Properties

Label 2496.2.m.c.2209.14
Level $2496$
Weight $2$
Character 2496.2209
Analytic conductor $19.931$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2496,2,Mod(2209,2496)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2496.2209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2496, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2496.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-16,0,0,0,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9306603445\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.162447943996702457856.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{12} - 15x^{8} - 16x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2209.14
Root \(-0.140577 - 1.40721i\) of defining polynomial
Character \(\chi\) \(=\) 2496.2209
Dual form 2496.2.m.c.2209.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +0.646084 q^{5} +3.09557i q^{7} -1.00000 q^{9} +1.41421 q^{11} +(-2.44949 + 2.64575i) q^{13} +0.646084i q^{15} -5.58258 q^{17} -5.36169 q^{19} -3.09557 q^{21} +3.46410 q^{23} -4.58258 q^{25} -1.00000i q^{27} -4.37780i q^{29} -9.28672i q^{31} +1.41421i q^{33} +2.00000i q^{35} -4.89898 q^{37} +(-2.64575 - 2.44949i) q^{39} +12.4328i q^{41} -5.58258i q^{43} -0.646084 q^{45} +3.74166i q^{47} -2.58258 q^{49} -5.58258i q^{51} -10.5830i q^{53} +0.913701 q^{55} -5.36169i q^{57} +3.65231 q^{59} -4.37780i q^{61} -3.09557i q^{63} +(-1.58258 + 1.70938i) q^{65} +4.77136 q^{67} +3.46410i q^{69} +2.44949i q^{71} +5.65685i q^{73} -4.58258i q^{75} +4.37780i q^{77} +7.11890 q^{79} +1.00000 q^{81} -14.3757 q^{83} -3.60681 q^{85} +4.37780 q^{87} +15.2612i q^{89} +(-8.19012 - 7.58258i) q^{91} +9.28672 q^{93} -3.46410 q^{95} +5.06653i q^{97} -1.41421 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{9} - 16 q^{17} + 32 q^{49} + 48 q^{65} + 16 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2496\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0.646084 0.288937 0.144469 0.989509i \(-0.453853\pi\)
0.144469 + 0.989509i \(0.453853\pi\)
\(6\) 0 0
\(7\) 3.09557i 1.17002i 0.811027 + 0.585008i \(0.198909\pi\)
−0.811027 + 0.585008i \(0.801091\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 1.41421 0.426401 0.213201 0.977008i \(-0.431611\pi\)
0.213201 + 0.977008i \(0.431611\pi\)
\(12\) 0 0
\(13\) −2.44949 + 2.64575i −0.679366 + 0.733799i
\(14\) 0 0
\(15\) 0.646084i 0.166818i
\(16\) 0 0
\(17\) −5.58258 −1.35397 −0.676987 0.735995i \(-0.736715\pi\)
−0.676987 + 0.735995i \(0.736715\pi\)
\(18\) 0 0
\(19\) −5.36169 −1.23006 −0.615028 0.788505i \(-0.710855\pi\)
−0.615028 + 0.788505i \(0.710855\pi\)
\(20\) 0 0
\(21\) −3.09557 −0.675510
\(22\) 0 0
\(23\) 3.46410 0.722315 0.361158 0.932505i \(-0.382382\pi\)
0.361158 + 0.932505i \(0.382382\pi\)
\(24\) 0 0
\(25\) −4.58258 −0.916515
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 4.37780i 0.812937i −0.913665 0.406469i \(-0.866760\pi\)
0.913665 0.406469i \(-0.133240\pi\)
\(30\) 0 0
\(31\) 9.28672i 1.66794i −0.551807 0.833972i \(-0.686061\pi\)
0.551807 0.833972i \(-0.313939\pi\)
\(32\) 0 0
\(33\) 1.41421i 0.246183i
\(34\) 0 0
\(35\) 2.00000i 0.338062i
\(36\) 0 0
\(37\) −4.89898 −0.805387 −0.402694 0.915335i \(-0.631926\pi\)
−0.402694 + 0.915335i \(0.631926\pi\)
\(38\) 0 0
\(39\) −2.64575 2.44949i −0.423659 0.392232i
\(40\) 0 0
\(41\) 12.4328i 1.94167i 0.239747 + 0.970835i \(0.422935\pi\)
−0.239747 + 0.970835i \(0.577065\pi\)
\(42\) 0 0
\(43\) 5.58258i 0.851335i −0.904880 0.425667i \(-0.860039\pi\)
0.904880 0.425667i \(-0.139961\pi\)
\(44\) 0 0
\(45\) −0.646084 −0.0963125
\(46\) 0 0
\(47\) 3.74166i 0.545777i 0.962046 + 0.272888i \(0.0879790\pi\)
−0.962046 + 0.272888i \(0.912021\pi\)
\(48\) 0 0
\(49\) −2.58258 −0.368939
\(50\) 0 0
\(51\) 5.58258i 0.781717i
\(52\) 0 0
\(53\) 10.5830i 1.45369i −0.686803 0.726844i \(-0.740986\pi\)
0.686803 0.726844i \(-0.259014\pi\)
\(54\) 0 0
\(55\) 0.913701 0.123203
\(56\) 0 0
\(57\) 5.36169i 0.710173i
\(58\) 0 0
\(59\) 3.65231 0.475491 0.237745 0.971328i \(-0.423592\pi\)
0.237745 + 0.971328i \(0.423592\pi\)
\(60\) 0 0
\(61\) 4.37780i 0.560520i −0.959924 0.280260i \(-0.909579\pi\)
0.959924 0.280260i \(-0.0904207\pi\)
\(62\) 0 0
\(63\) 3.09557i 0.390006i
\(64\) 0 0
\(65\) −1.58258 + 1.70938i −0.196294 + 0.212022i
\(66\) 0 0
\(67\) 4.77136 0.582915 0.291457 0.956584i \(-0.405860\pi\)
0.291457 + 0.956584i \(0.405860\pi\)
\(68\) 0 0
\(69\) 3.46410i 0.417029i
