Properties

Label 2475.4.a.bl.1.3
Level $2475$
Weight $4$
Character 2475.1
Self dual yes
Analytic conductor $146.030$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2475,4,Mod(1,2475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2475.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2475, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2475.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,2,0,40,0,0,-40,21,0,0,55] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.029727264\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 38x^{3} + 61x^{2} + 304x - 148 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 275)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.457079\) of defining polynomial
Character \(\chi\) \(=\) 2475.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.457079 q^{2} -7.79108 q^{4} +23.1894 q^{7} -7.21777 q^{8} +11.0000 q^{11} -75.6462 q^{13} +10.5994 q^{14} +59.0295 q^{16} -40.8029 q^{17} +61.5212 q^{19} +5.02787 q^{22} +86.3856 q^{23} -34.5763 q^{26} -180.670 q^{28} +236.491 q^{29} -237.800 q^{31} +84.7233 q^{32} -18.6501 q^{34} -251.864 q^{37} +28.1200 q^{38} -446.841 q^{41} -263.646 q^{43} -85.7019 q^{44} +39.4850 q^{46} +438.728 q^{47} +194.746 q^{49} +589.365 q^{52} +286.114 q^{53} -167.375 q^{56} +108.095 q^{58} +529.452 q^{59} +75.7253 q^{61} -108.693 q^{62} -433.511 q^{64} +384.462 q^{67} +317.898 q^{68} -7.15821 q^{71} +590.216 q^{73} -115.122 q^{74} -479.316 q^{76} +255.083 q^{77} -139.112 q^{79} -204.242 q^{82} -719.121 q^{83} -120.507 q^{86} -79.3954 q^{88} -1647.00 q^{89} -1754.19 q^{91} -673.037 q^{92} +200.533 q^{94} -939.129 q^{97} +89.0144 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} + 40 q^{4} - 40 q^{7} + 21 q^{8} + 55 q^{11} - 211 q^{13} + 133 q^{14} + 208 q^{16} + 72 q^{17} + 23 q^{19} + 22 q^{22} + 57 q^{23} - 322 q^{26} - 1050 q^{28} + 183 q^{29} - q^{31} - 430 q^{32}+ \cdots - 5586 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.457079 0.161602 0.0808009 0.996730i \(-0.474252\pi\)
0.0808009 + 0.996730i \(0.474252\pi\)
\(3\) 0 0
\(4\) −7.79108 −0.973885
\(5\) 0 0
\(6\) 0 0
\(7\) 23.1894 1.25211 0.626054 0.779780i \(-0.284669\pi\)
0.626054 + 0.779780i \(0.284669\pi\)
\(8\) −7.21777 −0.318983
\(9\) 0 0
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −75.6462 −1.61388 −0.806941 0.590631i \(-0.798879\pi\)
−0.806941 + 0.590631i \(0.798879\pi\)
\(14\) 10.5994 0.202343
\(15\) 0 0
\(16\) 59.0295 0.922337
\(17\) −40.8029 −0.582126 −0.291063 0.956704i \(-0.594009\pi\)
−0.291063 + 0.956704i \(0.594009\pi\)
\(18\) 0 0
\(19\) 61.5212 0.742838 0.371419 0.928465i \(-0.378871\pi\)
0.371419 + 0.928465i \(0.378871\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 5.02787 0.0487247
\(23\) 86.3856 0.783159 0.391579 0.920144i \(-0.371929\pi\)
0.391579 + 0.920144i \(0.371929\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −34.5763 −0.260806
\(27\) 0 0
\(28\) −180.670 −1.21941
\(29\) 236.491 1.51432 0.757160 0.653229i \(-0.226586\pi\)
0.757160 + 0.653229i \(0.226586\pi\)
\(30\) 0 0
\(31\) −237.800 −1.37775 −0.688874 0.724881i \(-0.741895\pi\)
−0.688874 + 0.724881i \(0.741895\pi\)
\(32\) 84.7233 0.468034
\(33\) 0 0
\(34\) −18.6501 −0.0940726
\(35\) 0 0
\(36\) 0 0
\(37\) −251.864 −1.11909 −0.559543 0.828801i \(-0.689024\pi\)
−0.559543 + 0.828801i \(0.689024\pi\)
\(38\) 28.1200 0.120044
\(39\) 0 0
\(40\) 0 0
\(41\) −446.841 −1.70207 −0.851035 0.525108i \(-0.824025\pi\)
−0.851035 + 0.525108i \(0.824025\pi\)
\(42\) 0 0
\(43\) −263.646 −0.935015 −0.467507 0.883989i \(-0.654848\pi\)
−0.467507 + 0.883989i \(0.654848\pi\)
\(44\) −85.7019 −0.293637
\(45\) 0 0
\(46\) 39.4850 0.126560
\(47\) 438.728 1.36160 0.680799 0.732471i \(-0.261633\pi\)
0.680799 + 0.732471i \(0.261633\pi\)
\(48\) 0 0
\(49\) 194.746 0.567773
\(50\) 0 0
\(51\) 0 0
\(52\) 589.365 1.57174
\(53\) 286.114 0.741525 0.370763 0.928728i \(-0.379096\pi\)
0.370763 + 0.928728i \(0.379096\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −167.375 −0.399401
\(57\) 0 0
\(58\) 108.095 0.244717
\(59\) 529.452 1.16828 0.584142 0.811651i \(-0.301431\pi\)
0.584142 + 0.811651i \(0.301431\pi\)
\(60\) 0 0
\(61\) 75.7253 0.158945 0.0794724 0.996837i \(-0.474676\pi\)
0.0794724 + 0.996837i \(0.474676\pi\)
\(62\) −108.693 −0.222646
