Properties

Label 2496.2.j.f.287.15
Level $2496$
Weight $2$
Character 2496.287
Analytic conductor $19.931$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2496,2,Mod(287,2496)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2496.287"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2496, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2496.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9306603445\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 287.15
Character \(\chi\) \(=\) 2496.287
Dual form 2496.2.j.f.287.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0969806 + 1.72933i) q^{3} -3.03737 q^{5} -2.31810i q^{7} +(-2.98119 - 0.335424i) q^{9} +1.37788i q^{11} +1.00000i q^{13} +(0.294566 - 5.25262i) q^{15} -2.25342i q^{17} +7.84800 q^{19} +(4.00876 + 0.224810i) q^{21} -5.17983 q^{23} +4.22559 q^{25} +(0.869177 - 5.12294i) q^{27} +0.308414 q^{29} -5.62113i q^{31} +(-2.38281 - 0.133628i) q^{33} +7.04090i q^{35} -5.13447i q^{37} +(-1.72933 - 0.0969806i) q^{39} +6.69261i q^{41} -0.695678 q^{43} +(9.05496 + 1.01880i) q^{45} -5.99870 q^{47} +1.62643 q^{49} +(3.89691 + 0.218538i) q^{51} +11.8413 q^{53} -4.18512i q^{55} +(-0.761104 + 13.5718i) q^{57} +13.7784i q^{59} +10.6018i q^{61} +(-0.777544 + 6.91068i) q^{63} -3.03737i q^{65} -10.9844 q^{67} +(0.502343 - 8.95765i) q^{69} +11.4819 q^{71} +12.3889 q^{73} +(-0.409800 + 7.30745i) q^{75} +3.19406 q^{77} +7.61698i q^{79} +(8.77498 + 1.99992i) q^{81} +4.21772i q^{83} +6.84445i q^{85} +(-0.0299102 + 0.533351i) q^{87} +9.89782i q^{89} +2.31810 q^{91} +(9.72080 + 0.545140i) q^{93} -23.8372 q^{95} -1.59572 q^{97} +(0.462173 - 4.10772i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{9} + 32 q^{19} + 56 q^{25} - 24 q^{27} + 32 q^{33} + 16 q^{43} + 8 q^{49} - 40 q^{51} - 8 q^{57} - 16 q^{67} - 16 q^{73} - 120 q^{75} - 44 q^{81} - 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2496\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0969806 + 1.72933i −0.0559918 + 0.998431i
\(4\) 0 0
\(5\) −3.03737 −1.35835 −0.679176 0.733976i \(-0.737663\pi\)
−0.679176 + 0.733976i \(0.737663\pi\)
\(6\) 0 0
\(7\) 2.31810i 0.876158i −0.898937 0.438079i \(-0.855659\pi\)
0.898937 0.438079i \(-0.144341\pi\)
\(8\) 0 0
\(9\) −2.98119 0.335424i −0.993730 0.111808i
\(10\) 0 0
\(11\) 1.37788i 0.415446i 0.978188 + 0.207723i \(0.0666053\pi\)
−0.978188 + 0.207723i \(0.933395\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) 0.294566 5.25262i 0.0760565 1.35622i
\(16\) 0 0
\(17\) 2.25342i 0.546534i −0.961938 0.273267i \(-0.911896\pi\)
0.961938 0.273267i \(-0.0881042\pi\)
\(18\) 0 0
\(19\) 7.84800 1.80045 0.900227 0.435420i \(-0.143400\pi\)
0.900227 + 0.435420i \(0.143400\pi\)
\(20\) 0 0
\(21\) 4.00876 + 0.224810i 0.874783 + 0.0490576i
\(22\) 0 0
\(23\) −5.17983 −1.08007 −0.540035 0.841643i \(-0.681589\pi\)
−0.540035 + 0.841643i \(0.681589\pi\)
\(24\) 0 0
\(25\) 4.22559 0.845118
\(26\) 0 0
\(27\) 0.869177 5.12294i 0.167273 0.985911i
\(28\) 0 0
\(29\) 0.308414 0.0572711 0.0286355 0.999590i \(-0.490884\pi\)
0.0286355 + 0.999590i \(0.490884\pi\)
\(30\) 0 0
\(31\) 5.62113i 1.00958i −0.863241 0.504792i \(-0.831569\pi\)
0.863241 0.504792i \(-0.168431\pi\)
\(32\) 0 0
\(33\) −2.38281 0.133628i −0.414795 0.0232616i
\(34\) 0 0
\(35\) 7.04090i 1.19013i
\(36\) 0 0
\(37\) 5.13447i 0.844101i −0.906572 0.422051i \(-0.861310\pi\)
0.906572 0.422051i \(-0.138690\pi\)
\(38\) 0 0
\(39\) −1.72933 0.0969806i −0.276915 0.0155293i
\(40\) 0 0
\(41\) 6.69261i 1.04521i 0.852575 + 0.522605i \(0.175040\pi\)
−0.852575 + 0.522605i \(0.824960\pi\)
\(42\) 0 0
\(43\) −0.695678 −0.106090 −0.0530449 0.998592i \(-0.516893\pi\)
−0.0530449 + 0.998592i \(0.516893\pi\)
\(44\) 0 0
\(45\) 9.05496 + 1.01880i 1.34983 + 0.151874i
\(46\) 0 0
\(47\) −5.99870 −0.875001 −0.437500 0.899218i \(-0.644136\pi\)
−0.437500 + 0.899218i \(0.644136\pi\)
\(48\) 0 0
\(49\) 1.62643 0.232348
\(50\) 0 0
\(51\) 3.89691 + 0.218538i 0.545676 + 0.0306014i
\(52\) 0 0
\(53\) 11.8413 1.62652 0.813261 0.581899i \(-0.197690\pi\)
0.813261 + 0.581899i \(0.197690\pi\)
\(54\) 0 0
\(55\) 4.18512i 0.564322i
\(56\) 0 0
\(57\) −0.761104 + 13.5718i −0.100811 + 1.79763i
\(58\) 0 0
\(59\) 13.7784i 1.79379i 0.442243 + 0.896895i \(0.354183\pi\)
−0.442243 + 0.896895i \(0.645817\pi\)
\(60\) 0 0
\(61\) 10.6018i 1.35742i 0.734408 + 0.678708i \(0.237460\pi\)
−0.734408 + 0.678708i \(0.762540\pi\)
\(62\) 0 0
\(63\) −0.777544 + 6.91068i −0.0979613 + 0.870664i
\(64\) 0 0
\(65\) 3.03737i 0.376739i
\(66\) 0 0
\(67\) −10.9844 −1.34196 −0.670978 0.741477i \(-0.734125\pi\)
−0.670978 + 0.741477i \(0.734125\pi\)
\(68\) 0 0
\(69\) 0.502343 8.95765i 0.0604750 1.07837i
\(70\) 0 0
\(71\) 11.4819 1.36265 0.681323 0.731983i \(-0.261405\pi\)
0.681323 + 0.731983i \(0.261405\pi\)