\(70\) 0 0
\(71\) 2.44949i 0.290701i 0.989380 + 0.145350i \(0.0464310\pi\)
−0.989380 + 0.145350i \(0.953569\pi\)
\(72\) 0 0
\(73\) 5.65685i 0.662085i 0.943616 + 0.331042i \(0.107400\pi\)
−0.943616 + 0.331042i \(0.892600\pi\)
\(74\) 0 0
\(75\) 4.58258i 0.529150i
\(76\) 0 0
\(77\) 4.37780i 0.498897i
\(78\) 0 0
\(79\) 7.11890 0.800939 0.400470 0.916310i \(-0.368847\pi\)
0.400470 + 0.916310i \(0.368847\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −14.3757 −1.57794 −0.788969 0.614433i \(-0.789385\pi\)
−0.788969 + 0.614433i \(0.789385\pi\)
\(84\) 0 0
\(85\) −3.60681 −0.391214
\(86\) 0 0
\(87\) 4.37780 0.469350
\(88\) 0 0
\(89\) 15.2612i 1.61768i 0.588027 + 0.808841i \(0.299905\pi\)
−0.588027 + 0.808841i \(0.700095\pi\)
\(90\) 0 0
\(91\) −8.19012 7.58258i −0.858558 0.794870i
\(92\) 0 0
\(93\) 9.28672 0.962988
\(94\) 0 0
\(95\) −3.46410 −0.355409
\(96\) 0 0
\(97\) 5.06653i 0.514428i 0.966354 + 0.257214i \(0.0828045\pi\)
−0.966354 + 0.257214i \(0.917195\pi\)
\(98\) 0 0
\(99\) −1.41421 −0.142134
\(100\) 0 0
\(101\) 10.5830i 1.05305i −0.850160 0.526524i \(-0.823495\pi\)
0.850160 0.526524i \(-0.176505\pi\)
\(102\) 0 0
\(103\) −11.3060 −1.11401 −0.557007 0.830508i \(-0.688050\pi\)
−0.557007 + 0.830508i \(0.688050\pi\)
\(104\) 0 0
\(105\) −2.00000 −0.195180
\(106\) 0 0
\(107\) 2.00000i 0.193347i 0.995316 + 0.0966736i \(0.0308203\pi\)
−0.995316 + 0.0966736i \(0.969180\pi\)
\(108\) 0 0
\(109\) 9.79796 0.938474 0.469237 0.883072i \(-0.344529\pi\)
0.469237 + 0.883072i \(0.344529\pi\)
\(110\) 0 0
\(111\) 4.89898i 0.464991i
\(112\) 0 0
\(113\) −16.7477 −1.57549 −0.787747 0.615999i \(-0.788752\pi\)
−0.787747 + 0.615999i \(0.788752\pi\)
\(114\) 0 0
\(115\) 2.23810 0.208704
\(116\) 0 0
\(117\) 2.44949 2.64575i 0.226455 0.244600i
\(118\) 0 0
\(119\) 17.2813i 1.58417i
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) 0 0
\(123\) −12.4328 −1.12102
\(124\) 0 0
\(125\) −6.19115 −0.553753
\(126\) 0 0
\(127\) 20.9753 1.86126 0.930629 0.365964i \(-0.119261\pi\)
0.930629 + 0.365964i \(0.119261\pi\)
\(128\) 0 0
\(129\) 5.58258 0.491518
\(130\) 0 0
\(131\) 6.00000i 0.524222i −0.965038 0.262111i \(-0.915581\pi\)
0.965038 0.262111i \(-0.0844187\pi\)
\(132\) 0 0
\(133\) 16.5975i 1.43919i
\(134\) 0 0
\(135\) 0.646084i 0.0556060i
\(136\) 0 0
\(137\) 14.0805i 1.20298i −0.798880 0.601490i \(-0.794574\pi\)
0.798880 0.601490i \(-0.205426\pi\)
\(138\) 0 0
\(139\) 8.74773i 0.741973i −0.928638 0.370986i \(-0.879020\pi\)
0.928638 0.370986i \(-0.120980\pi\)
\(140\) 0 0
\(141\) −3.74166 −0.315104
\(142\) 0 0
\(143\) −3.46410 + 3.74166i −0.289683 + 0.312893i
\(144\) 0 0
\(145\) 2.82843i 0.234888i
\(146\) 0 0
\(147\) 2.58258i 0.213007i
\(148\) 0 0
\(149\) −17.9274 −1.46867 −0.734333 0.678789i \(-0.762505\pi\)
−0.734333 + 0.678789i \(0.762505\pi\)
\(150\) 0 0
\(151\) 1.80341i 0.146759i 0.997304 + 0.0733795i \(0.0233784\pi\)
−0.997304 + 0.0733795i \(0.976622\pi\)
\(152\) 0 0
\(153\) 5.58258 0.451324
\(154\) 0 0
\(155\) 6.00000i 0.481932i
\(156\) 0 0
\(157\) 16.5975i 1.32463i 0.749228 + 0.662313i \(0.230425\pi\)
−0.749228 + 0.662313i \(0.769575\pi\)
\(158\) 0 0
\(159\) 10.5830 0.839287
\(160\) 0 0
\(161\) 10.7234i 0.845121i
\(162\) 0 0
\(163\) −25.1607 −1.97074 −0.985368 0.170439i \(-0.945482\pi\)
−0.985368 + 0.170439i \(0.945482\pi\)
\(164\) 0 0
\(165\) 0.913701i 0.0711315i
\(166\) 0 0
\(167\) 19.7308i 1.52681i 0.645919 + 0.763406i \(0.276474\pi\)
−0.645919 + 0.763406i \(0.723526\pi\)
\(168\) 0 0
\(169\) −1.00000 12.9615i −0.0769231 0.997037i
\(170\) 0 0
\(171\) 5.36169 0.410019
\(172\) 0 0
\(173\) 13.8564i 1.05348i 0.850026 + 0.526742i \(0.176586\pi\)
−0.850026 + 0.526742i \(0.823414\pi\)
\(174\) 0 0
\(175\) 14.1857i 1.07234i
\(176\) 0 0
\(177\) 3.65231i 0.274525i
\(178\) 0 0
\(179\) 10.0000i 0.747435i 0.927543 + 0.373718i \(0.121917\pi\)
−0.927543 + 0.373718i \(0.878083\pi\)
\(180\) 0 0
\(181\) 0.913701i 0.0679148i −0.999423 0.0339574i \(-0.989189\pi\)
0.999423 0.0339574i \(-0.0108111\pi\)
\(182\) 0 0
\(183\) 4.37780 0.323616
\(184\) 0 0
\(185\) −3.16515 −0.232707
\(186\) 0 0
\(187\) −7.89495 −0.577336
\(188\) 0 0
\(189\) 3.09557 0.225170
\(190\) 0 0
\(191\) 10.3923 0.751961 0.375980 0.926628i \(-0.377306\pi\)
0.375980 + 0.926628i \(0.377306\pi\)
\(192\) 0 0
\(193\) 7.89495i 0.568291i 0.958781 + 0.284146i \(0.0917099\pi\)
−0.958781 + 0.284146i \(0.908290\pi\)
\(194\) 0 0