\(63\) 0 0
\(64\) −433.511 −0.846702
\(65\) 0 0
\(66\) 0 0
\(67\) 384.462 0.701037 0.350518 0.936556i \(-0.386005\pi\)
0.350518 + 0.936556i \(0.386005\pi\)
\(68\) 317.898 0.566924
\(69\) 0 0
\(70\) 0 0
\(71\) −7.15821 −0.0119651 −0.00598256 0.999982i \(-0.501904\pi\)
−0.00598256 + 0.999982i \(0.501904\pi\)
\(72\) 0 0
\(73\) 590.216 0.946295 0.473148 0.880983i \(-0.343118\pi\)
0.473148 + 0.880983i \(0.343118\pi\)
\(74\) −115.122 −0.180846
\(75\) 0 0
\(76\) −479.316 −0.723439
\(77\) 255.083 0.377525
\(78\) 0 0
\(79\) −139.112 −0.198118 −0.0990589 0.995082i \(-0.531583\pi\)
−0.0990589 + 0.995082i \(0.531583\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −204.242 −0.275058
\(83\) −719.121 −0.951009 −0.475505 0.879713i \(-0.657735\pi\)
−0.475505 + 0.879713i \(0.657735\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −120.507 −0.151100
\(87\) 0 0
\(88\) −79.3954 −0.0961770
\(89\) −1647.00 −1.96159 −0.980794 0.195046i \(-0.937515\pi\)
−0.980794 + 0.195046i \(0.937515\pi\)
\(90\) 0 0
\(91\) −1754.19 −2.02075
\(92\) −673.037 −0.762706
\(93\) 0 0
\(94\) 200.533 0.220036
\(95\) 0 0
\(96\) 0 0
\(97\) −939.129 −0.983032 −0.491516 0.870868i \(-0.663557\pi\)
−0.491516 + 0.870868i \(0.663557\pi\)
\(98\) 89.0144 0.0917532
\(99\) 0 0
\(100\) 0 0
\(101\) 611.529 0.602470 0.301235 0.953550i \(-0.402601\pi\)
0.301235 + 0.953550i \(0.402601\pi\)
\(102\) 0 0
\(103\) 1039.22 0.994148 0.497074 0.867708i \(-0.334408\pi\)
0.497074 + 0.867708i \(0.334408\pi\)
\(104\) 545.996 0.514801
\(105\) 0 0
\(106\) 130.777 0.119832
\(107\) −272.253 −0.245979 −0.122989 0.992408i \(-0.539248\pi\)
−0.122989 + 0.992408i \(0.539248\pi\)
\(108\) 0 0
\(109\) 1320.39 1.16028 0.580139 0.814517i \(-0.302998\pi\)
0.580139 + 0.814517i \(0.302998\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1368.86 1.15486
\(113\) 904.125 0.752681 0.376341 0.926481i \(-0.377182\pi\)
0.376341 + 0.926481i \(0.377182\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1842.52 −1.47477
\(117\) 0 0
\(118\) 242.001 0.188797
\(119\) −946.192 −0.728885
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 34.6124 0.0256858
\(123\) 0 0
\(124\) 1852.72 1.34177
\(125\) 0 0
\(126\) 0 0
\(127\) −2059.56 −1.43903 −0.719514 0.694478i \(-0.755635\pi\)
−0.719514 + 0.694478i \(0.755635\pi\)
\(128\) −875.935 −0.604863
\(129\) 0 0
\(130\) 0 0
\(131\) 1019.17 0.679737 0.339868 0.940473i \(-0.389617\pi\)
0.339868 + 0.940473i \(0.389617\pi\)
\(132\) 0 0
\(133\) 1426.64 0.930113
\(134\) 175.729 0.113289
\(135\) 0 0
\(136\) 294.506 0.185689
\(137\) −1924.56 −1.20019 −0.600096 0.799928i \(-0.704871\pi\)
−0.600096 + 0.799928i \(0.704871\pi\)
\(138\) 0 0
\(139\) 814.169 0.496812 0.248406 0.968656i \(-0.420093\pi\)
0.248406 + 0.968656i \(0.420093\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3.27186 −0.00193358
\(143\) −832.108 −0.486604
\(144\) 0 0
\(145\) 0 0
\(146\) 269.775 0.152923
\(147\) 0 0
\(148\) 1962.29 1.08986
\(149\) 629.177 0.345934 0.172967 0.984928i \(-0.444665\pi\)
0.172967 + 0.984928i \(0.444665\pi\)
\(150\) 0 0
\(151\) 497.025 0.267863 0.133932 0.990991i \(-0.457240\pi\)
0.133932 + 0.990991i \(0.457240\pi\)
\(152\) −444.045 −0.236953
\(153\) 0 0
\(154\) 116.593 0.0610086
\(155\) 0 0
\(156\) 0 0
\(157\) −1652.41 −0.839977 −0.419989 0.907529i \(-0.637966\pi\)
−0.419989 + 0.907529i \(0.637966\pi\)
\(158\) −63.5851 −0.0320162
\(159\) 0 0
\(160\) 0 0
\(161\) 2003.23 0.980599
\(162\) 0 0
\(163\) −1586.38 −0.762299 −0.381150 0.924513i \(-0.624472\pi\)
−0.381150 + 0.924513i \(0.624472\pi\)
\(164\) 3481.38 1.65762
\(165\) 0 0
\(166\) −328.695 −0.153685
\(167\) −259.897 −0.120428 −0.0602139 0.998185i \(-0.519178\pi\)
−0.0602139 + 0.998185i \(0.519178\pi\)
\(168\) 0 0
\(169\) 3525.35 1.60462
\(170\) 0 0
\(171\) 0 0
\(172\) 2054.09 0.910597
\(173\) −896.130 −0.393824 −0.196912 0.980421i \(-0.563091\pi\)
−0.196912 + 0.980421i \(0.563091\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 649.325 0.278095
\(177\) 0 0
\(178\) −752.807 −0.316996
\(179\) −3067.24 −1.28076 −0.640381 0.768057i \(-0.721224\pi\)
−0.640381 + 0.768057i \(0.721224\pi\)
\(180\) 0 0
\(181\) 1011.00 0.415179 0.207589 0.978216i \(-0.433438\pi\)
0.207589 + 0.978216i \(0.433438\pi\)
\(182\) −801.801 −0.326557
\(183\) 0 0
\(184\) −623.511 −0.249814
\(185\) 0 0