\(72\) 0 0
\(73\) 12.3889 1.45001 0.725005 0.688743i \(-0.241837\pi\)
0.725005 + 0.688743i \(0.241837\pi\)
\(74\) 0 0
\(75\) −0.409800 + 7.30745i −0.0473197 + 0.843792i
\(76\) 0 0
\(77\) 3.19406 0.363996
\(78\) 0 0
\(79\) 7.61698i 0.856977i 0.903547 + 0.428489i \(0.140954\pi\)
−0.903547 + 0.428489i \(0.859046\pi\)
\(80\) 0 0
\(81\) 8.77498 + 1.99992i 0.974998 + 0.222214i
\(82\) 0 0
\(83\) 4.21772i 0.462955i 0.972840 + 0.231477i \(0.0743560\pi\)
−0.972840 + 0.231477i \(0.925644\pi\)
\(84\) 0 0
\(85\) 6.84445i 0.742385i
\(86\) 0 0
\(87\) −0.0299102 + 0.533351i −0.00320671 + 0.0571812i
\(88\) 0 0
\(89\) 9.89782i 1.04917i 0.851359 + 0.524584i \(0.175779\pi\)
−0.851359 + 0.524584i \(0.824221\pi\)
\(90\) 0 0
\(91\) 2.31810 0.243002
\(92\) 0 0
\(93\) 9.72080 + 0.545140i 1.00800 + 0.0565284i
\(94\) 0 0
\(95\) −23.8372 −2.44565
\(96\) 0 0
\(97\) −1.59572 −0.162021 −0.0810105 0.996713i \(-0.525815\pi\)
−0.0810105 + 0.996713i \(0.525815\pi\)
\(98\) 0 0
\(99\) 0.462173 4.10772i 0.0464502 0.412841i
\(100\) 0 0
\(101\) 0.589367 0.0586442 0.0293221 0.999570i \(-0.490665\pi\)
0.0293221 + 0.999570i \(0.490665\pi\)
\(102\) 0 0
\(103\) 0.375101i 0.0369598i −0.999829 0.0184799i \(-0.994117\pi\)
0.999829 0.0184799i \(-0.00588267\pi\)
\(104\) 0 0
\(105\) −12.1761 0.682831i −1.18826 0.0666375i
\(106\) 0 0
\(107\) 3.23268i 0.312515i 0.987716 + 0.156257i \(0.0499429\pi\)
−0.987716 + 0.156257i \(0.950057\pi\)
\(108\) 0 0
\(109\) 16.9994i 1.62825i 0.580689 + 0.814125i \(0.302783\pi\)
−0.580689 + 0.814125i \(0.697217\pi\)
\(110\) 0 0
\(111\) 8.87921 + 0.497944i 0.842777 + 0.0472627i
\(112\) 0 0
\(113\) 15.8565i 1.49165i −0.666139 0.745827i \(-0.732054\pi\)
0.666139 0.745827i \(-0.267946\pi\)
\(114\) 0 0
\(115\) 15.7330 1.46711
\(116\) 0 0
\(117\) 0.335424 2.98119i 0.0310099 0.275611i
\(118\) 0 0
\(119\) −5.22363 −0.478850
\(120\) 0 0
\(121\) 9.10145 0.827404
\(122\) 0 0
\(123\) −11.5737 0.649053i −1.04357 0.0585231i
\(124\) 0 0
\(125\) 2.35217 0.210384
\(126\) 0 0
\(127\) 3.72234i 0.330304i 0.986268 + 0.165152i \(0.0528115\pi\)
−0.986268 + 0.165152i \(0.947189\pi\)
\(128\) 0 0
\(129\) 0.0674673 1.20306i 0.00594016 0.105923i
\(130\) 0 0
\(131\) 0.729041i 0.0636966i 0.999493 + 0.0318483i \(0.0101393\pi\)
−0.999493 + 0.0318483i \(0.989861\pi\)
\(132\) 0 0
\(133\) 18.1924i 1.57748i
\(134\) 0 0
\(135\) −2.64001 + 15.5602i −0.227216 + 1.33921i
\(136\) 0 0
\(137\) 2.55115i 0.217959i 0.994044 + 0.108980i \(0.0347584\pi\)
−0.994044 + 0.108980i \(0.965242\pi\)
\(138\) 0 0
\(139\) −20.4368 −1.73342 −0.866712 0.498808i \(-0.833771\pi\)
−0.866712 + 0.498808i \(0.833771\pi\)
\(140\) 0 0
\(141\) 0.581758 10.3738i 0.0489929 0.873628i
\(142\) 0 0
\(143\) −1.37788 −0.115224
\(144\) 0 0
\(145\) −0.936767 −0.0777942
\(146\) 0 0
\(147\) −0.157733 + 2.81265i −0.0130096 + 0.231983i
\(148\) 0 0
\(149\) 10.0240 0.821201 0.410600 0.911815i \(-0.365319\pi\)
0.410600 + 0.911815i \(0.365319\pi\)
\(150\) 0 0
\(151\) 4.30865i 0.350633i 0.984512 + 0.175316i \(0.0560948\pi\)
−0.984512 + 0.175316i \(0.943905\pi\)
\(152\) 0 0
\(153\) −0.755849 + 6.71786i −0.0611068 + 0.543107i
\(154\) 0 0
\(155\) 17.0734i 1.37137i
\(156\) 0 0
\(157\) 11.8001i 0.941749i 0.882200 + 0.470875i \(0.156062\pi\)
−0.882200 + 0.470875i \(0.843938\pi\)
\(158\) 0 0
\(159\) −1.14837 + 20.4775i −0.0910719 + 1.62397i
\(160\) 0 0
\(161\) 12.0073i 0.946311i
\(162\) 0 0
\(163\) 6.95849 0.545031 0.272515 0.962151i \(-0.412144\pi\)
0.272515 + 0.962151i \(0.412144\pi\)
\(164\) 0 0
\(165\) 7.23748 + 0.405876i 0.563437 + 0.0315974i
\(166\) 0 0
\(167\) 15.5317 1.20188 0.600938 0.799296i \(-0.294794\pi\)
0.600938 + 0.799296i \(0.294794\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) −23.3964 2.63241i −1.78917 0.201305i
\(172\) 0 0
\(173\) 3.04950 0.231849 0.115925 0.993258i \(-0.463017\pi\)
0.115925 + 0.993258i \(0.463017\pi\)
\(174\) 0 0
\(175\) 9.79532i 0.740457i
\(176\) 0 0
\(177\) −23.8274 1.33623i −1.79098 0.100438i
\(178\) 0 0
\(179\) 5.46947i 0.408808i −0.978887 0.204404i \(-0.934474\pi\)
0.978887 0.204404i \(-0.0655256\pi\)
\(180\) 0 0
\(181\) 13.2616i 0.985730i −0.870106 0.492865i \(-0.835950\pi\)
0.870106 0.492865i \(-0.164050\pi\)
\(182\) 0 0
\(183\) −18.3340 1.02817i −1.35529 0.0760042i
\(184\) 0 0
\(185\) 15.5953i 1.14659i
\(186\) 0 0
\(187\) 3.10494 0.227055
\(188\) 0 0
\(189\) −11.8755 2.01484i −0.863813 0.146558i
\(190\) 0 0
\(191\) −5.05470 −0.365745 −0.182873 0.983137i \(-0.558540\pi\)
−0.182873 + 0.983137i \(0.558540\pi\)
\(192\) 0 0
\(193\) 10.3602 0.745742 0.372871 0.927883i \(-0.378373\pi\)
0.372871 + 0.927883i \(0.378373\pi\)
\(194\) 0 0
\(195\) 5.25262 + 0.294566i 0.376148 + 0.0210943i
\(196\) 0 0
\(197\) −11.6235 −0.828138 −0.414069 0.910245i \(-0.635893\pi\)