\(195\) −1.70938 1.58258i −0.122411 0.113331i
\(196\) 0 0
\(197\) −22.8263 −1.62631 −0.813155 0.582048i \(-0.802252\pi\)
−0.813155 + 0.582048i \(0.802252\pi\)
\(198\) 0 0
\(199\) 3.46410 0.245564 0.122782 0.992434i \(-0.460818\pi\)
0.122782 + 0.992434i \(0.460818\pi\)
\(200\) 0 0
\(201\) 4.77136i 0.336546i
\(202\) 0 0
\(203\) 13.5518 0.951150
\(204\) 0 0
\(205\) 8.03260i 0.561021i
\(206\) 0 0
\(207\) −3.46410 −0.240772
\(208\) 0 0
\(209\) −7.58258 −0.524498
\(210\) 0 0
\(211\) 19.1652i 1.31938i −0.751536 0.659692i \(-0.770687\pi\)
0.751536 0.659692i \(-0.229313\pi\)
\(212\) 0 0
\(213\) −2.44949 −0.167836
\(214\) 0 0
\(215\) 3.60681i 0.245983i
\(216\) 0 0
\(217\) 28.7477 1.95152
\(218\) 0 0
\(219\) −5.65685 −0.382255
\(220\) 0 0
\(221\) 13.6745 14.7701i 0.919844 0.993545i
\(222\) 0 0
\(223\) 14.4554i 0.968005i 0.875067 + 0.484002i \(0.160817\pi\)
−0.875067 + 0.484002i \(0.839183\pi\)
\(224\) 0 0
\(225\) 4.58258 0.305505
\(226\) 0 0
\(227\) 23.4513 1.55652 0.778259 0.627944i \(-0.216103\pi\)
0.778259 + 0.627944i \(0.216103\pi\)
\(228\) 0 0
\(229\) −1.29217 −0.0853888 −0.0426944 0.999088i \(-0.513594\pi\)
−0.0426944 + 0.999088i \(0.513594\pi\)
\(230\) 0 0
\(231\) −4.37780 −0.288038
\(232\) 0 0
\(233\) −24.3303 −1.59393 −0.796966 0.604025i \(-0.793563\pi\)
−0.796966 + 0.604025i \(0.793563\pi\)
\(234\) 0 0
\(235\) 2.41742i 0.157695i
\(236\) 0 0
\(237\) 7.11890i 0.462422i
\(238\) 0 0
\(239\) 7.61816i 0.492778i −0.969171 0.246389i \(-0.920756\pi\)
0.969171 0.246389i \(-0.0792441\pi\)
\(240\) 0 0
\(241\) 7.30463i 0.470532i −0.971931 0.235266i \(-0.924404\pi\)
0.971931 0.235266i \(-0.0755962\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −1.66856 −0.106600
\(246\) 0 0
\(247\) 13.1334 14.1857i 0.835659 0.902614i
\(248\) 0 0
\(249\) 14.3757i 0.911023i
\(250\) 0 0
\(251\) 7.16515i 0.452260i 0.974097 + 0.226130i \(0.0726075\pi\)
−0.974097 + 0.226130i \(0.927393\pi\)
\(252\) 0 0
\(253\) 4.89898 0.307996
\(254\) 0 0
\(255\) 3.60681i 0.225867i
\(256\) 0 0
\(257\) −9.16515 −0.571706 −0.285853 0.958273i \(-0.592277\pi\)
−0.285853 + 0.958273i \(0.592277\pi\)
\(258\) 0 0
\(259\) 15.1652i 0.942317i
\(260\) 0 0
\(261\) 4.37780i 0.270979i
\(262\) 0 0
\(263\) −8.75560 −0.539894 −0.269947 0.962875i \(-0.587006\pi\)
−0.269947 + 0.962875i \(0.587006\pi\)
\(264\) 0 0
\(265\) 6.83751i 0.420025i
\(266\) 0 0
\(267\) −15.2612 −0.933969
\(268\) 0 0
\(269\) 0.723000i 0.0440821i −0.999757 0.0220410i \(-0.992984\pi\)
0.999757 0.0220410i \(-0.00701645\pi\)
\(270\) 0 0
\(271\) 5.41022i 0.328647i −0.986406 0.164324i \(-0.947456\pi\)
0.986406 0.164324i \(-0.0525441\pi\)
\(272\) 0 0
\(273\) 7.58258 8.19012i 0.458918 0.495688i
\(274\) 0 0
\(275\) −6.48074 −0.390803
\(276\) 0 0
\(277\) 10.2016i 0.612955i 0.951878 + 0.306478i \(0.0991504\pi\)
−0.951878 + 0.306478i \(0.900850\pi\)
\(278\) 0 0
\(279\) 9.28672i 0.555981i
\(280\) 0 0
\(281\) 30.4608i 1.81714i 0.417736 + 0.908569i \(0.362824\pi\)
−0.417736 + 0.908569i \(0.637176\pi\)
\(282\) 0 0
\(283\) 12.0000i 0.713326i 0.934233 + 0.356663i \(0.116086\pi\)
−0.934233 + 0.356663i \(0.883914\pi\)
\(284\) 0 0
\(285\) 3.46410i 0.205196i
\(286\) 0 0
\(287\) −38.4865 −2.27179
\(288\) 0 0
\(289\) 14.1652 0.833244
\(290\) 0 0
\(291\) −5.06653 −0.297005
\(292\) 0 0
\(293\) 7.10692 0.415191 0.207595 0.978215i \(-0.433436\pi\)
0.207595 + 0.978215i \(0.433436\pi\)
\(294\) 0 0
\(295\) 2.35970 0.137387
\(296\) 0 0
\(297\) 1.41421i 0.0820610i
\(298\) 0 0
\(299\) −8.48528 + 9.16515i −0.490716 + 0.530034i
\(300\) 0 0
\(301\) 17.2813 0.996076
\(302\) 0 0
\(303\) 10.5830 0.607978
\(304\) 0 0
\(305\) 2.82843i 0.161955i
\(306\) 0 0
\(307\) 0.885491 0.0505376 0.0252688 0.999681i \(-0.491956\pi\)
0.0252688 + 0.999681i \(0.491956\pi\)
\(308\) 0 0
\(309\) 11.3060i 0.643176i
\(310\) 0 0
\(311\) −8.56490 −0.485671 −0.242836 0.970067i \(-0.578078\pi\)
−0.242836 + 0.970067i \(0.578078\pi\)
\(312\) 0 0
\(313\) −15.1652 −0.857185 −0.428593 0.903498i \(-0.640990\pi\)
−0.428593 + 0.903498i \(0.640990\pi\)
\(314\) 0 0
\(315\) 2.00000i 0.112687i
\(316\) 0 0
\(317\) −8.12940 −0.456593 −0.228296 0.973592i \(-0.573315\pi\)
−0.228296 + 0.973592i \(0.573315\pi\)
\(318\) 0 0
\(319\) 6.19115i 0.346638i
\(320\) 0 0
\(321\) −2.00000 −0.111629
\(322\) 0 0
\(323\) 29.9320 1.66546
\(324\) 0 0
\(325\) 11.2250 12.1244i 0.622649 0.672538i
\(326\) 0 0
\(327\) 9.79796i 0.541828i
\(328\) 0 0
