Properties

Label 2496.2.m.c
Level $2496$
Weight $2$
Character orbit 2496.m
Analytic conductor $19.931$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2496,2,Mod(2209,2496)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2496.2209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2496, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2496.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-16,0,0,0,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9306603445\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.162447943996702457856.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{12} - 15x^{8} - 16x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} - \beta_{11} q^{5} - \beta_{14} q^{7} - q^{9} + \beta_{7} q^{11} + (\beta_{13} - \beta_{11} + \beta_{5}) q^{13} - \beta_{9} q^{15} + ( - \beta_{4} - 1) q^{17} + ( - \beta_{12} - \beta_{7}) q^{19}+ \cdots - \beta_{7} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{9} - 16 q^{17} + 32 q^{49} + 48 q^{65} + 16 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - x^{12} - 15x^{8} - 16x^{4} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{12} - 15\nu^{8} + 15\nu^{4} + 136 ) / 120 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{14} - 15\nu^{10} - 33\nu^{6} + 256\nu^{2} ) / 576 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{14} - 15\nu^{10} + 95\nu^{6} + 256\nu^{2} ) / 320 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{12} + \nu^{8} + 31\nu^{4} + 8 ) / 24 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -2\nu^{12} + 47 ) / 45 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -9\nu^{14} + 25\nu^{10} + 55\nu^{6} + 544\nu^{2} ) / 960 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 4\nu^{15} - 17\nu^{13} - 15\nu^{9} + 255\nu^{5} + 356\nu^{3} + 272\nu ) / 1440 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -19\nu^{15} + 88\nu^{13} + 195\nu^{11} + 360\nu^{9} + 1005\nu^{7} - 360\nu^{5} - 416\nu^{3} - 11968\nu ) / 5760 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 5\nu^{15} - 8\nu^{13} - 21\nu^{11} + 72\nu^{9} + 69\nu^{7} - 72\nu^{5} - 224\nu^{3} - 64\nu ) / 1152 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -4\nu^{15} - 17\nu^{13} - 15\nu^{9} + 255\nu^{5} - 356\nu^{3} + 272\nu ) / 1440 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( -5\nu^{15} - 8\nu^{13} + 21\nu^{11} + 72\nu^{9} - 69\nu^{7} - 72\nu^{5} + 224\nu^{3} - 64\nu ) / 1152 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( -19\nu^{15} - 88\nu^{13} + 195\nu^{11} - 360\nu^{9} + 1005\nu^{7} + 360\nu^{5} - 416\nu^{3} + 11968\nu ) / 5760 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( -11\nu^{15} + 4\nu^{13} - 21\nu^{11} + 60\nu^{9} + 69\nu^{7} + 132\nu^{5} + 656\nu^{3} + 128\nu ) / 1152 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 11\nu^{15} + 4\nu^{13} + 21\nu^{11} + 60\nu^{9} - 69\nu^{7} + 132\nu^{5} - 656\nu^{3} + 128\nu ) / 1152 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 7\nu^{14} + 9\nu^{10} - 57\nu^{6} + 32\nu^{2} ) / 192 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{14} + \beta_{13} + \beta_{12} - \beta_{10} - \beta_{8} - \beta_{7} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{15} + 3\beta_{6} + \beta_{3} + 3\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{14} + \beta_{13} + \beta_{11} - 5\beta_{10} - \beta_{9} + 5\beta_{7} ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -3\beta_{5} + 3\beta_{4} + \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 6\beta_{14} + 6\beta_{13} - \beta_{12} - 5\beta_{11} + 6\beta_{10} - 5\beta_{9} + \beta_{8} + 6\beta_{7} ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 5\beta_{3} - 9\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -3\beta_{14} + 3\beta_{13} + 7\beta_{12} - 10\beta_{11} - 3\beta_{10} + 10\beta_{9} + 7\beta_{8} + 3\beta_{7} ) / 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 3\beta_{5} + 3\beta_{4} - 31\beta _1 + 31 ) / 4 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 17\beta_{14} + 17\beta_{13} + 17\beta_{11} - 5\beta_{10} + 17\beta_{9} - 5\beta_{7} ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 11\beta_{15} + 57\beta_{6} - 11\beta_{3} - 57\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 22 \beta_{14} - 22 \beta_{13} + 23 \beta_{12} + 45 \beta_{11} - 22 \beta_{10} - 45 \beta_{9} + \cdots + 22 \beta_{7} ) / 4 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( -45\beta_{5} + 47 ) / 2 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 91\beta_{14} + 91\beta_{13} + \beta_{12} - 90\beta_{11} - 91\beta_{10} - 90\beta_{9} - \beta_{8} - 91\beta_{7} ) / 4 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 91\beta_{15} - 87\beta_{6} + 91\beta_{3} - 87\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 89\beta_{14} - 89\beta_{13} - 89\beta_{11} - 275\beta_{10} + 89\beta_{9} + 275\beta_{7} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2496\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2209.1