−0.414069 + 0.910245i \(0.635893\pi\)
\(198\) 0 0
\(199\) 3.88415i 0.275340i −0.990478 0.137670i \(-0.956039\pi\)
0.990478 0.137670i \(-0.0439613\pi\)
\(200\) 0 0
\(201\) 1.06527 18.9957i 0.0751385 1.33985i
\(202\) 0 0
\(203\) 0.714934i 0.0501785i
\(204\) 0 0
\(205\) 20.3279i 1.41976i
\(206\) 0 0
\(207\) 15.4421 + 1.73744i 1.07330 + 0.120760i
\(208\) 0 0
\(209\) 10.8136i 0.747992i
\(210\) 0 0
\(211\) 16.4286 1.13099 0.565495 0.824751i \(-0.308685\pi\)
0.565495 + 0.824751i \(0.308685\pi\)
\(212\) 0 0
\(213\) −1.11352 + 19.8560i −0.0762970 + 1.36051i
\(214\) 0 0
\(215\) 2.11303 0.144107
\(216\) 0 0
\(217\) −13.0303 −0.884555
\(218\) 0 0
\(219\) −1.20148 + 21.4245i −0.0811887 + 1.44774i
\(220\) 0 0
\(221\) 2.25342 0.151581
\(222\) 0 0
\(223\) 22.6772i 1.51858i −0.650752 0.759290i \(-0.725546\pi\)
0.650752 0.759290i \(-0.274454\pi\)
\(224\) 0 0
\(225\) −12.5973 1.41736i −0.839819 0.0944909i
\(226\) 0 0
\(227\) 21.7066i 1.44072i 0.693602 + 0.720359i \(0.256023\pi\)
−0.693602 + 0.720359i \(0.743977\pi\)
\(228\) 0 0
\(229\) 6.05572i 0.400173i 0.979778 + 0.200087i \(0.0641223\pi\)
−0.979778 + 0.200087i \(0.935878\pi\)
\(230\) 0 0
\(231\) −0.309762 + 5.52359i −0.0203808 + 0.363425i
\(232\) 0 0
\(233\) 7.25738i 0.475447i 0.971333 + 0.237723i \(0.0764012\pi\)
−0.971333 + 0.237723i \(0.923599\pi\)
\(234\) 0 0
\(235\) 18.2203 1.18856
\(236\) 0 0
\(237\) −13.1723 0.738699i −0.855633 0.0479837i
\(238\) 0 0
\(239\) −7.11715 −0.460370 −0.230185 0.973147i \(-0.573933\pi\)
−0.230185 + 0.973147i \(0.573933\pi\)
\(240\) 0 0
\(241\) −12.3453 −0.795232 −0.397616 0.917552i \(-0.630162\pi\)
−0.397616 + 0.917552i \(0.630162\pi\)
\(242\) 0 0
\(243\) −4.30954 + 14.9809i −0.276457 + 0.961026i
\(244\) 0 0
\(245\) −4.94008 −0.315610
\(246\) 0 0
\(247\) 7.84800i 0.499356i
\(248\) 0 0
\(249\) −7.29385 0.409037i −0.462229 0.0259217i
\(250\) 0 0
\(251\) 21.6490i 1.36647i −0.730198 0.683235i \(-0.760572\pi\)
0.730198 0.683235i \(-0.239428\pi\)
\(252\) 0 0
\(253\) 7.13718i 0.448711i
\(254\) 0 0
\(255\) −11.8363 0.663779i −0.741220 0.0415674i
\(256\) 0 0
\(257\) 23.1241i 1.44244i −0.692704 0.721222i \(-0.743581\pi\)
0.692704 0.721222i \(-0.256419\pi\)
\(258\) 0 0
\(259\) −11.9022 −0.739566
\(260\) 0 0
\(261\) −0.919441 0.103449i −0.0569120 0.00640336i
\(262\) 0 0
\(263\) −26.4383 −1.63025 −0.815127 0.579282i \(-0.803333\pi\)
−0.815127 + 0.579282i \(0.803333\pi\)
\(264\) 0 0
\(265\) −35.9663 −2.20939
\(266\) 0 0
\(267\) −17.1166 0.959897i −1.04752 0.0587447i
\(268\) 0 0
\(269\) 27.2047 1.65870 0.829351 0.558728i \(-0.188711\pi\)
0.829351 + 0.558728i \(0.188711\pi\)
\(270\) 0 0
\(271\) 2.81994i 0.171299i −0.996325 0.0856495i \(-0.972703\pi\)
0.996325 0.0856495i \(-0.0272965\pi\)
\(272\) 0 0
\(273\) −0.224810 + 4.00876i −0.0136061 + 0.242621i
\(274\) 0 0
\(275\) 5.82235i 0.351101i
\(276\) 0 0
\(277\) 0.749703i 0.0450453i 0.999746 + 0.0225226i \(0.00716978\pi\)
−0.999746 + 0.0225226i \(0.992830\pi\)
\(278\) 0 0
\(279\) −1.88546 + 16.7576i −0.112879 + 1.00325i
\(280\) 0 0
\(281\) 12.3283i 0.735444i 0.929936 + 0.367722i \(0.119862\pi\)
−0.929936 + 0.367722i \(0.880138\pi\)
\(282\) 0 0
\(283\) 21.3365 1.26833 0.634163 0.773199i \(-0.281345\pi\)
0.634163 + 0.773199i \(0.281345\pi\)
\(284\) 0 0
\(285\) 2.31175 41.2226i 0.136936 2.44181i
\(286\) 0 0
\(287\) 15.5141 0.915768
\(288\) 0 0
\(289\) 11.9221 0.701301
\(290\) 0 0
\(291\) 0.154754 2.75954i 0.00907185 0.161767i
\(292\) 0 0
\(293\) 23.7964 1.39020 0.695100 0.718913i \(-0.255360\pi\)
0.695100 + 0.718913i \(0.255360\pi\)
\(294\) 0 0
\(295\) 41.8499i 2.43660i
\(296\) 0 0
\(297\) 7.05880 + 1.19762i 0.409593 + 0.0694930i
\(298\) 0 0
\(299\) 5.17983i 0.299557i
\(300\) 0 0
\(301\) 1.61265i 0.0929514i
\(302\) 0 0
\(303\) −0.0571572 + 1.01921i −0.00328359 + 0.0585522i
\(304\) 0 0
\(305\) 32.2014i 1.84385i
\(306\) 0 0
\(307\) 8.35764 0.476996 0.238498 0.971143i \(-0.423345\pi\)
0.238498 + 0.971143i \(0.423345\pi\)
\(308\) 0 0
\(309\) 0.648674 + 0.0363775i 0.0369018 + 0.00206944i
\(310\) 0 0
\(311\) 24.5264 1.39077 0.695384 0.718639i \(-0.255234\pi\)
0.695384 + 0.718639i \(0.255234\pi\)
\(312\) 0 0
\(313\) 15.0553 0.850973 0.425487 0.904965i \(-0.360103\pi\)
0.425487 + 0.904965i \(0.360103\pi\)
\(314\) 0 0
\(315\) 2.36169 20.9903i 0.133066 1.18267i
\(316\) 0 0
\(317\) −2.30671 −0.129558 −0.0647790 0.997900i \(-0.520634\pi\)
−0.0647790 + 0.997900i \(0.520634\pi\)
\(318\) 0 0
\(319\) 0.424958i 0.0237931i
\(320\) 0 0
\(321\) −5.59038 0.313507i −0.312024 0.0174983i
\(322\) 0 0
\(323\) 17.6848i 0.984009i
\(324\) 0 0
\(325\) 4.22559i 0.234394i
\(326\) 0 0
\(327\) −29.3977 1.64862i −1.62570 0.0911687i
\(328\) 0 0
\(329\) 13.9056i 0.766639i
\(330\) 0 0
\(331\) 12.4922 0.686635 0.343318 0.939219i \(-0.388449\pi\)