\(329\) −11.5826 −0.638568
\(330\) 0 0
\(331\) −12.0760 −0.663756 −0.331878 0.943322i \(-0.607682\pi\)
−0.331878 + 0.943322i \(0.607682\pi\)
\(332\) 0 0
\(333\) 4.89898 0.268462
\(334\) 0 0
\(335\) 3.08270 0.168426
\(336\) 0 0
\(337\) 14.3303 0.780621 0.390311 0.920683i \(-0.372368\pi\)
0.390311 + 0.920683i \(0.372368\pi\)
\(338\) 0 0
\(339\) 16.7477i 0.909612i
\(340\) 0 0
\(341\) 13.1334i 0.711214i
\(342\) 0 0
\(343\) 13.6745i 0.738352i
\(344\) 0 0
\(345\) 2.23810i 0.120495i
\(346\) 0 0
\(347\) 29.4955i 1.58340i 0.610911 + 0.791699i \(0.290803\pi\)
−0.610911 + 0.791699i \(0.709197\pi\)
\(348\) 0 0
\(349\) −17.5510 −0.939482 −0.469741 0.882804i \(-0.655653\pi\)
−0.469741 + 0.882804i \(0.655653\pi\)
\(350\) 0 0
\(351\) 2.64575 + 2.44949i 0.141220 + 0.130744i
\(352\) 0 0
\(353\) 10.7850i 0.574027i 0.957927 + 0.287013i \(0.0926624\pi\)
−0.957927 + 0.287013i \(0.907338\pi\)
\(354\) 0 0
\(355\) 1.58258i 0.0839944i
\(356\) 0 0
\(357\) 17.2813 0.914622
\(358\) 0 0
\(359\) 5.03383i 0.265675i −0.991138 0.132838i \(-0.957591\pi\)
0.991138 0.132838i \(-0.0424089\pi\)
\(360\) 0 0
\(361\) 9.74773 0.513038
\(362\) 0 0
\(363\) 9.00000i 0.472377i
\(364\) 0 0
\(365\) 3.65480i 0.191301i
\(366\) 0 0
\(367\) −21.8890 −1.14260 −0.571299 0.820742i \(-0.693560\pi\)
−0.571299 + 0.820742i \(0.693560\pi\)
\(368\) 0 0
\(369\) 12.4328i 0.647224i
\(370\) 0 0
\(371\) 32.7605 1.70084
\(372\) 0 0
\(373\) 22.8027i 1.18068i −0.807155 0.590340i \(-0.798994\pi\)
0.807155 0.590340i \(-0.201006\pi\)
\(374\) 0 0
\(375\) 6.19115i 0.319709i
\(376\) 0 0
\(377\) 11.5826 + 10.7234i 0.596533 + 0.552282i
\(378\) 0 0
\(379\) 7.00946 0.360052 0.180026 0.983662i \(-0.442382\pi\)
0.180026 + 0.983662i \(0.442382\pi\)
\(380\) 0 0
\(381\) 20.9753i 1.07460i
\(382\) 0 0
\(383\) 4.01135i 0.204970i −0.994735 0.102485i \(-0.967321\pi\)
0.994735 0.102485i \(-0.0326794\pi\)
\(384\) 0 0
\(385\) 2.82843i 0.144150i
\(386\) 0 0
\(387\) 5.58258i 0.283778i
\(388\) 0 0
\(389\) 5.82380i 0.295278i 0.989041 + 0.147639i \(0.0471675\pi\)
−0.989041 + 0.147639i \(0.952833\pi\)
\(390\) 0 0
\(391\) −19.3386 −0.977996
\(392\) 0 0
\(393\) 6.00000 0.302660
\(394\) 0 0
\(395\) 4.59941 0.231421
\(396\) 0 0
\(397\) 23.2027 1.16451 0.582256 0.813006i \(-0.302170\pi\)
0.582256 + 0.813006i \(0.302170\pi\)
\(398\) 0 0
\(399\) 16.5975 0.830915
\(400\) 0 0
\(401\) 14.6709i 0.732628i −0.930491 0.366314i \(-0.880620\pi\)
0.930491 0.366314i \(-0.119380\pi\)
\(402\) 0 0
\(403\) 24.5704 + 22.7477i 1.22394 + 1.13314i
\(404\) 0 0
\(405\) 0.646084 0.0321042
\(406\) 0 0
\(407\) −6.92820 −0.343418
\(408\) 0 0
\(409\) 10.7234i 0.530237i −0.964216 0.265119i \(-0.914589\pi\)
0.964216 0.265119i \(-0.0854111\pi\)
\(410\) 0 0
\(411\) 14.0805 0.694541
\(412\) 0 0
\(413\) 11.3060i 0.556332i
\(414\) 0 0
\(415\) −9.28790 −0.455925
\(416\) 0 0
\(417\) 8.74773 0.428378
\(418\) 0 0
\(419\) 8.33030i 0.406962i 0.979079 + 0.203481i \(0.0652255\pi\)
−0.979079 + 0.203481i \(0.934774\pi\)
\(420\) 0 0
\(421\) −22.4499 −1.09414 −0.547072 0.837086i \(-0.684257\pi\)
−0.547072 + 0.837086i \(0.684257\pi\)
\(422\) 0 0
\(423\) 3.74166i 0.181926i
\(424\) 0 0
\(425\) 25.5826 1.24094
\(426\) 0 0
\(427\) 13.5518 0.655818
\(428\) 0 0
\(429\) −3.74166 3.46410i −0.180649 0.167248i
\(430\) 0 0
\(431\) 26.9444i 1.29787i 0.760846 + 0.648933i \(0.224784\pi\)
−0.760846 + 0.648933i \(0.775216\pi\)
\(432\) 0 0
\(433\) −3.25227 −0.156294 −0.0781471 0.996942i \(-0.524900\pi\)
−0.0781471 + 0.996942i \(0.524900\pi\)
\(434\) 0 0
\(435\) 2.82843 0.135613
\(436\) 0 0
\(437\) −18.5734 −0.888488
\(438\) 0 0
\(439\) 11.3060 0.539606 0.269803 0.962916i \(-0.413041\pi\)
0.269803 + 0.962916i \(0.413041\pi\)
\(440\) 0 0
\(441\) 2.58258 0.122980
\(442\) 0 0
\(443\) 2.83485i 0.134688i −0.997730 0.0673439i \(-0.978548\pi\)
0.997730 0.0673439i \(-0.0214525\pi\)
\(444\) 0 0
\(445\) 9.86001i 0.467409i
\(446\) 0 0
\(447\) 17.9274i 0.847935i
\(448\) 0 0
\(449\) 9.01400i 0.425397i −0.977118 0.212699i \(-0.931775\pi\)
0.977118 0.212699i \(-0.0682252\pi\)
\(450\) 0 0
\(451\) 17.5826i 0.827931i
\(452\) 0 0
\(453\) −1.80341 −0.0847314
\(454\) 0 0
\(455\) −5.29150 4.89898i −0.248069 0.229668i
\(456\) 0 0
\(457\) 6.24718i 0.292231i −0.989268 0.146115i \(-0.953323\pi\)
0.989268 0.146115i \(-0.0466771\pi\)
\(458\) 0 0
\(459\) 5.58258i 0.260572i
\(460\) 0 0
\(461\) 36.2311 1.68745 0.843725 0.536775i \(-0.180358\pi\)