1.14839 + 0.825348i
−0.825348 1.14839i
0.140577 1.40721i
1.40721 0.140577i
−1.40721 + 0.140577i
−0.140577 + 1.40721i
0.825348 + 1.14839i
−1.14839 0.825348i
1.14839 0.825348i
−0.825348 + 1.14839i
0.140577 + 1.40721i
1.40721 + 0.140577i
−1.40721 0.140577i
−0.140577 1.40721i
0.825348 1.14839i
−1.14839 + 0.825348i
0 1.00000i 0 −3.09557 0 0.646084i 0 −1.00000 0
2209.2 0 1.00000i 0 −3.09557 0 0.646084i 0 −1.00000 0
2209.3 0 1.00000i 0 −0.646084 0 3.09557i 0 −1.00000 0
2209.4 0 1.00000i 0 −0.646084 0 3.09557i 0 −1.00000 0
2209.5 0 1.00000i 0 0.646084 0 3.09557i 0 −1.00000 0
2209.6 0 1.00000i 0 0.646084 0 3.09557i 0 −1.00000 0
2209.7 0 1.00000i 0 3.09557 0 0.646084i 0 −1.00000 0
2209.8 0 1.00000i 0 3.09557 0 0.646084i 0 −1.00000 0
2209.9 0 1.00000i 0 −3.09557 0 0.646084i 0 −1.00000 0
2209.10 0 1.00000i 0 −3.09557 0 0.646084i 0 −1.00000 0
2209.11 0 1.00000i 0 −0.646084 0 3.09557i 0 −1.00000 0
2209.12 0 1.00000i 0 −0.646084 0 3.09557i 0 −1.00000 0
2209.13 0 1.00000i 0 0.646084 0 3.09557i 0 −1.00000 0
2209.14 0 1.00000i 0 0.646084 0 3.09557i 0 −1.00000 0
2209.15 0 1.00000i 0 3.09557 0 0.646084i 0 −1.00000 0
2209.16 0 1.00000i 0 3.09557 0 0.646084i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2209.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
13.b even 2 1 inner
52.b odd 2 1 inner
104.e even 2 1 inner
104.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2496.2.m.c 16
4.b odd 2 1 inner 2496.2.m.c 16
8.b even 2 1 inner 2496.2.m.c 16
8.d odd 2 1 inner 2496.2.m.c 16
13.b even 2 1 inner 2496.2.m.c 16
52.b odd 2 1 inner 2496.2.m.c 16
104.e even 2 1 inner 2496.2.m.c 16
104.h odd 2 1 inner 2496.2.m.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2496.2.m.c 16 1.a even 1 1 trivial
2496.2.m.c 16 4.b odd 2 1 inner
2496.2.m.c 16 8.b even 2 1 inner
2496.2.m.c 16 8.d odd 2 1 inner
2496.2.m.c 16 13.b even 2 1 inner
2496.2.m.c 16 52.b odd 2 1 inner
2496.2.m.c 16 104.e even 2 1 inner
2496.2.m.c 16 104.h odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2496, [\chi])\):

\( T_{5}^{4} - 10T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} + 10T_{7}^{2} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} - 10 T^{2} + 4)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} + 10 T^{2} + 4)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 2)^{8} \) Copy content Toggle raw display
$13$ \( (T^{4} + 2 T^{2} + 169)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 2 T - 20)^{8} \) Copy content Toggle raw display
$19$ \( (T^{4} - 30 T^{2} + 36)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 12)^{8} \) Copy content Toggle raw display
$29$ \( (T^{4} + 20 T^{2} + 16)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} + 90 T^{2} + 324)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 24)^{8} \) Copy content Toggle raw display
$41$ \( (T^{4} + 190 T^{2} + 5476)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} + 44 T^{2} + 400)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} + 14)^{8} \) Copy content Toggle raw display
$53$ \( (T^{2} + 112)^{8} \) Copy content Toggle raw display
$59$ \( (T^{4} - 100 T^{2} + 1156)^{4} \) Copy content Toggle raw display
$61$ \( (T^{4} + 20 T^{2} + 16)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} - 238 T^{2} + 4900)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 6)^{8} \) Copy content Toggle raw display
$73$ \( (T^{2} + 32)^{8} \) Copy content Toggle raw display
$79$ \( (T^{4} - 248 T^{2} + 10000)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 340 T^{2} + 27556)^{4} \) Copy content Toggle raw display
$89$ \( (T^{4} + 310 T^{2} + 17956)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} + 88 T^{2} + 1600)^{4} \) Copy content Toggle raw display
show more
show less