0.343318 + 0.939219i \(0.388449\pi\)
\(332\) 0 0
\(333\) −1.72222 + 15.3068i −0.0943772 + 0.838809i
\(334\) 0 0
\(335\) 33.3636 1.82285
\(336\) 0 0
\(337\) 32.6356 1.77777 0.888887 0.458127i \(-0.151480\pi\)
0.888887 + 0.458127i \(0.151480\pi\)
\(338\) 0 0
\(339\) 27.4212 + 1.53777i 1.48931 + 0.0835204i
\(340\) 0 0
\(341\) 7.74523 0.419428
\(342\) 0 0
\(343\) 19.9969i 1.07973i
\(344\) 0 0
\(345\) −1.52580 + 27.2077i −0.0821463 + 1.46481i
\(346\) 0 0
\(347\) 33.6017i 1.80383i −0.431910 0.901917i \(-0.642160\pi\)
0.431910 0.901917i \(-0.357840\pi\)
\(348\) 0 0
\(349\) 3.36050i 0.179883i 0.995947 + 0.0899416i \(0.0286680\pi\)
−0.995947 + 0.0899416i \(0.971332\pi\)
\(350\) 0 0
\(351\) 5.12294 + 0.869177i 0.273442 + 0.0463932i
\(352\) 0 0
\(353\) 7.86078i 0.418387i 0.977874 + 0.209193i \(0.0670838\pi\)
−0.977874 + 0.209193i \(0.932916\pi\)
\(354\) 0 0
\(355\) −34.8746 −1.85095
\(356\) 0 0
\(357\) 0.506591 9.03340i 0.0268116 0.478098i
\(358\) 0 0
\(359\) 5.39566 0.284772 0.142386 0.989811i \(-0.454523\pi\)
0.142386 + 0.989811i \(0.454523\pi\)
\(360\) 0 0
\(361\) 42.5911 2.24164
\(362\) 0 0
\(363\) −0.882664 + 15.7394i −0.0463278 + 0.826106i
\(364\) 0 0
\(365\) −37.6296 −1.96962
\(366\) 0 0
\(367\) 11.7595i 0.613839i −0.951736 0.306919i \(-0.900702\pi\)
0.951736 0.306919i \(-0.0992982\pi\)
\(368\) 0 0
\(369\) 2.24486 19.9519i 0.116863 1.03866i
\(370\) 0 0
\(371\) 27.4492i 1.42509i
\(372\) 0 0
\(373\) 37.4755i 1.94041i 0.242289 + 0.970204i \(0.422102\pi\)
−0.242289 + 0.970204i \(0.577898\pi\)
\(374\) 0 0
\(375\) −0.228115 + 4.06768i −0.0117798 + 0.210054i
\(376\) 0 0
\(377\) 0.308414i 0.0158841i
\(378\) 0 0
\(379\) −21.5977 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(380\) 0 0
\(381\) −6.43716 0.360995i −0.329786 0.0184943i
\(382\) 0 0
\(383\) 9.37754 0.479170 0.239585 0.970875i \(-0.422989\pi\)
0.239585 + 0.970875i \(0.422989\pi\)
\(384\) 0 0
\(385\) −9.70152 −0.494435
\(386\) 0 0
\(387\) 2.07395 + 0.233347i 0.105425 + 0.0118617i
\(388\) 0 0
\(389\) −21.3532 −1.08265 −0.541326 0.840813i \(-0.682078\pi\)
−0.541326 + 0.840813i \(0.682078\pi\)
\(390\) 0 0
\(391\) 11.6723i 0.590294i
\(392\) 0 0
\(393\) −1.26076 0.0707029i −0.0635967 0.00356649i
\(394\) 0 0
\(395\) 23.1355i 1.16408i
\(396\) 0 0
\(397\) 34.8270i 1.74792i 0.486002 + 0.873958i \(0.338455\pi\)
−0.486002 + 0.873958i \(0.661545\pi\)
\(398\) 0 0
\(399\) 31.4608 + 1.76431i 1.57501 + 0.0883261i
\(400\) 0 0
\(401\) 3.00045i 0.149835i 0.997190 + 0.0749176i \(0.0238694\pi\)
−0.997190 + 0.0749176i \(0.976131\pi\)
\(402\) 0 0
\(403\) 5.62113 0.280008
\(404\) 0 0
\(405\) −26.6528 6.07450i −1.32439 0.301844i
\(406\) 0 0
\(407\) 7.07468 0.350679
\(408\) 0 0
\(409\) −12.8978 −0.637753 −0.318877 0.947796i \(-0.603306\pi\)
−0.318877 + 0.947796i \(0.603306\pi\)
\(410\) 0 0
\(411\) −4.41179 0.247412i −0.217617 0.0122039i
\(412\) 0 0
\(413\) 31.9396 1.57164
\(414\) 0 0
\(415\) 12.8108i 0.628855i
\(416\) 0 0
\(417\) 1.98197 35.3420i 0.0970576 1.73071i
\(418\) 0 0
\(419\) 29.5342i 1.44284i −0.692497 0.721421i \(-0.743489\pi\)
0.692497 0.721421i \(-0.256511\pi\)
\(420\) 0 0
\(421\) 19.8386i 0.966873i 0.875379 + 0.483437i \(0.160612\pi\)
−0.875379 + 0.483437i \(0.839388\pi\)
\(422\) 0 0
\(423\) 17.8833 + 2.01211i 0.869514 + 0.0978320i
\(424\) 0 0
\(425\) 9.52201i 0.461885i
\(426\) 0 0
\(427\) 24.5759 1.18931
\(428\) 0 0
\(429\) 0.133628 2.38281i 0.00645160 0.115043i
\(430\) 0 0
\(431\) 11.6413 0.560743 0.280372 0.959892i \(-0.409542\pi\)
0.280372 + 0.959892i \(0.409542\pi\)
\(432\) 0 0
\(433\) 35.1179 1.68766 0.843829 0.536612i \(-0.180296\pi\)
0.843829 + 0.536612i \(0.180296\pi\)
\(434\) 0 0
\(435\) 0.0908482 1.61998i 0.00435584 0.0776722i
\(436\) 0 0
\(437\) −40.6513 −1.94462
\(438\) 0 0
\(439\) 6.33417i 0.302313i −0.988510 0.151157i \(-0.951700\pi\)
0.988510 0.151157i \(-0.0482998\pi\)
\(440\) 0 0
\(441\) −4.84871 0.545545i −0.230891 0.0259783i
\(442\) 0 0
\(443\) 26.1460i 1.24223i 0.783718 + 0.621116i \(0.213321\pi\)
−0.783718 + 0.621116i \(0.786679\pi\)
\(444\) 0 0
\(445\) 30.0633i 1.42514i
\(446\) 0 0
\(447\) −0.972137 + 17.3349i −0.0459805 + 0.819913i
\(448\) 0 0
\(449\) 8.80186i 0.415386i −0.978194 0.207693i \(-0.933405\pi\)
0.978194 0.207693i \(-0.0665954\pi\)
\(450\) 0 0
\(451\) −9.22161 −0.434228
\(452\) 0 0
\(453\) −7.45109 0.417855i −0.350083 0.0196325i
\(454\) 0 0
\(455\) −7.04090 −0.330083
\(456\) 0 0
\(457\) 38.1526 1.78470 0.892351 0.451342i \(-0.149054\pi\)
0.892351 + 0.451342i \(0.149054\pi\)
\(458\) 0 0
\(459\) −11.5441 1.95862i −0.538833 0.0914204i
\(460\) 0 0
\(461\) −5.81449 −0.270808 −0.135404 0.990790i \(-0.543233\pi\)
−0.135404 + 0.990790i \(0.543233\pi\)
\(462\) 0 0
\(463\) 21.2965i 0.989734i 0.868969 + 0.494867i \(0.164783\pi\)