0.843725 + 0.536775i \(0.180358\pi\)
\(462\) 0 0
\(463\) 2.07310i 0.0963450i −0.998839 0.0481725i \(-0.984660\pi\)
0.998839 0.0481725i \(-0.0153397\pi\)
\(464\) 0 0
\(465\) 6.00000 0.278243
\(466\) 0 0
\(467\) 36.6606i 1.69645i 0.529636 + 0.848225i \(0.322329\pi\)
−0.529636 + 0.848225i \(0.677671\pi\)
\(468\) 0 0
\(469\) 14.7701i 0.682020i
\(470\) 0 0
\(471\) −16.5975 −0.764773
\(472\) 0 0
\(473\) 7.89495i 0.363010i
\(474\) 0 0
\(475\) 24.5704 1.12737
\(476\) 0 0
\(477\) 10.5830i 0.484563i
\(478\) 0 0
\(479\) 33.4052i 1.52632i 0.646207 + 0.763162i \(0.276354\pi\)
−0.646207 + 0.763162i \(0.723646\pi\)
\(480\) 0 0
\(481\) 12.0000 12.9615i 0.547153 0.590993i
\(482\) 0 0
\(483\) −10.7234 −0.487931
\(484\) 0 0
\(485\) 3.27340i 0.148637i
\(486\) 0 0
\(487\) 20.1072i 0.911142i 0.890199 + 0.455571i \(0.150565\pi\)
−0.890199 + 0.455571i \(0.849435\pi\)
\(488\) 0 0
\(489\) 25.1607i 1.13781i
\(490\) 0 0
\(491\) 34.3303i 1.54930i 0.632387 + 0.774652i \(0.282075\pi\)
−0.632387 + 0.774652i \(0.717925\pi\)
\(492\) 0 0
\(493\) 24.4394i 1.10070i
\(494\) 0 0
\(495\) −0.913701 −0.0410678
\(496\) 0 0
\(497\) −7.58258 −0.340125
\(498\) 0 0
\(499\) −14.4373 −0.646302 −0.323151 0.946347i \(-0.604742\pi\)
−0.323151 + 0.946347i \(0.604742\pi\)
\(500\) 0 0
\(501\) −19.7308 −0.881506
\(502\) 0 0
\(503\) 40.1232 1.78901 0.894503 0.447062i \(-0.147530\pi\)
0.894503 + 0.447062i \(0.147530\pi\)
\(504\) 0 0
\(505\) 6.83751i 0.304265i
\(506\) 0 0
\(507\) 12.9615 1.00000i 0.575640 0.0444116i
\(508\) 0 0
\(509\) −11.4665 −0.508245 −0.254122 0.967172i \(-0.581787\pi\)
−0.254122 + 0.967172i \(0.581787\pi\)
\(510\) 0 0
\(511\) −17.5112 −0.774650
\(512\) 0 0
\(513\) 5.36169i 0.236724i
\(514\) 0 0
\(515\) −7.30463 −0.321880
\(516\) 0 0
\(517\) 5.29150i 0.232720i
\(518\) 0 0
\(519\) −13.8564 −0.608229
\(520\) 0 0
\(521\) 2.41742 0.105909 0.0529546 0.998597i \(-0.483136\pi\)
0.0529546 + 0.998597i \(0.483136\pi\)
\(522\) 0 0
\(523\) 1.58258i 0.0692012i −0.999401 0.0346006i \(-0.988984\pi\)
0.999401 0.0346006i \(-0.0110159\pi\)
\(524\) 0 0
\(525\) 14.1857 0.619115
\(526\) 0 0
\(527\) 51.8438i 2.25835i
\(528\) 0 0
\(529\) −11.0000 −0.478261
\(530\) 0 0
\(531\) −3.65231 −0.158497
\(532\) 0 0
\(533\) −32.8940 30.4539i −1.42480 1.31911i
\(534\) 0 0
\(535\) 1.29217i 0.0558653i
\(536\) 0 0
\(537\) −10.0000 −0.431532
\(538\) 0 0
\(539\) −3.65231 −0.157316
\(540\) 0 0
\(541\) 38.4391 1.65262 0.826312 0.563213i \(-0.190435\pi\)
0.826312 + 0.563213i \(0.190435\pi\)
\(542\) 0 0
\(543\) 0.913701 0.0392106
\(544\) 0 0
\(545\) 6.33030 0.271160
\(546\) 0 0
\(547\) 11.9129i 0.509358i 0.967026 + 0.254679i \(0.0819698\pi\)
−0.967026 + 0.254679i \(0.918030\pi\)
\(548\) 0 0
\(549\) 4.37780i 0.186840i
\(550\) 0 0
\(551\) 23.4724i 0.999959i
\(552\) 0 0
\(553\) 22.0371i 0.937112i
\(554\) 0 0
\(555\) 3.16515i 0.134353i
\(556\) 0 0
\(557\) 34.9389 1.48041 0.740205 0.672381i \(-0.234728\pi\)
0.740205 + 0.672381i \(0.234728\pi\)
\(558\) 0 0
\(559\) 14.7701 + 13.6745i 0.624709 + 0.578368i
\(560\) 0 0
\(561\) 7.89495i 0.333325i
\(562\) 0 0
\(563\) 1.16515i 0.0491053i 0.999699 + 0.0245526i \(0.00781613\pi\)
−0.999699 + 0.0245526i \(0.992184\pi\)
\(564\) 0 0
\(565\) −10.8204 −0.455219
\(566\) 0 0
\(567\) 3.09557i 0.130002i
\(568\) 0 0
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) 9.66970i 0.404664i −0.979317 0.202332i \(-0.935148\pi\)
0.979317 0.202332i \(-0.0648520\pi\)
\(572\) 0 0
\(573\) 10.3923i 0.434145i
\(574\) 0 0
\(575\) −15.8745 −0.662013
\(576\) 0 0
\(577\) 23.2177i 0.966567i −0.875464 0.483284i \(-0.839444\pi\)
0.875464 0.483284i \(-0.160556\pi\)
\(578\) 0 0
\(579\) −7.89495 −0.328103
\(580\) 0 0
\(581\) 44.5010i 1.84621i
\(582\) 0 0
\(583\) 14.9666i 0.619854i
\(584\) 0 0
\(585\) 1.58258 1.70938i 0.0654315 0.0706740i
\(586\) 0 0
\(587\) 8.25172 0.340585 0.170293 0.985394i \(-0.445529\pi\)
0.170293 + 0.985394i \(0.445529\pi\)
\(588\) 0 0
\(589\) 49.7925i 2.05167i
\(590\) 0 0
\(591\) 22.8263i 0.938950i
\(592\) 0 0
\(593\) 14.6709i 0.602460i 0.953552 + 0.301230i \(0.0973972\pi\)
−0.953552 + 0.301230i \(0.902603\pi\)
\(594\) 0 0
\(595\) 11.1652i 0.457727i
\(596\) 0 0
\(597\) 3.46410i 0.141776i
\(598\) 0 0
\(599\) 0.381401 0.0155836 0.00779181 0.999970i \(-0.497520\pi\)
0.00779181 + 0.999970i \(0.497520\pi\)
\(600\) 0 0
\(601\) 23.1652 0.944926 0.472463 0.881350i \(-0.343365\pi\)
0.472463 + 0.881350i \(0.343365\pi\)