\(186\) 0 0
\(187\) −448.832 −0.175518
\(188\) −3418.17 −1.32604
\(189\) 0 0
\(190\) 0 0
\(191\) −4659.09 −1.76503 −0.882514 0.470287i \(-0.844150\pi\)
−0.882514 + 0.470287i \(0.844150\pi\)
\(192\) 0 0
\(193\) −4808.84 −1.79351 −0.896757 0.442524i \(-0.854083\pi\)
−0.896757 + 0.442524i \(0.854083\pi\)
\(194\) −429.256 −0.158860
\(195\) 0 0
\(196\) −1517.28 −0.552946
\(197\) 2661.39 0.962518 0.481259 0.876578i \(-0.340180\pi\)
0.481259 + 0.876578i \(0.340180\pi\)
\(198\) 0 0
\(199\) 745.497 0.265562 0.132781 0.991145i \(-0.457609\pi\)
0.132781 + 0.991145i \(0.457609\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 279.517 0.0973601
\(203\) 5484.08 1.89609
\(204\) 0 0
\(205\) 0 0
\(206\) 475.005 0.160656
\(207\) 0 0
\(208\) −4465.36 −1.48854
\(209\) 676.733 0.223974
\(210\) 0 0
\(211\) −3149.89 −1.02771 −0.513856 0.857876i \(-0.671783\pi\)
−0.513856 + 0.857876i \(0.671783\pi\)
\(212\) −2229.14 −0.722160
\(213\) 0 0
\(214\) −124.441 −0.0397506
\(215\) 0 0
\(216\) 0 0
\(217\) −5514.43 −1.72509
\(218\) 603.522 0.187503
\(219\) 0 0
\(220\) 0 0
\(221\) 3086.58 0.939484
\(222\) 0 0
\(223\) 2003.22 0.601549 0.300774 0.953695i \(-0.402755\pi\)
0.300774 + 0.953695i \(0.402755\pi\)
\(224\) 1964.68 0.586029
\(225\) 0 0
\(226\) 413.256 0.121635
\(227\) 957.035 0.279827 0.139913 0.990164i \(-0.455318\pi\)
0.139913 + 0.990164i \(0.455318\pi\)
\(228\) 0 0
\(229\) −3125.34 −0.901869 −0.450934 0.892557i \(-0.648909\pi\)
−0.450934 + 0.892557i \(0.648909\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1706.94 −0.483043
\(233\) 834.501 0.234635 0.117318 0.993094i \(-0.462570\pi\)
0.117318 + 0.993094i \(0.462570\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −4125.00 −1.13777
\(237\) 0 0
\(238\) −432.484 −0.117789
\(239\) 4590.83 1.24249 0.621247 0.783615i \(-0.286626\pi\)
0.621247 + 0.783615i \(0.286626\pi\)
\(240\) 0 0
\(241\) 4922.60 1.31574 0.657869 0.753132i \(-0.271458\pi\)
0.657869 + 0.753132i \(0.271458\pi\)
\(242\) 55.3065 0.0146911
\(243\) 0 0
\(244\) −589.982 −0.154794
\(245\) 0 0
\(246\) 0 0
\(247\) −4653.84 −1.19885
\(248\) 1716.39 0.439478
\(249\) 0 0
\(250\) 0 0
\(251\) −4824.17 −1.21314 −0.606572 0.795029i \(-0.707456\pi\)
−0.606572 + 0.795029i \(0.707456\pi\)
\(252\) 0 0
\(253\) 950.242 0.236131
\(254\) −941.382 −0.232549
\(255\) 0 0
\(256\) 3067.72 0.748955
\(257\) 1571.39 0.381404 0.190702 0.981648i \(-0.438924\pi\)
0.190702 + 0.981648i \(0.438924\pi\)
\(258\) 0 0
\(259\) −5840.57 −1.40122
\(260\) 0 0
\(261\) 0 0
\(262\) 465.842 0.109847
\(263\) −749.271 −0.175673 −0.0878366 0.996135i \(-0.527995\pi\)
−0.0878366 + 0.996135i \(0.527995\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 652.085 0.150308
\(267\) 0 0
\(268\) −2995.37 −0.682729
\(269\) −304.815 −0.0690888 −0.0345444 0.999403i \(-0.510998\pi\)
−0.0345444 + 0.999403i \(0.510998\pi\)
\(270\) 0 0
\(271\) −4172.68 −0.935322 −0.467661 0.883908i \(-0.654903\pi\)
−0.467661 + 0.883908i \(0.654903\pi\)
\(272\) −2408.57 −0.536917
\(273\) 0 0
\(274\) −879.676 −0.193953
\(275\) 0 0
\(276\) 0 0
\(277\) −3788.49 −0.821763 −0.410881 0.911689i \(-0.634779\pi\)
−0.410881 + 0.911689i \(0.634779\pi\)
\(278\) 372.139 0.0802857
\(279\) 0 0
\(280\) 0 0
\(281\) −8894.59 −1.88828 −0.944140 0.329543i \(-0.893105\pi\)
−0.944140 + 0.329543i \(0.893105\pi\)
\(282\) 0 0
\(283\) −8365.30 −1.75712 −0.878560 0.477631i \(-0.841496\pi\)
−0.878560 + 0.477631i \(0.841496\pi\)
\(284\) 55.7702 0.0116526
\(285\) 0 0
\(286\) −380.339 −0.0786360
\(287\) −10362.0 −2.13118
\(288\) 0 0
\(289\) −3248.13 −0.661129
\(290\) 0 0
\(291\) 0 0
\(292\) −4598.42 −0.921583
\(293\) −7094.63 −1.41458 −0.707291 0.706923i \(-0.750083\pi\)
−0.707291 + 0.706923i \(0.750083\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1817.90 0.356970
\(297\) 0 0
\(298\) 287.583 0.0559035
\(299\) −6534.74 −1.26393
\(300\) 0 0
\(301\) −6113.78 −1.17074
\(302\) 227.180 0.0432872
\(303\) 0 0
\(304\) 3631.57 0.685147
\(305\) 0 0
\(306\) 0 0
\(307\) 167.179 0.0310795 0.0155397 0.999879i \(-0.495053\pi\)
0.0155397 + 0.999879i \(0.495053\pi\)
\(308\) −1987.37 −0.367666
\(309\) 0 0
\(310\) 0 0
\(311\) 5182.66 0.944956 0.472478 0.881342i \(-0.343360\pi\)
0.472478 + 0.881342i \(0.343360\pi\)
\(312\) 0 0
\(313\) −7854.87 −1.41848 −0.709239 0.704968i \(-0.750961\pi\)