−0.868969 + 0.494867i \(0.835217\pi\)
\(464\) 0 0
\(465\) −29.5256 1.65579i −1.36922 0.0767854i
\(466\) 0 0
\(467\) 15.2886i 0.707474i −0.935345 0.353737i \(-0.884911\pi\)
0.935345 0.353737i \(-0.115089\pi\)
\(468\) 0 0
\(469\) 25.4628i 1.17576i
\(470\) 0 0
\(471\) −20.4063 1.14438i −0.940272 0.0527302i
\(472\) 0 0
\(473\) 0.958560i 0.0440746i
\(474\) 0 0
\(475\) 33.1624 1.52160
\(476\) 0 0
\(477\) −35.3011 3.97184i −1.61632 0.181858i
\(478\) 0 0
\(479\) −40.9222 −1.86978 −0.934892 0.354932i \(-0.884504\pi\)
−0.934892 + 0.354932i \(0.884504\pi\)
\(480\) 0 0
\(481\) 5.13447 0.234112
\(482\) 0 0
\(483\) −20.7647 1.16448i −0.944826 0.0529856i
\(484\) 0 0
\(485\) 4.84679 0.220081
\(486\) 0 0
\(487\) 9.42575i 0.427121i 0.976930 + 0.213561i \(0.0685061\pi\)
−0.976930 + 0.213561i \(0.931494\pi\)
\(488\) 0 0
\(489\) −0.674838 + 12.0335i −0.0305172 + 0.544176i
\(490\) 0 0
\(491\) 11.3969i 0.514336i 0.966367 + 0.257168i \(0.0827893\pi\)
−0.966367 + 0.257168i \(0.917211\pi\)
\(492\) 0 0
\(493\) 0.694986i 0.0313006i
\(494\) 0 0
\(495\) −1.40379 + 12.4766i −0.0630957 + 0.560784i
\(496\) 0 0
\(497\) 26.6160i 1.19389i
\(498\) 0 0
\(499\) −21.1418 −0.946439 −0.473219 0.880945i \(-0.656908\pi\)
−0.473219 + 0.880945i \(0.656908\pi\)
\(500\) 0 0
\(501\) −1.50627 + 26.8594i −0.0672951 + 1.19999i
\(502\) 0 0
\(503\) 5.34204 0.238190 0.119095 0.992883i \(-0.462001\pi\)
0.119095 + 0.992883i \(0.462001\pi\)
\(504\) 0 0
\(505\) −1.79012 −0.0796594
\(506\) 0 0
\(507\) 0.0969806 1.72933i 0.00430706 0.0768024i
\(508\) 0 0
\(509\) −21.7402 −0.963618 −0.481809 0.876276i \(-0.660020\pi\)
−0.481809 + 0.876276i \(0.660020\pi\)
\(510\) 0 0
\(511\) 28.7186i 1.27044i
\(512\) 0 0
\(513\) 6.82130 40.2049i 0.301168 1.77509i
\(514\) 0 0
\(515\) 1.13932i 0.0502044i
\(516\) 0 0
\(517\) 8.26549i 0.363516i
\(518\) 0 0
\(519\) −0.295743 + 5.27361i −0.0129817 + 0.231486i
\(520\) 0 0
\(521\) 28.4493i 1.24638i 0.782069 + 0.623192i \(0.214165\pi\)
−0.782069 + 0.623192i \(0.785835\pi\)
\(522\) 0 0
\(523\) 9.58879 0.419289 0.209644 0.977778i \(-0.432769\pi\)
0.209644 + 0.977778i \(0.432769\pi\)
\(524\) 0 0
\(525\) 16.9394 + 0.949956i 0.739295 + 0.0414595i
\(526\) 0 0
\(527\) −12.6667 −0.551772
\(528\) 0 0
\(529\) 3.83064 0.166550
\(530\) 0 0
\(531\) 4.62159 41.0759i 0.200560 1.78254i
\(532\) 0 0
\(533\) −6.69261 −0.289889
\(534\) 0 0
\(535\) 9.81882i 0.424505i
\(536\) 0 0
\(537\) 9.45854 + 0.530433i 0.408166 + 0.0228899i
\(538\) 0 0
\(539\) 2.24103i 0.0965280i
\(540\) 0 0
\(541\) 10.4390i 0.448808i 0.974496 + 0.224404i \(0.0720436\pi\)
−0.974496 + 0.224404i \(0.927956\pi\)
\(542\) 0 0
\(543\) 22.9338 + 1.28612i 0.984184 + 0.0551928i
\(544\) 0 0
\(545\) 51.6335i 2.21174i
\(546\) 0 0
\(547\) −11.5237 −0.492716 −0.246358 0.969179i \(-0.579234\pi\)
−0.246358 + 0.969179i \(0.579234\pi\)
\(548\) 0 0
\(549\) 3.55608 31.6059i 0.151770 1.34890i
\(550\) 0 0
\(551\) 2.42044 0.103114
\(552\) 0 0
\(553\) 17.6569 0.750847
\(554\) 0 0
\(555\) −26.9694 1.51244i −1.14479 0.0641994i
\(556\) 0 0
\(557\) −23.8856 −1.01206 −0.506032 0.862514i \(-0.668888\pi\)
−0.506032 + 0.862514i \(0.668888\pi\)
\(558\) 0 0
\(559\) 0.695678i 0.0294240i
\(560\) 0 0
\(561\) −0.301119 + 5.36947i −0.0127132 + 0.226699i
\(562\) 0 0
\(563\) 24.5358i 1.03406i 0.855967 + 0.517031i \(0.172963\pi\)
−0.855967 + 0.517031i \(0.827037\pi\)
\(564\) 0 0
\(565\) 48.1620i 2.02619i
\(566\) 0 0
\(567\) 4.63601 20.3412i 0.194694 0.854252i
\(568\) 0 0
\(569\) 39.2414i 1.64509i −0.568702 0.822544i \(-0.692554\pi\)
0.568702 0.822544i \(-0.307446\pi\)
\(570\) 0 0
\(571\) −12.2726 −0.513591 −0.256795 0.966466i \(-0.582667\pi\)
−0.256795 + 0.966466i \(0.582667\pi\)
\(572\) 0 0
\(573\) 0.490208 8.74126i 0.0204787 0.365171i
\(574\) 0 0
\(575\) −21.8878 −0.912786
\(576\) 0 0
\(577\) 27.0428 1.12581 0.562904 0.826522i \(-0.309684\pi\)
0.562904 + 0.826522i \(0.309684\pi\)
\(578\) 0 0
\(579\) −1.00474 + 17.9162i −0.0417554 + 0.744572i
\(580\) 0 0
\(581\) 9.77708 0.405621
\(582\) 0 0
\(583\) 16.3158i 0.675733i
\(584\) 0 0
\(585\) −1.01880 + 9.05496i −0.0421224 + 0.374377i
\(586\) 0 0
\(587\) 15.0685i 0.621945i −0.950419 0.310973i \(-0.899345\pi\)
0.950419 0.310973i \(-0.100655\pi\)
\(588\) 0 0
\(589\) 44.1146i 1.81771i
\(590\) 0 0
\(591\) 1.12725 20.1009i 0.0463689 0.826839i
\(592\) 0 0
\(593\) 34.9320i 1.43449i 0.696823 + 0.717243i \(0.254596\pi\)
−0.696823 + 0.717243i \(0.745404\pi\)
\(594\) 0 0
\(595\) 15.8661 0.650446
\(596\) 0 0
\(597\) 6.71698 + 0.376687i 0.274908 + 0.0154168i
\(598\) 0 0
\(599\) 39.0572 1.59583 0.797916 0.602769i \(-0.205936\pi\)
0.797916 + 0.602769i \(0.205936\pi\)
\(600\) 0 0
\(601\) 13.9053 0.567211 0.283605 0.958941i \(-0.408469\pi\)
0.283605 + 0.958941i \(0.408469\pi\)
\(602\) 0 0
\(603\) 32.7465 + 3.68442i 1.33354 + 0.150041i