\(602\) 0 0
\(603\) −4.77136 −0.194305
\(604\) 0 0
\(605\) −5.81475 −0.236403
\(606\) 0 0
\(607\) 25.1624 1.02131 0.510655 0.859785i \(-0.329403\pi\)
0.510655 + 0.859785i \(0.329403\pi\)
\(608\) 0 0
\(609\) 13.5518i 0.549147i
\(610\) 0 0
\(611\) −9.89949 9.16515i −0.400491 0.370782i
\(612\) 0 0
\(613\) −25.0343 −1.01113 −0.505563 0.862790i \(-0.668715\pi\)
−0.505563 + 0.862790i \(0.668715\pi\)
\(614\) 0 0
\(615\) −8.03260 −0.323906
\(616\) 0 0
\(617\) 0.528723i 0.0212856i 0.999943 + 0.0106428i \(0.00338777\pi\)
−0.999943 + 0.0106428i \(0.996612\pi\)
\(618\) 0 0
\(619\) −15.4947 −0.622786 −0.311393 0.950281i \(-0.600796\pi\)
−0.311393 + 0.950281i \(0.600796\pi\)
\(620\) 0 0
\(621\) 3.46410i 0.139010i
\(622\) 0 0
\(623\) −47.2421 −1.89272
\(624\) 0 0
\(625\) 18.9129 0.756515
\(626\) 0 0
\(627\) 7.58258i 0.302819i
\(628\) 0 0
\(629\) 27.3489 1.09047
\(630\) 0 0
\(631\) 28.8826i 1.14980i −0.818224 0.574900i \(-0.805041\pi\)
0.818224 0.574900i \(-0.194959\pi\)
\(632\) 0 0
\(633\) 19.1652 0.761746
\(634\) 0 0
\(635\) 13.5518 0.537787
\(636\) 0 0
\(637\) 6.32599 6.83285i 0.250645 0.270727i
\(638\) 0 0
\(639\) 2.44949i 0.0969003i
\(640\) 0 0
\(641\) −6.41742 −0.253473 −0.126737 0.991936i \(-0.540450\pi\)
−0.126737 + 0.991936i \(0.540450\pi\)
\(642\) 0 0
\(643\) 6.54234 0.258005 0.129002 0.991644i \(-0.458822\pi\)
0.129002 + 0.991644i \(0.458822\pi\)
\(644\) 0 0
\(645\) 3.60681 0.142018
\(646\) 0 0
\(647\) 43.3966 1.70610 0.853049 0.521831i \(-0.174751\pi\)
0.853049 + 0.521831i \(0.174751\pi\)
\(648\) 0 0
\(649\) 5.16515 0.202750
\(650\) 0 0
\(651\) 28.7477i 1.12671i
\(652\) 0 0
\(653\) 18.6156i 0.728485i 0.931304 + 0.364243i \(0.118672\pi\)
−0.931304 + 0.364243i \(0.881328\pi\)
\(654\) 0 0
\(655\) 3.87650i 0.151468i
\(656\) 0 0
\(657\) 5.65685i 0.220695i
\(658\) 0 0
\(659\) 24.8348i 0.967428i 0.875226 + 0.483714i \(0.160713\pi\)
−0.875226 + 0.483714i \(0.839287\pi\)
\(660\) 0 0
\(661\) 10.0677 0.391586 0.195793 0.980645i \(-0.437272\pi\)
0.195793 + 0.980645i \(0.437272\pi\)
\(662\) 0 0
\(663\) 14.7701 + 13.6745i 0.573623 + 0.531072i
\(664\) 0 0
\(665\) 10.7234i 0.415835i
\(666\) 0 0
\(667\) 15.1652i 0.587197i
\(668\) 0 0
\(669\) −14.4554 −0.558878
\(670\) 0 0
\(671\) 6.19115i 0.239007i
\(672\) 0 0
\(673\) 16.4174 0.632845 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(674\) 0 0
\(675\) 4.58258i 0.176383i
\(676\) 0 0
\(677\) 6.92820i 0.266272i −0.991098 0.133136i \(-0.957495\pi\)
0.991098 0.133136i \(-0.0425048\pi\)
\(678\) 0 0
\(679\) −15.6838 −0.601889
\(680\) 0 0
\(681\) 23.4513i 0.898656i
\(682\) 0 0
\(683\) 33.5844 1.28507 0.642535 0.766256i \(-0.277883\pi\)
0.642535 + 0.766256i \(0.277883\pi\)
\(684\) 0 0
\(685\) 9.09720i 0.347586i
\(686\) 0 0
\(687\) 1.29217i 0.0492993i
\(688\) 0 0
\(689\) 28.0000 + 25.9230i 1.06672 + 0.987586i
\(690\) 0 0
\(691\) 26.2181 0.997385 0.498692 0.866779i \(-0.333814\pi\)
0.498692 + 0.866779i \(0.333814\pi\)
\(692\) 0 0
\(693\) 4.37780i 0.166299i
\(694\) 0 0
\(695\) 5.65176i 0.214384i
\(696\) 0 0
\(697\) 69.4068i 2.62897i
\(698\) 0 0
\(699\) 24.3303i 0.920257i
\(700\) 0 0
\(701\) 39.0188i 1.47372i 0.676045 + 0.736860i \(0.263692\pi\)
−0.676045 + 0.736860i \(0.736308\pi\)
\(702\) 0 0
\(703\) 26.2668 0.990672
\(704\) 0 0
\(705\) −2.41742 −0.0910455
\(706\) 0 0
\(707\) 32.7605 1.23208
\(708\) 0 0
\(709\) 12.6520 0.475155 0.237578 0.971369i \(-0.423647\pi\)
0.237578 + 0.971369i \(0.423647\pi\)
\(710\) 0 0
\(711\) −7.11890 −0.266980
\(712\) 0 0
\(713\) 32.1701i 1.20478i
\(714\) 0 0
\(715\) −2.23810 + 2.41742i −0.0837002 + 0.0904065i
\(716\) 0 0
\(717\) 7.61816 0.284505
\(718\) 0 0
\(719\) −38.4865 −1.43530 −0.717652 0.696401i \(-0.754783\pi\)
−0.717652 + 0.696401i \(0.754783\pi\)
\(720\) 0 0
\(721\) 34.9986i 1.30341i
\(722\) 0 0
\(723\) 7.30463 0.271662
\(724\) 0 0
\(725\) 20.0616i 0.745069i
\(726\) 0 0
\(727\) −46.8607 −1.73797 −0.868984 0.494840i \(-0.835227\pi\)
−0.868984 + 0.494840i \(0.835227\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 31.1652i 1.15268i
\(732\) 0 0
\(733\) 9.79796 0.361896 0.180948 0.983493i \(-0.442083\pi\)
0.180948 + 0.983493i \(0.442083\pi\)
\(734\) 0 0
\(735\) 1.66856i 0.0615458i
\(736\) 0 0
\(737\) 6.74773 0.248556
\(738\) 0 0
\(739\) −43.7790 −1.61044 −0.805219 0.592978i \(-0.797952\pi\)
−0.805219 + 0.592978i \(0.797952\pi\)
\(740\) 0 0
\(741\) 14.1857 + 13.1334i 0.521125 + 0.482468i
\(742\) 0 0