−0.709239 + 0.704968i \(0.750961\pi\)
\(314\) −755.280 −0.135742
\(315\) 0 0
\(316\) 1083.83 0.192944
\(317\) 6898.30 1.22223 0.611115 0.791542i \(-0.290721\pi\)
0.611115 + 0.791542i \(0.290721\pi\)
\(318\) 0 0
\(319\) 2601.40 0.456585
\(320\) 0 0
\(321\) 0 0
\(322\) 915.632 0.158466
\(323\) −2510.24 −0.432426
\(324\) 0 0
\(325\) 0 0
\(326\) −725.100 −0.123189
\(327\) 0 0
\(328\) 3225.20 0.542932
\(329\) 10173.8 1.70487
\(330\) 0 0
\(331\) −11335.3 −1.88232 −0.941158 0.337967i \(-0.890261\pi\)
−0.941158 + 0.337967i \(0.890261\pi\)
\(332\) 5602.73 0.926174
\(333\) 0 0
\(334\) −118.794 −0.0194614
\(335\) 0 0
\(336\) 0 0
\(337\) −5783.14 −0.934801 −0.467400 0.884046i \(-0.654809\pi\)
−0.467400 + 0.884046i \(0.654809\pi\)
\(338\) 1611.36 0.259309
\(339\) 0 0
\(340\) 0 0
\(341\) −2615.80 −0.415407
\(342\) 0 0
\(343\) −3437.91 −0.541194
\(344\) 1902.94 0.298254
\(345\) 0 0
\(346\) −409.602 −0.0636426
\(347\) 1737.90 0.268863 0.134432 0.990923i \(-0.457079\pi\)
0.134432 + 0.990923i \(0.457079\pi\)
\(348\) 0 0
\(349\) 6935.84 1.06380 0.531901 0.846806i \(-0.321478\pi\)
0.531901 + 0.846806i \(0.321478\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 931.956 0.141118
\(353\) −11417.5 −1.72151 −0.860753 0.509023i \(-0.830007\pi\)
−0.860753 + 0.509023i \(0.830007\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 12831.9 1.91036
\(357\) 0 0
\(358\) −1401.97 −0.206973
\(359\) −8223.54 −1.20897 −0.604487 0.796615i \(-0.706622\pi\)
−0.604487 + 0.796615i \(0.706622\pi\)
\(360\) 0 0
\(361\) −3074.15 −0.448192
\(362\) 462.108 0.0670936
\(363\) 0 0
\(364\) 13667.0 1.96798
\(365\) 0 0
\(366\) 0 0
\(367\) −2235.51 −0.317963 −0.158982 0.987282i \(-0.550821\pi\)
−0.158982 + 0.987282i \(0.550821\pi\)
\(368\) 5099.30 0.722336
\(369\) 0 0
\(370\) 0 0
\(371\) 6634.81 0.928470
\(372\) 0 0
\(373\) −5243.63 −0.727895 −0.363947 0.931420i \(-0.618571\pi\)
−0.363947 + 0.931420i \(0.618571\pi\)
\(374\) −205.151 −0.0283640
\(375\) 0 0
\(376\) −3166.64 −0.434327
\(377\) −17889.7 −2.44394
\(378\) 0 0
\(379\) −5262.50 −0.713237 −0.356618 0.934250i \(-0.616070\pi\)
−0.356618 + 0.934250i \(0.616070\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −2129.57 −0.285231
\(383\) −12845.0 −1.71370 −0.856851 0.515564i \(-0.827582\pi\)
−0.856851 + 0.515564i \(0.827582\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2198.02 −0.289835
\(387\) 0 0
\(388\) 7316.83 0.957360
\(389\) 12471.0 1.62546 0.812731 0.582640i \(-0.197980\pi\)
0.812731 + 0.582640i \(0.197980\pi\)
\(390\) 0 0
\(391\) −3524.78 −0.455897
\(392\) −1405.63 −0.181110
\(393\) 0 0
\(394\) 1216.46 0.155545
\(395\) 0 0
\(396\) 0 0
\(397\) 4136.07 0.522880 0.261440 0.965220i \(-0.415803\pi\)
0.261440 + 0.965220i \(0.415803\pi\)
\(398\) 340.751 0.0429153
\(399\) 0 0
\(400\) 0 0
\(401\) −3334.81 −0.415292 −0.207646 0.978204i \(-0.566580\pi\)
−0.207646 + 0.978204i \(0.566580\pi\)
\(402\) 0 0
\(403\) 17988.7 2.22352
\(404\) −4764.47 −0.586736
\(405\) 0 0
\(406\) 2506.65 0.306412
\(407\) −2770.51 −0.337417
\(408\) 0 0
\(409\) 11146.6 1.34758 0.673792 0.738921i \(-0.264664\pi\)
0.673792 + 0.738921i \(0.264664\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −8096.63 −0.968186
\(413\) 12277.7 1.46282
\(414\) 0 0
\(415\) 0 0
\(416\) −6408.99 −0.755353
\(417\) 0 0
\(418\) 309.320 0.0361946
\(419\) −8914.70 −1.03941 −0.519703 0.854347i \(-0.673958\pi\)
−0.519703 + 0.854347i \(0.673958\pi\)
\(420\) 0 0
\(421\) 619.364 0.0717006 0.0358503 0.999357i \(-0.488586\pi\)
0.0358503 + 0.999357i \(0.488586\pi\)
\(422\) −1439.75 −0.166080
\(423\) 0 0
\(424\) −2065.11 −0.236534
\(425\) 0 0
\(426\) 0 0
\(427\) 1756.02 0.199016
\(428\) 2121.15 0.239555
\(429\) 0 0
\(430\) 0 0
\(431\) −9544.05 −1.06664 −0.533319 0.845914i \(-0.679055\pi\)
−0.533319 + 0.845914i \(0.679055\pi\)
\(432\) 0 0
\(433\) 2043.50 0.226800 0.113400 0.993549i \(-0.463826\pi\)
0.113400 + 0.993549i \(0.463826\pi\)
\(434\) −2520.53 −0.278777
\(435\) 0 0
\(436\) −10287.3 −1.12998
\(437\) 5314.54 0.581760
\(438\) 0 0
\(439\) −3972.17 −0.431848 −0.215924 0.976410i \(-0.569276\pi\)
−0.215924 + 0.976410i \(0.569276\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 1410.81 0.151822
\(443\) −11124.2 −1.19306 −0.596532 0.802589i \(-0.703455\pi\)