\(604\) 0 0
\(605\) −27.6444 −1.12391
\(606\) 0 0
\(607\) 34.5423i 1.40203i 0.713148 + 0.701014i \(0.247269\pi\)
−0.713148 + 0.701014i \(0.752731\pi\)
\(608\) 0 0
\(609\) 1.23636 + 0.0693347i 0.0500998 + 0.00280958i
\(610\) 0 0
\(611\) 5.99870i 0.242682i
\(612\) 0 0
\(613\) 16.2895i 0.657925i −0.944343 0.328963i \(-0.893301\pi\)
0.944343 0.328963i \(-0.106699\pi\)
\(614\) 0 0
\(615\) 35.1537 + 1.97141i 1.41753 + 0.0794950i
\(616\) 0 0
\(617\) 0.850612i 0.0342443i 0.999853 + 0.0171222i \(0.00545042\pi\)
−0.999853 + 0.0171222i \(0.994550\pi\)
\(618\) 0 0
\(619\) 39.2985 1.57954 0.789770 0.613404i \(-0.210200\pi\)
0.789770 + 0.613404i \(0.210200\pi\)
\(620\) 0 0
\(621\) −4.50219 + 26.5360i −0.180667 + 1.06485i
\(622\) 0 0
\(623\) 22.9441 0.919236
\(624\) 0 0
\(625\) −28.2723 −1.13089
\(626\) 0 0
\(627\) −18.7003 1.04871i −0.746819 0.0418814i
\(628\) 0 0
\(629\) −11.5701 −0.461330
\(630\) 0 0
\(631\) 37.0533i 1.47507i 0.675310 + 0.737534i \(0.264010\pi\)
−0.675310 + 0.737534i \(0.735990\pi\)
\(632\) 0 0
\(633\) −1.59325 + 28.4105i −0.0633262 + 1.12922i
\(634\) 0 0
\(635\) 11.3061i 0.448669i
\(636\) 0 0
\(637\) 1.62643i 0.0644417i
\(638\) 0 0
\(639\) −34.2296 3.85129i −1.35410 0.152355i
\(640\) 0 0
\(641\) 41.0568i 1.62165i −0.585291 0.810824i \(-0.699020\pi\)
0.585291 0.810824i \(-0.300980\pi\)
\(642\) 0 0
\(643\) 6.44016 0.253975 0.126988 0.991904i \(-0.459469\pi\)
0.126988 + 0.991904i \(0.459469\pi\)
\(644\) 0 0
\(645\) −0.204923 + 3.65413i −0.00806882 + 0.143881i
\(646\) 0 0
\(647\) 5.48794 0.215753 0.107877 0.994164i \(-0.465595\pi\)
0.107877 + 0.994164i \(0.465595\pi\)
\(648\) 0 0
\(649\) −18.9849 −0.745224
\(650\) 0 0
\(651\) 1.26369 22.5337i 0.0495278 0.883167i
\(652\) 0 0
\(653\) −40.8712 −1.59942 −0.799708 0.600390i \(-0.795012\pi\)
−0.799708 + 0.600390i \(0.795012\pi\)
\(654\) 0 0
\(655\) 2.21436i 0.0865224i
\(656\) 0 0
\(657\) −36.9336 4.15553i −1.44092 0.162123i
\(658\) 0 0
\(659\) 19.8369i 0.772736i 0.922345 + 0.386368i \(0.126270\pi\)
−0.922345 + 0.386368i \(0.873730\pi\)
\(660\) 0 0
\(661\) 20.2239i 0.786620i −0.919406 0.393310i \(-0.871330\pi\)
0.919406 0.393310i \(-0.128670\pi\)
\(662\) 0 0
\(663\) −0.218538 + 3.89691i −0.00848730 + 0.151343i
\(664\) 0 0
\(665\) 55.2570i 2.14278i
\(666\) 0 0
\(667\) −1.59753 −0.0618567
\(668\) 0 0
\(669\) 39.2165 + 2.19925i 1.51620 + 0.0850281i
\(670\) 0 0
\(671\) −14.6079 −0.563934
\(672\) 0 0
\(673\) −45.4100 −1.75043 −0.875213 0.483738i \(-0.839279\pi\)
−0.875213 + 0.483738i \(0.839279\pi\)
\(674\) 0 0
\(675\) 3.67279 21.6474i 0.141366 0.833211i
\(676\) 0 0
\(677\) 14.0654 0.540578 0.270289 0.962779i \(-0.412881\pi\)
0.270289 + 0.962779i \(0.412881\pi\)
\(678\) 0 0
\(679\) 3.69904i 0.141956i
\(680\) 0 0
\(681\) −37.5379 2.10512i −1.43846 0.0806683i
\(682\) 0 0
\(683\) 28.4191i 1.08743i −0.839271 0.543713i \(-0.817018\pi\)
0.839271 0.543713i \(-0.182982\pi\)
\(684\) 0 0
\(685\) 7.74877i 0.296065i
\(686\) 0 0
\(687\) −10.4724 0.587287i −0.399545 0.0224064i
\(688\) 0 0
\(689\) 11.8413i 0.451116i
\(690\) 0 0
\(691\) −38.8094 −1.47638 −0.738190 0.674593i \(-0.764319\pi\)
−0.738190 + 0.674593i \(0.764319\pi\)
\(692\) 0 0
\(693\) −9.52209 1.07136i −0.361714 0.0406977i
\(694\) 0 0
\(695\) 62.0740 2.35460
\(696\) 0 0
\(697\) 15.0812 0.571242
\(698\) 0 0
\(699\) −12.5504 0.703825i −0.474701 0.0266211i
\(700\) 0 0
\(701\) 32.6457 1.23301 0.616505 0.787351i \(-0.288548\pi\)
0.616505 + 0.787351i \(0.288548\pi\)
\(702\) 0 0
\(703\) 40.2953i 1.51977i
\(704\) 0 0
\(705\) −1.76701 + 31.5089i −0.0665495 + 1.18669i
\(706\) 0 0
\(707\) 1.36621i 0.0513816i
\(708\) 0 0
\(709\) 35.4529i 1.33146i −0.746191 0.665732i \(-0.768120\pi\)
0.746191 0.665732i \(-0.231880\pi\)
\(710\) 0 0
\(711\) 2.55492 22.7077i 0.0958168 0.851604i
\(712\) 0 0
\(713\) 29.1165i 1.09042i
\(714\) 0 0
\(715\) 4.18512 0.156515
\(716\) 0 0
\(717\) 0.690225 12.3079i 0.0257769 0.459648i
\(718\) 0 0
\(719\) 19.8333 0.739656 0.369828 0.929100i \(-0.379417\pi\)
0.369828 + 0.929100i \(0.379417\pi\)
\(720\) 0 0
\(721\) −0.869519 −0.0323826
\(722\) 0 0
\(723\) 1.19726 21.3492i 0.0445265 0.793985i
\(724\) 0 0
\(725\) 1.30323 0.0484008
\(726\) 0 0
\(727\) 45.1449i 1.67433i −0.546948 0.837167i \(-0.684210\pi\)
0.546948 0.837167i \(-0.315790\pi\)
\(728\) 0 0
\(729\) −25.4891 8.90549i −0.944039 0.329833i
\(730\) 0 0
\(731\) 1.56765i 0.0579817i
\(732\) 0 0
\(733\) 12.1472i 0.448666i 0.974513 + 0.224333i \(0.0720203\pi\)
−0.974513 + 0.224333i \(0.927980\pi\)
\(734\) 0 0
\(735\) 0.479092 8.54304i 0.0176716 0.315115i
\(736\) 0 0
\(737\) 15.1352i 0.557511i
\(738\) 0 0
\(739\) −33.6165 −1.23660 −0.618301 0.785941i \(-0.712179\pi\)
−0.618301 + 0.785941i \(0.712179\pi\)
\(740\) 0 0
\(741\) −13.5718 0.761104i −0.498573 0.0279599i