\(743\) 21.0229i 0.771257i −0.922654 0.385628i \(-0.873985\pi\)
0.922654 0.385628i \(-0.126015\pi\)
\(744\) 0 0
\(745\) −11.5826 −0.424353
\(746\) 0 0
\(747\) 14.3757 0.525979
\(748\) 0 0
\(749\) −6.19115 −0.226220
\(750\) 0 0
\(751\) 2.55040 0.0930655 0.0465327 0.998917i \(-0.485183\pi\)
0.0465327 + 0.998917i \(0.485183\pi\)
\(752\) 0 0
\(753\) −7.16515 −0.261113
\(754\) 0 0
\(755\) 1.16515i 0.0424042i
\(756\) 0 0
\(757\) 25.1624i 0.914543i −0.889327 0.457272i \(-0.848827\pi\)
0.889327 0.457272i \(-0.151173\pi\)
\(758\) 0 0
\(759\) 4.89898i 0.177822i
\(760\) 0 0
\(761\) 20.3277i 0.736879i −0.929652 0.368440i \(-0.879892\pi\)
0.929652 0.368440i \(-0.120108\pi\)
\(762\) 0 0
\(763\) 30.3303i 1.09803i
\(764\) 0 0
\(765\) 3.60681 0.130405
\(766\) 0 0
\(767\) −8.94630 + 9.66311i −0.323032 + 0.348915i
\(768\) 0 0
\(769\) 10.2563i 0.369850i −0.982753 0.184925i \(-0.940796\pi\)
0.982753 0.184925i \(-0.0592043\pi\)
\(770\) 0 0
\(771\) 9.16515i 0.330075i
\(772\) 0 0
\(773\) −26.4331 −0.950734 −0.475367 0.879788i \(-0.657685\pi\)
−0.475367 + 0.879788i \(0.657685\pi\)
\(774\) 0 0
\(775\) 42.5571i 1.52870i
\(776\) 0 0
\(777\) 15.1652 0.544047
\(778\) 0 0
\(779\) 66.6606i 2.38836i
\(780\) 0 0
\(781\) 3.46410i 0.123955i
\(782\) 0 0
\(783\) −4.37780 −0.156450
\(784\) 0 0
\(785\) 10.7234i 0.382734i
\(786\) 0 0
\(787\) −12.6663 −0.451505 −0.225753 0.974185i \(-0.572484\pi\)
−0.225753 + 0.974185i \(0.572484\pi\)
\(788\) 0 0
\(789\) 8.75560i 0.311708i
\(790\) 0 0
\(791\) 51.8438i 1.84335i
\(792\) 0 0
\(793\) 11.5826 + 10.7234i 0.411309 + 0.380798i
\(794\) 0 0
\(795\) 6.83751 0.242501
\(796\) 0 0
\(797\) 13.1334i 0.465209i 0.972571 + 0.232605i \(0.0747248\pi\)
−0.972571 + 0.232605i \(0.925275\pi\)
\(798\) 0 0
\(799\) 20.8881i 0.738967i
\(800\) 0 0
\(801\) 15.2612i 0.539227i
\(802\) 0 0
\(803\) 8.00000i 0.282314i
\(804\) 0 0
\(805\) 6.92820i 0.244187i
\(806\) 0 0
\(807\) 0.723000 0.0254508
\(808\) 0 0
\(809\) 16.7477 0.588819 0.294409 0.955679i \(-0.404877\pi\)
0.294409 + 0.955679i \(0.404877\pi\)
\(810\) 0 0
\(811\) 41.4177 1.45437 0.727186 0.686440i \(-0.240828\pi\)
0.727186 + 0.686440i \(0.240828\pi\)
\(812\) 0 0
\(813\) 5.41022 0.189745
\(814\) 0 0
\(815\) −16.2559 −0.569420
\(816\) 0 0
\(817\) 29.9320i 1.04719i
\(818\) 0 0
\(819\) 8.19012 + 7.58258i 0.286186 + 0.264957i
\(820\) 0 0
\(821\) 48.6134 1.69662 0.848310 0.529500i \(-0.177621\pi\)
0.848310 + 0.529500i \(0.177621\pi\)
\(822\) 0 0
\(823\) 2.93180 0.102196 0.0510981 0.998694i \(-0.483728\pi\)
0.0510981 + 0.998694i \(0.483728\pi\)
\(824\) 0 0
\(825\) 6.48074i 0.225630i
\(826\) 0 0
\(827\) −31.3463 −1.09002 −0.545008 0.838431i \(-0.683473\pi\)
−0.545008 + 0.838431i \(0.683473\pi\)
\(828\) 0 0
\(829\) 42.6736i 1.48212i −0.671441 0.741058i \(-0.734324\pi\)
0.671441 0.741058i \(-0.265676\pi\)
\(830\) 0 0
\(831\) −10.2016 −0.353890
\(832\) 0 0
\(833\) 14.4174 0.499534
\(834\) 0 0
\(835\) 12.7477i 0.441153i
\(836\) 0 0
\(837\) −9.28672 −0.320996
\(838\) 0 0
\(839\) 39.5964i 1.36702i −0.729942 0.683509i \(-0.760453\pi\)
0.729942 0.683509i \(-0.239547\pi\)
\(840\) 0 0
\(841\) 9.83485 0.339133
\(842\) 0 0
\(843\) −30.4608 −1.04912
\(844\) 0 0
\(845\) −0.646084 8.37420i −0.0222260 0.288081i
\(846\) 0 0
\(847\) 27.8602i 0.957286i
\(848\) 0 0
\(849\) −12.0000 −0.411839
\(850\) 0 0
\(851\) −16.9706 −0.581743
\(852\) 0 0
\(853\) −14.6969 −0.503214 −0.251607 0.967830i \(-0.580959\pi\)
−0.251607 + 0.967830i \(0.580959\pi\)
\(854\) 0 0
\(855\) 3.46410 0.118470
\(856\) 0 0
\(857\) −26.8348 −0.916661 −0.458330 0.888782i \(-0.651552\pi\)
−0.458330 + 0.888782i \(0.651552\pi\)
\(858\) 0 0
\(859\) 44.6606i 1.52380i −0.647695 0.761900i \(-0.724267\pi\)
0.647695 0.761900i \(-0.275733\pi\)
\(860\) 0 0
\(861\) 38.4865i 1.31162i
\(862\) 0 0
\(863\) 13.5396i 0.460894i −0.973085 0.230447i \(-0.925981\pi\)
0.973085 0.230447i \(-0.0740188\pi\)
\(864\) 0 0
\(865\) 8.95240i 0.304391i
\(866\) 0 0
\(867\) 14.1652i 0.481074i
\(868\) 0 0
\(869\) 10.0677 0.341522
\(870\) 0 0
\(871\) −11.6874 + 12.6238i −0.396013 + 0.427743i
\(872\) 0 0
\(873\) 5.06653i 0.171476i
\(874\) 0 0
\(875\) 19.1652i 0.647900i
\(876\) 0 0
\(877\) −26.0568 −0.879874 −0.439937 0.898029i \(-0.644999\pi\)
−0.439937 + 0.898029i \(0.644999\pi\)
\(878\) 0 0
\(879\) 7.10692i 0.239711i
\(880\) 0 0
\(881\) 40.3303 1.35876 0.679381 0.733786i \(-0.262248\pi\)
0.679381 + 0.733786i \(0.262248\pi\)