−0.596532 + 0.802589i \(0.703455\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 915.628 0.0972113
\(447\) 0 0
\(448\) −10052.8 −1.06016
\(449\) 7023.26 0.738192 0.369096 0.929391i \(-0.379667\pi\)
0.369096 + 0.929391i \(0.379667\pi\)
\(450\) 0 0
\(451\) −4915.26 −0.513194
\(452\) −7044.11 −0.733025
\(453\) 0 0
\(454\) 437.440 0.0452204
\(455\) 0 0
\(456\) 0 0
\(457\) 1723.31 0.176396 0.0881979 0.996103i \(-0.471889\pi\)
0.0881979 + 0.996103i \(0.471889\pi\)
\(458\) −1428.52 −0.145744
\(459\) 0 0
\(460\) 0 0
\(461\) −7282.40 −0.735738 −0.367869 0.929878i \(-0.619912\pi\)
−0.367869 + 0.929878i \(0.619912\pi\)
\(462\) 0 0
\(463\) 15632.3 1.56910 0.784550 0.620065i \(-0.212894\pi\)
0.784550 + 0.620065i \(0.212894\pi\)
\(464\) 13960.0 1.39671
\(465\) 0 0
\(466\) 381.433 0.0379174
\(467\) −7075.86 −0.701139 −0.350569 0.936537i \(-0.614012\pi\)
−0.350569 + 0.936537i \(0.614012\pi\)
\(468\) 0 0
\(469\) 8915.42 0.877773
\(470\) 0 0
\(471\) 0 0
\(472\) −3821.46 −0.372663
\(473\) −2900.11 −0.281918
\(474\) 0 0
\(475\) 0 0
\(476\) 7371.86 0.709850
\(477\) 0 0
\(478\) 2098.37 0.200789
\(479\) 4240.40 0.404486 0.202243 0.979335i \(-0.435177\pi\)
0.202243 + 0.979335i \(0.435177\pi\)
\(480\) 0 0
\(481\) 19052.6 1.80608
\(482\) 2250.02 0.212626
\(483\) 0 0
\(484\) −942.721 −0.0885350
\(485\) 0 0
\(486\) 0 0
\(487\) −19796.8 −1.84205 −0.921026 0.389502i \(-0.872647\pi\)
−0.921026 + 0.389502i \(0.872647\pi\)
\(488\) −546.568 −0.0507007
\(489\) 0 0
\(490\) 0 0
\(491\) 7113.02 0.653780 0.326890 0.945062i \(-0.393999\pi\)
0.326890 + 0.945062i \(0.393999\pi\)
\(492\) 0 0
\(493\) −9649.52 −0.881526
\(494\) −2127.17 −0.193737
\(495\) 0 0
\(496\) −14037.2 −1.27075
\(497\) −165.994 −0.0149816
\(498\) 0 0
\(499\) 7116.10 0.638398 0.319199 0.947688i \(-0.396586\pi\)
0.319199 + 0.947688i \(0.396586\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −2205.03 −0.196046
\(503\) 759.231 0.0673010 0.0336505 0.999434i \(-0.489287\pi\)
0.0336505 + 0.999434i \(0.489287\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 434.335 0.0381592
\(507\) 0 0
\(508\) 16046.2 1.40145
\(509\) −4259.50 −0.370922 −0.185461 0.982652i \(-0.559378\pi\)
−0.185461 + 0.982652i \(0.559378\pi\)
\(510\) 0 0
\(511\) 13686.7 1.18486
\(512\) 8409.67 0.725895
\(513\) 0 0
\(514\) 718.251 0.0616356
\(515\) 0 0
\(516\) 0 0
\(517\) 4826.01 0.410537
\(518\) −2669.60 −0.226439
\(519\) 0 0
\(520\) 0 0
\(521\) 6037.10 0.507659 0.253829 0.967249i \(-0.418310\pi\)
0.253829 + 0.967249i \(0.418310\pi\)
\(522\) 0 0
\(523\) −20359.6 −1.70222 −0.851110 0.524987i \(-0.824070\pi\)
−0.851110 + 0.524987i \(0.824070\pi\)
\(524\) −7940.45 −0.661985
\(525\) 0 0
\(526\) −342.476 −0.0283891
\(527\) 9702.93 0.802023
\(528\) 0 0
\(529\) −4704.52 −0.386663
\(530\) 0 0
\(531\) 0 0
\(532\) −11115.0 −0.905823
\(533\) 33801.8 2.74694
\(534\) 0 0
\(535\) 0 0
\(536\) −2774.95 −0.223619
\(537\) 0 0
\(538\) −139.324 −0.0111649
\(539\) 2142.21 0.171190
\(540\) 0 0
\(541\) 9521.19 0.756650 0.378325 0.925673i \(-0.376500\pi\)
0.378325 + 0.925673i \(0.376500\pi\)
\(542\) −1907.24 −0.151150
\(543\) 0 0
\(544\) −3456.95 −0.272455
\(545\) 0 0
\(546\) 0 0
\(547\) −408.097 −0.0318994 −0.0159497 0.999873i \(-0.505077\pi\)
−0.0159497 + 0.999873i \(0.505077\pi\)
\(548\) 14994.4 1.16885
\(549\) 0 0
\(550\) 0 0
\(551\) 14549.2 1.12490
\(552\) 0 0
\(553\) −3225.92 −0.248065
\(554\) −1731.64 −0.132798
\(555\) 0 0
\(556\) −6343.25 −0.483838
\(557\) −21981.3 −1.67213 −0.836067 0.548627i \(-0.815151\pi\)
−0.836067 + 0.548627i \(0.815151\pi\)
\(558\) 0 0
\(559\) 19943.8 1.50900
\(560\) 0 0
\(561\) 0 0
\(562\) −4065.53 −0.305149
\(563\) 6384.70 0.477945 0.238973 0.971026i \(-0.423189\pi\)
0.238973 + 0.971026i \(0.423189\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −3823.60 −0.283954
\(567\) 0 0
\(568\) 51.6663 0.00381667
\(569\) 25115.1 1.85040 0.925202 0.379475i \(-0.123896\pi\)
0.925202 + 0.379475i \(0.123896\pi\)
\(570\) 0 0
\(571\) −11128.6 −0.815616 −0.407808 0.913068i \(-0.633707\pi\)
−0.407808 + 0.913068i \(0.633707\pi\)
\(572\) 6483.02 0.473896
\(573\) 0 0
\(574\) −4736.23 −0.344402
\(575\) 0 0
\(576\) 0 0
\(577\) −1957.55 −0.141237 −0.0706185 0.997503i \(-0.522497\pi\)
−0.0706185 + 0.997503i \(0.522497\pi\)
\(578\) −1484.65 −0.106840
\(579\) 0 0
\(580\) 0 0
\(581\) −16675.9 −1.19077
