Newspace parameters
| Level: | \( N \) | \(=\) | \( 2496 = 2^{6} \cdot 3 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2496.j (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(19.9306603445\) |
| Analytic rank: | \(0\) |
| Dimension: | \(32\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 287.1 | 0 | −1.68940 | − | 0.382025i | 0 | −2.10522 | 0 | − | 1.06700i | 0 | 2.70811 | + | 1.29078i | 0 | |||||||||||||
| 287.2 | 0 | −1.68940 | − | 0.382025i | 0 | 2.10522 | 0 | 1.06700i | 0 | 2.70811 | + | 1.29078i | 0 | ||||||||||||||
| 287.3 | 0 | −1.68940 | + | 0.382025i | 0 | −2.10522 | 0 | 1.06700i | 0 | 2.70811 | − | 1.29078i | 0 | ||||||||||||||
| 287.4 | 0 | −1.68940 | + | 0.382025i | 0 | 2.10522 | 0 | − | 1.06700i | 0 | 2.70811 | − | 1.29078i | 0 | |||||||||||||
| 287.5 | 0 | −1.31574 | − | 1.12642i | 0 | −4.10885 | 0 | − | 3.88378i | 0 | 0.462352 | + | 2.96416i | 0 | |||||||||||||
| 287.6 | 0 | −1.31574 | − | 1.12642i | 0 | 4.10885 | 0 | 3.88378i | 0 | 0.462352 | + | 2.96416i | 0 | ||||||||||||||
| 287.7 | 0 | −1.31574 | + | 1.12642i | 0 | −4.10885 | 0 | 3.88378i | 0 | 0.462352 | − | 2.96416i | 0 | ||||||||||||||
| 287.8 | 0 | −1.31574 | + | 1.12642i | 0 | 4.10885 | 0 | − | 3.88378i | 0 | 0.462352 | − | 2.96416i | 0 | |||||||||||||
| 287.9 | 0 | −1.22223 | − | 1.22726i | 0 | −3.17169 | 0 | − | 1.30638i | 0 | −0.0123113 | + | 2.99997i | 0 | |||||||||||||
| 287.10 | 0 | −1.22223 | − | 1.22726i | 0 | 3.17169 | 0 | 1.30638i | 0 | −0.0123113 | + | 2.99997i | 0 | ||||||||||||||
| 287.11 | 0 | −1.22223 | + | 1.22726i | 0 | −3.17169 | 0 | 1.30638i | 0 | −0.0123113 | − | 2.99997i | 0 | ||||||||||||||
| 287.12 | 0 | −1.22223 | + | 1.22726i | 0 | 3.17169 | 0 | − | 1.30638i | 0 | −0.0123113 | − | 2.99997i | 0 | |||||||||||||
| 287.13 | 0 | −0.0969806 | − | 1.72933i | 0 | −3.03737 | 0 | 2.31810i | 0 | −2.98119 | + | 0.335424i | 0 | ||||||||||||||
| 287.14 | 0 | −0.0969806 | − | 1.72933i | 0 | 3.03737 | 0 | − | 2.31810i | 0 | −2.98119 | + | 0.335424i | 0 | |||||||||||||
| 287.15 | 0 | −0.0969806 | + | 1.72933i | 0 | −3.03737 | 0 | − | 2.31810i | 0 | −2.98119 | − | 0.335424i | 0 | |||||||||||||
| 287.16 | 0 | −0.0969806 | + | 1.72933i | 0 | 3.03737 | 0 | 2.31810i | 0 | −2.98119 | − | 0.335424i | 0 | ||||||||||||||
| 287.17 | 0 | 0.517777 | − | 1.65285i | 0 | −0.379917 | 0 | − | 2.38318i | 0 | −2.46381 | − | 1.71161i | 0 | |||||||||||||
| 287.18 | 0 | 0.517777 | − | 1.65285i | 0 | 0.379917 | 0 | 2.38318i | 0 | −2.46381 | − | 1.71161i | 0 | ||||||||||||||
| 287.19 | 0 | 0.517777 | + | 1.65285i | 0 | −0.379917 | 0 | 2.38318i | 0 | −2.46381 | + | 1.71161i | 0 | ||||||||||||||
| 287.20 | 0 | 0.517777 | + | 1.65285i | 0 | 0.379917 | 0 | − | 2.38318i | 0 | −2.46381 | + | 1.71161i | 0 | |||||||||||||
| See all 32 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 8.d | odd | 2 | 1 | inner |
| 24.f | even | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 2496.2.j.f | yes | 32 |
| 3.b | odd | 2 | 1 | inner | 2496.2.j.f | yes | 32 |
| 4.b | odd | 2 | 1 | 2496.2.j.e | ✓ | 32 | |
| 8.b | even | 2 | 1 | 2496.2.j.e | ✓ | 32 | |
| 8.d | odd | 2 | 1 | inner | 2496.2.j.f | yes | 32 |
| 12.b | even | 2 | 1 | 2496.2.j.e | ✓ | 32 | |
| 24.f | even | 2 | 1 | inner | 2496.2.j.f | yes | 32 |
| 24.h | odd | 2 | 1 | 2496.2.j.e | ✓ | 32 | |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 2496.2.j.e | ✓ | 32 | 4.b | odd | 2 | 1 | |
| 2496.2.j.e | ✓ | 32 | 8.b | even | 2 | 1 | |
| 2496.2.j.e | ✓ | 32 | 12.b | even | 2 | 1 | |
| 2496.2.j.e | ✓ | 32 | 24.h | odd | 2 | 1 | |
| 2496.2.j.f | yes | 32 | 1.a | even | 1 | 1 | trivial |
| 2496.2.j.f | yes | 32 | 3.b | odd | 2 | 1 | inner |
| 2496.2.j.f | yes | 32 | 8.d | odd | 2 | 1 | inner |
| 2496.2.j.f | yes | 32 | 24.f | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2496, [\chi])\):
|
\( T_{5}^{16} - 54 T_{5}^{14} + 1149 T_{5}^{12} - 12248 T_{5}^{10} + 68228 T_{5}^{8} - 186336 T_{5}^{6} + \cdots + 2368 \)
|
|
\( T_{19}^{8} - 8T_{19}^{7} - 68T_{19}^{6} + 588T_{19}^{5} + 708T_{19}^{4} - 10440T_{19}^{3} + 16920T_{19}^{2} - 1728T_{19} - 6912 \)
|
|
\( T_{43}^{8} - 4T_{43}^{7} - 163T_{43}^{6} + 808T_{43}^{5} + 5772T_{43}^{4} - 33760T_{43}^{3} + 22816T_{43}^{2} + 17472T_{43} - 11456 \)
|