\(882\) 0 0
\(883\) 49.4955i 1.66565i −0.553533 0.832827i \(-0.686721\pi\)
0.553533 0.832827i \(-0.313279\pi\)
\(884\) 0 0
\(885\) 2.35970i 0.0793205i
\(886\) 0 0
\(887\) 54.5517 1.83167 0.915834 0.401557i \(-0.131531\pi\)
0.915834 + 0.401557i \(0.131531\pi\)
\(888\) 0 0
\(889\) 64.9306i 2.17770i
\(890\) 0 0
\(891\) 1.41421 0.0473779
\(892\) 0 0
\(893\) 20.0616i 0.671336i
\(894\) 0 0
\(895\) 6.46084i 0.215962i
\(896\) 0 0
\(897\) −9.16515 8.48528i −0.306015 0.283315i
\(898\) 0 0
\(899\) −40.6554 −1.35593
\(900\) 0 0
\(901\) 59.0804i 1.96825i
\(902\) 0 0
\(903\) 17.2813i 0.575085i
\(904\) 0 0
\(905\) 0.590327i 0.0196231i
\(906\) 0 0
\(907\) 40.6606i 1.35011i 0.737766 + 0.675057i \(0.235881\pi\)
−0.737766 + 0.675057i \(0.764119\pi\)
\(908\) 0 0
\(909\) 10.5830i 0.351016i
\(910\) 0 0
\(911\) −17.3205 −0.573854 −0.286927 0.957952i \(-0.592634\pi\)
−0.286927 + 0.957952i \(0.592634\pi\)
\(912\) 0 0
\(913\) −20.3303 −0.672835
\(914\) 0 0
\(915\) 2.82843 0.0935049
\(916\) 0 0
\(917\) 18.5734 0.613349
\(918\) 0 0
\(919\) 54.1703 1.78691 0.893457 0.449149i \(-0.148273\pi\)
0.893457 + 0.449149i \(0.148273\pi\)
\(920\) 0 0
\(921\) 0.885491i 0.0291779i
\(922\) 0 0
\(923\) −6.48074 6.00000i −0.213316 0.197492i
\(924\) 0 0
\(925\) 22.4499 0.738150
\(926\) 0 0
\(927\) 11.3060 0.371338
\(928\) 0 0
\(929\) 31.0511i 1.01875i 0.860544 + 0.509377i \(0.170124\pi\)
−0.860544 + 0.509377i \(0.829876\pi\)
\(930\) 0 0
\(931\) 13.8470 0.453816
\(932\) 0 0
\(933\) 8.56490i 0.280402i
\(934\) 0 0
\(935\) −5.10080 −0.166814
\(936\) 0 0
\(937\) −0.0871215 −0.00284614 −0.00142307 0.999999i \(-0.500453\pi\)
−0.00142307 + 0.999999i \(0.500453\pi\)
\(938\) 0 0
\(939\) 15.1652i 0.494896i
\(940\) 0 0
\(941\) −31.3321 −1.02140 −0.510699 0.859760i \(-0.670613\pi\)
−0.510699 + 0.859760i \(0.670613\pi\)
\(942\) 0 0
\(943\) 43.0683i 1.40250i
\(944\) 0 0
\(945\) 2.00000 0.0650600
\(946\) 0 0
\(947\) −14.3757 −0.467147 −0.233574 0.972339i \(-0.575042\pi\)
−0.233574 + 0.972339i \(0.575042\pi\)
\(948\) 0 0
\(949\) −14.9666 13.8564i −0.485837 0.449798i
\(950\) 0 0
\(951\) 8.12940i 0.263614i
\(952\) 0 0
\(953\) −25.1652 −0.815179 −0.407590 0.913165i \(-0.633631\pi\)
−0.407590 + 0.913165i \(0.633631\pi\)
\(954\) 0 0
\(955\) 6.71430 0.217270
\(956\) 0 0
\(957\) 6.19115 0.200131
\(958\) 0 0
\(959\) 43.5873 1.40751
\(960\) 0 0
\(961\) −55.2432 −1.78204
\(962\) 0 0
\(963\) 2.00000i 0.0644491i
\(964\) 0 0
\(965\) 5.10080i 0.164201i
\(966\) 0 0
\(967\) 40.5121i 1.30278i 0.758742 + 0.651391i \(0.225814\pi\)
−0.758742 + 0.651391i \(0.774186\pi\)
\(968\) 0 0
\(969\) 29.9320i 0.961556i
\(970\) 0 0
\(971\) 33.4955i 1.07492i −0.843289 0.537460i \(-0.819384\pi\)
0.843289 0.537460i \(-0.180616\pi\)
\(972\) 0 0
\(973\) 27.0792 0.868120
\(974\) 0 0
\(975\) 12.1244 + 11.2250i 0.388290 + 0.359487i
\(976\) 0 0
\(977\) 0.528723i 0.0169153i 0.999964 + 0.00845767i \(0.00269219\pi\)
−0.999964 + 0.00845767i \(0.997308\pi\)
\(978\) 0 0
\(979\) 21.5826i 0.689782i
\(980\) 0 0
\(981\) −9.79796 −0.312825
\(982\) 0 0
\(983\) 13.2699i 0.423245i −0.977351 0.211622i \(-0.932125\pi\)
0.977351 0.211622i \(-0.0678747\pi\)
\(984\) 0 0
\(985\) −14.7477 −0.469902
\(986\) 0 0
\(987\) 11.5826i 0.368677i
\(988\) 0 0
\(989\) 19.3386i 0.614932i
\(990\) 0 0
\(991\) 29.1986 0.927525 0.463762 0.885960i \(-0.346499\pi\)
0.463762 + 0.885960i \(0.346499\pi\)
\(992\) 0 0
\(993\) 12.0760i 0.383220i
\(994\) 0 0
\(995\) 2.23810 0.0709525
\(996\) 0 0
\(997\) 0.381401i 0.0120791i 0.999982 + 0.00603954i \(0.00192246\pi\)
−0.999982 + 0.00603954i \(0.998078\pi\)
\(998\) 0 0
\(999\) 4.89898i 0.154997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.2.m.c.2209.14 yes 16
4.3 odd 2 inner 2496.2.m.c.2209.5 yes 16
8.3 odd 2 inner 2496.2.m.c.2209.12 yes 16
8.5 even 2 inner 2496.2.m.c.2209.3 16
13.12 even 2 inner 2496.2.m.c.2209.11 yes 16
52.51 odd 2 inner 2496.2.m.c.2209.4 yes 16
104.51 odd 2 inner 2496.2.m.c.2209.13 yes 16
104.77 even 2 inner 2496.2.m.c.2209.6 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2496.2.m.c.2209.3 16 8.5 even 2 inner
2496.2.m.c.2209.4 yes 16 52.51 odd 2 inner
2496.2.m.c.2209.5 yes 16 4.3 odd 2 inner
2496.2.m.c.2209.6 yes 16 104.77 even 2 inner
2496.2.m.c.2209.11 yes 16 13.12 even 2 inner
2496.2.m.c.2209.12 yes 16 8.3 odd 2 inner
2496.2.m.c.2209.13 yes 16 104.51 odd 2 inner
2496.2.m.c.2209.14 yes 16 1.1 even 1 trivial