\(582\) 0 0
\(583\) 3147.26 0.223578
\(584\) −4260.04 −0.301852
\(585\) 0 0
\(586\) −3242.80 −0.228599
\(587\) −26875.7 −1.88974 −0.944870 0.327447i \(-0.893812\pi\)
−0.944870 + 0.327447i \(0.893812\pi\)
\(588\) 0 0
\(589\) −14629.7 −1.02344
\(590\) 0 0
\(591\) 0 0
\(592\) −14867.4 −1.03217
\(593\) 18231.3 1.26251 0.631255 0.775575i \(-0.282540\pi\)
0.631255 + 0.775575i \(0.282540\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4901.96 −0.336900
\(597\) 0 0
\(598\) −2986.89 −0.204253
\(599\) 24200.0 1.65073 0.825364 0.564601i \(-0.190970\pi\)
0.825364 + 0.564601i \(0.190970\pi\)
\(600\) 0 0
\(601\) −92.5601 −0.00628221 −0.00314110 0.999995i \(-0.501000\pi\)
−0.00314110 + 0.999995i \(0.501000\pi\)
\(602\) −2794.48 −0.189193
\(603\) 0 0
\(604\) −3872.36 −0.260868
\(605\) 0 0
\(606\) 0 0
\(607\) −6711.75 −0.448800 −0.224400 0.974497i \(-0.572042\pi\)
−0.224400 + 0.974497i \(0.572042\pi\)
\(608\) 5212.27 0.347674
\(609\) 0 0
\(610\) 0 0
\(611\) −33188.1 −2.19746
\(612\) 0 0
\(613\) 1130.01 0.0744549 0.0372274 0.999307i \(-0.488147\pi\)
0.0372274 + 0.999307i \(0.488147\pi\)
\(614\) 76.4139 0.00502250
\(615\) 0 0
\(616\) −1841.13 −0.120424
\(617\) 19798.5 1.29183 0.645913 0.763411i \(-0.276477\pi\)
0.645913 + 0.763411i \(0.276477\pi\)
\(618\) 0 0
\(619\) 7620.34 0.494810 0.247405 0.968912i \(-0.420422\pi\)
0.247405 + 0.968912i \(0.420422\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 2368.88 0.152707
\(623\) −38192.8 −2.45612
\(624\) 0 0
\(625\) 0 0
\(626\) −3590.30 −0.229229
\(627\) 0 0
\(628\) 12874.0 0.818041
\(629\) 10276.8 0.651450
\(630\) 0 0
\(631\) 7542.23 0.475834 0.237917 0.971285i \(-0.423535\pi\)
0.237917 + 0.971285i \(0.423535\pi\)
\(632\) 1004.08 0.0631963
\(633\) 0 0
\(634\) 3153.06 0.197515
\(635\) 0 0
\(636\) 0 0
\(637\) −14731.8 −0.916320
\(638\) 1189.05 0.0737849
\(639\) 0 0
\(640\) 0 0
\(641\) 27329.5 1.68401 0.842005 0.539470i \(-0.181375\pi\)
0.842005 + 0.539470i \(0.181375\pi\)
\(642\) 0 0
\(643\) 8792.26 0.539243 0.269621 0.962966i \(-0.413101\pi\)
0.269621 + 0.962966i \(0.413101\pi\)
\(644\) −15607.3 −0.954990
\(645\) 0 0
\(646\) −1147.38 −0.0698807
\(647\) 8420.01 0.511630 0.255815 0.966726i \(-0.417656\pi\)
0.255815 + 0.966726i \(0.417656\pi\)
\(648\) 0 0
\(649\) 5823.97 0.352251
\(650\) 0 0
\(651\) 0 0
\(652\) 12359.6 0.742392
\(653\) 23596.6 1.41410 0.707050 0.707164i \(-0.250026\pi\)
0.707050 + 0.707164i \(0.250026\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −26376.8 −1.56988
\(657\) 0 0
\(658\) 4650.24 0.275509
\(659\) 804.250 0.0475404 0.0237702 0.999717i \(-0.492433\pi\)
0.0237702 + 0.999717i \(0.492433\pi\)
\(660\) 0 0
\(661\) 17912.6 1.05404 0.527019 0.849854i \(-0.323310\pi\)
0.527019 + 0.849854i \(0.323310\pi\)
\(662\) −5181.14 −0.304186
\(663\) 0 0
\(664\) 5190.45 0.303356
\(665\) 0 0
\(666\) 0 0
\(667\) 20429.4 1.18595
\(668\) 2024.88 0.117283
\(669\) 0 0
\(670\) 0 0
\(671\) 832.978 0.0479237
\(672\) 0 0
\(673\) −942.349 −0.0539746 −0.0269873 0.999636i \(-0.508591\pi\)
−0.0269873 + 0.999636i \(0.508591\pi\)
\(674\) −2643.35 −0.151065
\(675\) 0 0
\(676\) −27466.2 −1.56271
\(677\) 13681.1 0.776673 0.388336 0.921518i \(-0.373050\pi\)
0.388336 + 0.921518i \(0.373050\pi\)
\(678\) 0 0
\(679\) −21777.8 −1.23086
\(680\) 0 0
\(681\) 0 0
\(682\) −1195.63 −0.0671304
\(683\) −7909.32 −0.443107 −0.221553 0.975148i \(-0.571113\pi\)
−0.221553 + 0.975148i \(0.571113\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1571.39 −0.0874579
\(687\) 0 0
\(688\) −15562.9 −0.862399
\(689\) −21643.5 −1.19674
\(690\) 0 0
\(691\) −11314.6 −0.622903 −0.311452 0.950262i \(-0.600815\pi\)
−0.311452 + 0.950262i \(0.600815\pi\)
\(692\) 6981.82 0.383539
\(693\) 0 0
\(694\) 794.358 0.0434487
\(695\) 0 0
\(696\) 0 0
\(697\) 18232.4 0.990820
\(698\) 3170.23 0.171912
\(699\) 0 0
\(700\) 0 0
\(701\) 5833.23 0.314291 0.157146 0.987575i \(-0.449771\pi\)
0.157146 + 0.987575i \(0.449771\pi\)
\(702\) 0 0
\(703\) −15495.0 −0.831300
\(704\) −4768.62 −0.255290
\(705\) 0 0
\(706\) −5218.69 −0.278198
\(707\) 14181.0 0.754357
\(708\) 0 0
\(709\) 31717.5 1.68008 0.840038 0.542527i \(-0.182532\pi\)
0.840038 + 0.542527i \(0.182532\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 11887.6 0.625714
\(713\) −20542.5 −1.07899
\(714\) 0 0
