 24656 \) Copy content Toggle raw display
$47$ \( T^{2} - 716T + 114084 \) Copy content Toggle raw display
$53$ \( T^{2} - 356T - 24636 \) Copy content Toggle raw display
$59$ \( (T + 78)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 204T - 496476 \) Copy content Toggle raw display
$67$ \( T^{2} + 204T - 561816 \) Copy content Toggle raw display
$71$ \( T^{2} + 604T + 83284 \) Copy content Toggle raw display
$73$ \( T^{2} - 484T - 47916 \) Copy content Toggle raw display
$79$ \( T^{2} - 1760 T + 686400 \) Copy content Toggle raw display
$83$ \( T^{2} - 268T - 70044 \) Copy content Toggle raw display
$89$ \( T^{2} - 76T - 1901336 \) Copy content Toggle raw display
$97$ \( T^{2} - 4T - 641516 \) Copy content Toggle raw display
show more
show less