\(742\) 0 0
\(743\) −17.7701 −0.651922 −0.325961 0.945383i \(-0.605688\pi\)
−0.325961 + 0.945383i \(0.605688\pi\)
\(744\) 0 0
\(745\) −30.4467 −1.11548
\(746\) 0 0
\(747\) 1.41472 12.5738i 0.0517620 0.460052i
\(748\) 0 0
\(749\) 7.49365 0.273812
\(750\) 0 0
\(751\) 25.3471i 0.924929i 0.886638 + 0.462465i \(0.153035\pi\)
−0.886638 + 0.462465i \(0.846965\pi\)
\(752\) 0 0
\(753\) 37.4383 + 2.09953i 1.36433 + 0.0765111i
\(754\) 0 0
\(755\) 13.0869i 0.476282i
\(756\) 0 0
\(757\) 39.7251i 1.44383i 0.691979 + 0.721917i \(0.256739\pi\)
−0.691979 + 0.721917i \(0.743261\pi\)
\(758\) 0 0
\(759\) 12.3426 + 0.692168i 0.448007 + 0.0251241i
\(760\) 0 0
\(761\) 38.9389i 1.41153i −0.708444 0.705767i \(-0.750602\pi\)
0.708444 0.705767i \(-0.249398\pi\)
\(762\) 0 0
\(763\) 39.4063 1.42660
\(764\) 0 0
\(765\) 2.29579 20.4046i 0.0830045 0.737730i
\(766\) 0 0
\(767\) −13.7784 −0.497508
\(768\) 0 0
\(769\) −26.8577 −0.968514 −0.484257 0.874926i \(-0.660910\pi\)
−0.484257 + 0.874926i \(0.660910\pi\)
\(770\) 0 0
\(771\) 39.9893 + 2.24259i 1.44018 + 0.0807650i
\(772\) 0 0
\(773\) −9.30563 −0.334700 −0.167350 0.985898i \(-0.553521\pi\)
−0.167350 + 0.985898i \(0.553521\pi\)
\(774\) 0 0
\(775\) 23.7526i 0.853218i
\(776\) 0 0
\(777\) 1.15428 20.5828i 0.0414096 0.738406i
\(778\) 0 0
\(779\) 52.5236i 1.88185i
\(780\) 0 0
\(781\) 15.8206i 0.566106i
\(782\) 0 0
\(783\) 0.268067 1.57999i 0.00957992 0.0564642i
\(784\) 0 0
\(785\) 35.8412i 1.27923i
\(786\) 0 0
\(787\) 4.38908 0.156454 0.0782269 0.996936i \(-0.475074\pi\)
0.0782269 + 0.996936i \(0.475074\pi\)
\(788\) 0 0
\(789\) 2.56400 45.7206i 0.0912809 1.62770i
\(790\) 0 0
\(791\) −36.7569 −1.30692
\(792\) 0 0
\(793\) −10.6018 −0.376480
\(794\) 0 0
\(795\) 3.48803 62.1976i 0.123708 2.20592i
\(796\) 0 0
\(797\) −27.0980 −0.959862 −0.479931 0.877306i \(-0.659338\pi\)
−0.479931 + 0.877306i \(0.659338\pi\)
\(798\) 0 0
\(799\) 13.5176i 0.478217i
\(800\) 0 0
\(801\) 3.31996 29.5073i 0.117305 1.04259i
\(802\) 0 0
\(803\) 17.0704i 0.602402i
\(804\) 0 0
\(805\) 36.4707i 1.28542i
\(806\) 0 0
\(807\) −2.63833 + 47.0461i −0.0928737 + 1.65610i
\(808\) 0 0
\(809\) 28.9080i 1.01635i 0.861254 + 0.508175i \(0.169680\pi\)
−0.861254 + 0.508175i \(0.830320\pi\)
\(810\) 0 0
\(811\) −8.03330 −0.282087 −0.141044 0.990003i \(-0.545046\pi\)
−0.141044 + 0.990003i \(0.545046\pi\)
\(812\) 0 0
\(813\) 4.87661 + 0.273479i 0.171030 + 0.00959134i
\(814\) 0 0
\(815\) −21.1355 −0.740343
\(816\) 0 0
\(817\) −5.45968 −0.191010
\(818\) 0 0
\(819\) −6.91068 0.777544i −0.241479 0.0271696i
\(820\) 0 0
\(821\) −17.5416 −0.612206 −0.306103 0.951998i \(-0.599025\pi\)
−0.306103 + 0.951998i \(0.599025\pi\)
\(822\) 0 0
\(823\) 22.2423i 0.775317i 0.921803 + 0.387659i \(0.126716\pi\)
−0.921803 + 0.387659i \(0.873284\pi\)
\(824\) 0 0
\(825\) −10.0688 0.564656i −0.350550 0.0196588i
\(826\) 0 0
\(827\) 46.5476i 1.61862i −0.587382 0.809310i \(-0.699841\pi\)
0.587382 0.809310i \(-0.300159\pi\)
\(828\) 0 0
\(829\) 10.1596i 0.352857i −0.984313 0.176428i \(-0.943546\pi\)
0.984313 0.176428i \(-0.0564544\pi\)
\(830\) 0 0
\(831\) −1.29649 0.0727066i −0.0449746 0.00252217i
\(832\) 0 0
\(833\) 3.66503i 0.126986i
\(834\) 0 0
\(835\) −47.1753 −1.63257
\(836\) 0 0
\(837\) −28.7967 4.88575i −0.995360 0.168876i
\(838\) 0 0
\(839\) −47.1544 −1.62795 −0.813976 0.580899i \(-0.802701\pi\)
−0.813976 + 0.580899i \(0.802701\pi\)
\(840\) 0 0
\(841\) −28.9049 −0.996720
\(842\) 0 0
\(843\) −21.3197 1.19560i −0.734290 0.0411788i
\(844\) 0 0
\(845\) 3.03737 0.104489
\(846\) 0 0
\(847\) 21.0980i 0.724937i
\(848\) 0 0
\(849\) −2.06923 + 36.8980i −0.0710158 + 1.26634i
\(850\) 0 0
\(851\) 26.5957i 0.911688i
\(852\) 0 0
\(853\) 6.49512i 0.222389i 0.993799 + 0.111194i \(0.0354676\pi\)
−0.993799 + 0.111194i \(0.964532\pi\)
\(854\) 0 0
\(855\) 71.0634 + 7.99558i 2.43032 + 0.273443i
\(856\) 0 0
\(857\) 33.6702i 1.15015i −0.818100 0.575077i \(-0.804972\pi\)
0.818100 0.575077i \(-0.195028\pi\)
\(858\) 0 0
\(859\) 1.93323 0.0659610 0.0329805 0.999456i \(-0.489500\pi\)
0.0329805 + 0.999456i \(0.489500\pi\)
\(860\) 0 0
\(861\) −1.50457 + 26.8291i −0.0512755 + 0.914332i
\(862\) 0 0
\(863\) 2.21988 0.0755657 0.0377829 0.999286i \(-0.487970\pi\)
0.0377829 + 0.999286i \(0.487970\pi\)
\(864\) 0 0
\(865\) −9.26246 −0.314933
\(866\) 0 0
\(867\) −1.15621 + 20.6173i −0.0392671 + 0.700201i
\(868\) 0 0
\(869\) −10.4953 −0.356028
\(870\) 0 0
\(871\) 10.9844i 0.372191i
\(872\) 0 0
\(873\) 4.75715 + 0.535243i 0.161005 + 0.0181152i
\(874\) 0 0
\(875\) 5.45255i 0.184330i
\(876\) 0 0
\(877\) 19.5292i 0.659454i −0.944076 0.329727i \(-0.893043\pi\)
0.944076 0.329727i \(-0.106957\pi\)
\(878\) 0 0
\(879\) −2.30779 + 41.1519i −0.0778398 + 1.38802i
\(880\) 0 0