\(715\) 0 0
\(716\) 23897.1 1.24731
\(717\) 0 0
\(718\) −3758.80 −0.195372
\(719\) −20176.6 −1.04654 −0.523269 0.852167i \(-0.675288\pi\)
−0.523269 + 0.852167i \(0.675288\pi\)
\(720\) 0 0
\(721\) 24098.8 1.24478
\(722\) −1405.13 −0.0724285
\(723\) 0 0
\(724\) −7876.81 −0.404336
\(725\) 0 0
\(726\) 0 0
\(727\) 23555.4 1.20168 0.600839 0.799370i \(-0.294833\pi\)
0.600839 + 0.799370i \(0.294833\pi\)
\(728\) 12661.3 0.644587
\(729\) 0 0
\(730\) 0 0
\(731\) 10757.5 0.544297
\(732\) 0 0
\(733\) −32919.2 −1.65880 −0.829399 0.558656i \(-0.811317\pi\)
−0.829399 + 0.558656i \(0.811317\pi\)
\(734\) −1021.80 −0.0513834
\(735\) 0 0
\(736\) 7318.87 0.366545
\(737\) 4229.08 0.211370
\(738\) 0 0
\(739\) 7979.80 0.397215 0.198607 0.980079i \(-0.436358\pi\)
0.198607 + 0.980079i \(0.436358\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 3032.63 0.150042
\(743\) −36491.6 −1.80181 −0.900907 0.434013i \(-0.857097\pi\)
−0.900907 + 0.434013i \(0.857097\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −2396.75 −0.117629
\(747\) 0 0
\(748\) 3496.88 0.170934
\(749\) −6313.38 −0.307992
\(750\) 0 0
\(751\) −8064.10 −0.391828 −0.195914 0.980621i \(-0.562767\pi\)
−0.195914 + 0.980621i \(0.562767\pi\)
\(752\) 25897.9 1.25585
\(753\) 0 0
\(754\) −8176.98 −0.394944
\(755\) 0 0
\(756\) 0 0
\(757\) 164.260 0.00788659 0.00394329 0.999992i \(-0.498745\pi\)
0.00394329 + 0.999992i \(0.498745\pi\)
\(758\) −2405.38 −0.115260
\(759\) 0 0
\(760\) 0 0
\(761\) −6387.72 −0.304277 −0.152138 0.988359i \(-0.548616\pi\)
−0.152138 + 0.988359i \(0.548616\pi\)
\(762\) 0 0
\(763\) 30619.0 1.45279
\(764\) 36299.4 1.71893
\(765\) 0 0
\(766\) −5871.17 −0.276937
\(767\) −40051.0 −1.88547
\(768\) 0 0
\(769\) −4920.10 −0.230719 −0.115360 0.993324i \(-0.536802\pi\)
−0.115360 + 0.993324i \(0.536802\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 37466.1 1.74668
\(773\) −25930.2 −1.20653 −0.603264 0.797542i \(-0.706133\pi\)
−0.603264 + 0.797542i \(0.706133\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 6778.41 0.313571
\(777\) 0 0
\(778\) 5700.22 0.262677
\(779\) −27490.2 −1.26436
\(780\) 0 0
\(781\) −78.7403 −0.00360762
\(782\) −1611.10 −0.0736738
\(783\) 0 0
\(784\) 11495.8 0.523678
\(785\) 0 0
\(786\) 0 0
\(787\) −876.332 −0.0396923 −0.0198462 0.999803i \(-0.506318\pi\)
−0.0198462 + 0.999803i \(0.506318\pi\)
\(788\) −20735.1 −0.937382
\(789\) 0 0
\(790\) 0 0
\(791\) 20966.1 0.942438
\(792\) 0 0
\(793\) −5728.33 −0.256518
\(794\) 1890.51 0.0844983
\(795\) 0 0
\(796\) −5808.22 −0.258627
\(797\) 20900.9 0.928917 0.464458 0.885595i \(-0.346249\pi\)
0.464458 + 0.885595i \(0.346249\pi\)
\(798\) 0 0
\(799\) −17901.4 −0.792622
\(800\) 0 0
\(801\) 0 0
\(802\) −1524.27 −0.0671120
\(803\) 6492.38 0.285319
\(804\) 0 0
\(805\) 0 0
\(806\) 8222.24 0.359325
\(807\) 0 0
\(808\) −4413.87 −0.192178
\(809\) −7164.89 −0.311377 −0.155689 0.987806i \(-0.549760\pi\)
−0.155689 + 0.987806i \(0.549760\pi\)
\(810\) 0 0
\(811\) −4229.19 −0.183116 −0.0915580 0.995800i \(-0.529185\pi\)
−0.0915580 + 0.995800i \(0.529185\pi\)
\(812\) −42726.9 −1.84658
\(813\) 0 0
\(814\) −1266.34 −0.0545272
\(815\) 0 0
\(816\) 0 0
\(817\) −16219.8 −0.694565
\(818\) 5094.85 0.217772
\(819\) 0 0
\(820\) 0 0
\(821\) 31556.0 1.34143 0.670713 0.741717i \(-0.265988\pi\)
0.670713 + 0.741717i \(0.265988\pi\)
\(822\) 0 0
\(823\) −36827.7 −1.55982 −0.779910 0.625891i \(-0.784735\pi\)
−0.779910 + 0.625891i \(0.784735\pi\)
\(824\) −7500.83 −0.317116
\(825\) 0 0
\(826\) 5611.85 0.236394
\(827\) −1188.45 −0.0499714 −0.0249857 0.999688i \(-0.507954\pi\)
−0.0249857 + 0.999688i \(0.507954\pi\)
\(828\) 0 0
\(829\) −37008.8 −1.55051 −0.775253 0.631651i \(-0.782378\pi\)
−0.775253 + 0.631651i \(0.782378\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 32793.5 1.36648
\(833\) −7946.21 −0.330516
\(834\) 0 0
\(835\) 0 0
\(836\) −5272.48 −0.218125
\(837\) 0 0
\(838\) −4074.72 −0.167970
\(839\) 11427.0 0.470206 0.235103 0.971970i \(-0.424457\pi\)
0.235103 + 0.971970i \(0.424457\pi\)
\(840\) 0 0
\(841\) 31539.1 1.29317
\(842\) 283.098 0.0115869
\(843\) 0 0
\(844\) 24541.0 1.00087
\(845\) 0 0
\(846\) 0 0
\(847\) 2805.91 0.113828
\(848\) 16889.2 0.683936
\(849\) 0 0
\(850\) 0 0
\(851\) −21757.4 −0.876423
\(852\) 0 0
\(853\) −5084.37 −0.204086 −0.102043 0.994780i \(-0.532538\pi\)