\(881\) 54.3755i 1.83196i −0.401229 0.915978i \(-0.631417\pi\)
0.401229 0.915978i \(-0.368583\pi\)
\(882\) 0 0
\(883\) −39.8004 −1.33939 −0.669695 0.742636i \(-0.733575\pi\)
−0.669695 + 0.742636i \(0.733575\pi\)
\(884\) 0 0
\(885\) 72.3725 + 4.05863i 2.43277 + 0.136429i
\(886\) 0 0
\(887\) 13.0627 0.438602 0.219301 0.975657i \(-0.429622\pi\)
0.219301 + 0.975657i \(0.429622\pi\)
\(888\) 0 0
\(889\) 8.62873 0.289398
\(890\) 0 0
\(891\) −2.75565 + 12.0909i −0.0923179 + 0.405059i
\(892\) 0 0
\(893\) −47.0778 −1.57540
\(894\) 0 0
\(895\) 16.6128i 0.555304i
\(896\) 0 0
\(897\) 8.95765 + 0.502343i 0.299087 + 0.0167727i
\(898\) 0 0
\(899\) 1.73364i 0.0578200i
\(900\) 0 0
\(901\) 26.6833i 0.888950i
\(902\) 0 0
\(903\) −2.78881 0.156396i −0.0928056 0.00520452i
\(904\) 0 0
\(905\) 40.2804i 1.33897i
\(906\) 0 0
\(907\) 3.12450 0.103747 0.0518737 0.998654i \(-0.483481\pi\)
0.0518737 + 0.998654i \(0.483481\pi\)
\(908\) 0 0
\(909\) −1.75701 0.197688i −0.0582765 0.00655688i
\(910\) 0 0
\(911\) 36.7677 1.21817 0.609084 0.793105i \(-0.291537\pi\)
0.609084 + 0.793105i \(0.291537\pi\)
\(912\) 0 0
\(913\) −5.81151 −0.192333
\(914\) 0 0
\(915\) 55.6870 + 3.12291i 1.84096 + 0.103240i
\(916\) 0 0
\(917\) 1.68999 0.0558083
\(918\) 0 0
\(919\) 24.5079i 0.808440i 0.914662 + 0.404220i \(0.132457\pi\)
−0.914662 + 0.404220i \(0.867543\pi\)
\(920\) 0 0
\(921\) −0.810529 + 14.4531i −0.0267078 + 0.476247i
\(922\) 0 0
\(923\) 11.4819i 0.377930i
\(924\) 0 0
\(925\) 21.6962i 0.713365i
\(926\) 0 0
\(927\) −0.125818 + 1.11825i −0.00413239 + 0.0367280i
\(928\) 0 0
\(929\) 53.3725i 1.75109i 0.483133 + 0.875547i \(0.339499\pi\)
−0.483133 + 0.875547i \(0.660501\pi\)
\(930\) 0 0
\(931\) 12.7643 0.418332
\(932\) 0 0
\(933\) −2.37859 + 42.4144i −0.0778715 + 1.38859i
\(934\) 0 0
\(935\) −9.43083 −0.308421
\(936\) 0 0
\(937\) −39.4667 −1.28932 −0.644660 0.764469i \(-0.723001\pi\)
−0.644660 + 0.764469i \(0.723001\pi\)
\(938\) 0 0
\(939\) −1.46007 + 26.0356i −0.0476475 + 0.849638i
\(940\) 0 0
\(941\) 59.2831 1.93258 0.966288 0.257465i \(-0.0828873\pi\)
0.966288 + 0.257465i \(0.0828873\pi\)
\(942\) 0 0
\(943\) 34.6666i 1.12890i
\(944\) 0 0
\(945\) 36.0701 + 6.11979i 1.17336 + 0.199077i
\(946\) 0 0
\(947\) 0.391710i 0.0127289i 0.999980 + 0.00636443i \(0.00202587\pi\)
−0.999980 + 0.00636443i \(0.997974\pi\)
\(948\) 0 0
\(949\) 12.3889i 0.402161i
\(950\) 0 0
\(951\) 0.223706 3.98908i 0.00725418 0.129355i
\(952\) 0 0
\(953\) 17.4300i 0.564615i −0.959324 0.282307i \(-0.908900\pi\)
0.959324 0.282307i \(-0.0910998\pi\)
\(954\) 0 0
\(955\) 15.3530 0.496810
\(956\) 0 0
\(957\) −0.734894 0.0412127i −0.0237557 0.00133222i
\(958\) 0 0
\(959\) 5.91381 0.190967
\(960\) 0 0
\(961\) −0.597054 −0.0192598
\(962\) 0 0
\(963\) 1.08432 9.63723i 0.0349416 0.310555i
\(964\) 0 0
\(965\) −31.4677 −1.01298
\(966\) 0 0
\(967\) 22.1983i 0.713849i 0.934133 + 0.356924i \(0.116175\pi\)
−0.934133 + 0.356924i \(0.883825\pi\)
\(968\) 0 0
\(969\) 30.5829 + 1.71508i 0.982466 + 0.0550964i
\(970\) 0 0
\(971\) 14.1933i 0.455485i 0.973721 + 0.227742i \(0.0731344\pi\)
−0.973721 + 0.227742i \(0.926866\pi\)
\(972\) 0 0
\(973\) 47.3744i 1.51875i
\(974\) 0 0
\(975\) −7.30745 0.409800i −0.234026 0.0131241i
\(976\) 0 0
\(977\) 23.5519i 0.753493i 0.926316 + 0.376746i \(0.122957\pi\)
−0.926316 + 0.376746i \(0.877043\pi\)
\(978\) 0 0
\(979\) −13.6380 −0.435873
\(980\) 0 0
\(981\) 5.70201 50.6785i 0.182051 1.61804i
\(982\) 0 0
\(983\) −50.7863 −1.61983 −0.809916 0.586546i \(-0.800487\pi\)
−0.809916 + 0.586546i \(0.800487\pi\)
\(984\) 0 0
\(985\) 35.3047 1.12490
\(986\) 0 0
\(987\) −24.0474 1.34857i −0.765436 0.0429255i
\(988\) 0 0
\(989\) 3.60349 0.114584
\(990\) 0 0
\(991\) 30.0634i 0.954995i 0.878633 + 0.477498i \(0.158456\pi\)
−0.878633 + 0.477498i \(0.841544\pi\)
\(992\) 0 0
\(993\) −1.21150 + 21.6032i −0.0384459 + 0.685558i
\(994\) 0 0
\(995\) 11.7976i 0.374008i
\(996\) 0 0
\(997\) 4.86064i 0.153938i −0.997033 0.0769690i \(-0.975476\pi\)
0.997033 0.0769690i \(-0.0245242\pi\)
\(998\) 0 0
\(999\) −26.3036 4.46276i −0.832208 0.141196i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.2.j.f.287.15 yes 32
3.2 odd 2 inner 2496.2.j.f.287.14 yes 32
4.3 odd 2 2496.2.j.e.287.17 32
8.3 odd 2 inner 2496.2.j.f.287.16 yes 32
8.5 even 2 2496.2.j.e.287.18 yes 32
12.11 even 2 2496.2.j.e.287.20 yes 32
24.5 odd 2 2496.2.j.e.287.19 yes 32
24.11 even 2 inner 2496.2.j.f.287.13 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2496.2.j.e.287.17 32 4.3 odd 2
2496.2.j.e.287.18 yes 32 8.5 even 2
2496.2.j.e.287.19 yes 32 24.5 odd 2
2496.2.j.e.287.20 yes 32 12.11 even 2
2496.2.j.f.287.13 yes 32 24.11 even 2 inner
2496.2.j.f.287.14 yes 32 3.2 odd 2 inner
2496.2.j.f.287.15 yes 32 1.1 even 1 trivial
2496.2.j.f.287.16 yes 32 8.3 odd 2 inner