−0.102043 + 0.994780i \(0.532538\pi\)
\(854\) 802.640 0.0321613
\(855\) 0 0
\(856\) 1965.06 0.0784631
\(857\) −36268.5 −1.44563 −0.722816 0.691040i \(-0.757153\pi\)
−0.722816 + 0.691040i \(0.757153\pi\)
\(858\) 0 0
\(859\) 36158.6 1.43622 0.718111 0.695928i \(-0.245007\pi\)
0.718111 + 0.695928i \(0.245007\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −4362.38 −0.172370
\(863\) −5105.14 −0.201368 −0.100684 0.994918i \(-0.532103\pi\)
−0.100684 + 0.994918i \(0.532103\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 934.039 0.0366512
\(867\) 0 0
\(868\) 42963.4 1.68004
\(869\) −1530.23 −0.0597348
\(870\) 0 0
\(871\) −29083.0 −1.13139
\(872\) −9530.26 −0.370109
\(873\) 0 0
\(874\) 2429.16 0.0940134
\(875\) 0 0
\(876\) 0 0
\(877\) −33922.6 −1.30614 −0.653071 0.757297i \(-0.726520\pi\)
−0.653071 + 0.757297i \(0.726520\pi\)
\(878\) −1815.59 −0.0697874
\(879\) 0 0
\(880\) 0 0
\(881\) −12610.2 −0.482235 −0.241117 0.970496i \(-0.577514\pi\)
−0.241117 + 0.970496i \(0.577514\pi\)
\(882\) 0 0
\(883\) 40762.8 1.55354 0.776771 0.629783i \(-0.216856\pi\)
0.776771 + 0.629783i \(0.216856\pi\)
\(884\) −24047.8 −0.914949
\(885\) 0 0
\(886\) −5084.64 −0.192801
\(887\) 29954.3 1.13390 0.566949 0.823753i \(-0.308123\pi\)
0.566949 + 0.823753i \(0.308123\pi\)
\(888\) 0 0
\(889\) −47759.9 −1.80182
\(890\) 0 0
\(891\) 0 0
\(892\) −15607.2 −0.585839
\(893\) 26991.1 1.01145
\(894\) 0 0
\(895\) 0 0
\(896\) −20312.4 −0.757353
\(897\) 0 0
\(898\) 3210.18 0.119293
\(899\) −56237.6 −2.08635
\(900\) 0 0
\(901\) −11674.3 −0.431662
\(902\) −2246.66 −0.0829330
\(903\) 0 0
\(904\) −6525.76 −0.240093
\(905\) 0 0
\(906\) 0 0
\(907\) 29053.0 1.06360 0.531802 0.846869i \(-0.321515\pi\)
0.531802 + 0.846869i \(0.321515\pi\)
\(908\) −7456.33 −0.272519
\(909\) 0 0
\(910\) 0 0
\(911\) 3562.14 0.129549 0.0647744 0.997900i \(-0.479367\pi\)
0.0647744 + 0.997900i \(0.479367\pi\)
\(912\) 0 0
\(913\) −7910.33 −0.286740
\(914\) 787.687 0.0285059
\(915\) 0 0
\(916\) 24349.7 0.878317
\(917\) 23634.0 0.851104
\(918\) 0 0
\(919\) 2936.50 0.105404 0.0527020 0.998610i \(-0.483217\pi\)
0.0527020 + 0.998610i \(0.483217\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −3328.63 −0.118896
\(923\) 541.491 0.0193103
\(924\) 0 0
\(925\) 0 0
\(926\) 7145.18 0.253569
\(927\) 0 0
\(928\) 20036.3 0.708754
\(929\) 16941.3 0.598306 0.299153 0.954205i \(-0.403296\pi\)
0.299153 + 0.954205i \(0.403296\pi\)
\(930\) 0 0
\(931\) 11981.0 0.421764
\(932\) −6501.66 −0.228508
\(933\) 0 0
\(934\) −3234.22 −0.113305
\(935\) 0 0
\(936\) 0 0
\(937\) −19863.3 −0.692537 −0.346269 0.938135i \(-0.612551\pi\)
−0.346269 + 0.938135i \(0.612551\pi\)
\(938\) 4075.05 0.141850
\(939\) 0 0
\(940\) 0 0
\(941\) 39408.8 1.36524 0.682620 0.730773i \(-0.260840\pi\)
0.682620 + 0.730773i \(0.260840\pi\)
\(942\) 0 0
\(943\) −38600.7 −1.33299
\(944\) 31253.3 1.07755
\(945\) 0 0
\(946\) −1325.58 −0.0455584
\(947\) 40190.4 1.37910 0.689552 0.724236i \(-0.257807\pi\)
0.689552 + 0.724236i \(0.257807\pi\)
\(948\) 0 0
\(949\) −44647.6 −1.52721
\(950\) 0 0
\(951\) 0 0
\(952\) 6829.39 0.232502
\(953\) 43114.9 1.46551 0.732754 0.680493i \(-0.238235\pi\)
0.732754 + 0.680493i \(0.238235\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −35767.5 −1.21005
\(957\) 0 0
\(958\) 1938.20 0.0653657
\(959\) −44629.3 −1.50277
\(960\) 0 0
\(961\) 26757.9 0.898188
\(962\) 8708.52 0.291865
\(963\) 0 0
\(964\) −38352.4 −1.28138
\(965\) 0 0
\(966\) 0 0
\(967\) 15536.2 0.516659 0.258330 0.966057i \(-0.416828\pi\)
0.258330 + 0.966057i \(0.416828\pi\)
\(968\) −873.350 −0.0289985
\(969\) 0 0
\(970\) 0 0
\(971\) 18466.6 0.610320 0.305160 0.952301i \(-0.401290\pi\)
0.305160 + 0.952301i \(0.401290\pi\)
\(972\) 0 0
\(973\) 18880.0 0.622062
\(974\) −9048.70 −0.297679
\(975\) 0 0
\(976\) 4470.03 0.146601
\(977\) 13352.4 0.437236 0.218618 0.975810i \(-0.429845\pi\)
0.218618 + 0.975810i \(0.429845\pi\)
\(978\) 0 0
\(979\) −18117.0 −0.591441
\(980\) 0 0
\(981\) 0 0
\(982\) 3251.21 0.105652
\(983\) 9970.61 0.323513 0.161756 0.986831i \(-0.448284\pi\)
0.161756 + 0.986831i \(0.448284\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −4410.59 −0.142456
\(987\) 0 0
\(988\) 36258.4 1.16755
\(989\) −22775.2 −0.732265
\(990\) 0 0
\(991\) 36094.5 1.15699 0.578496 0.815685i \(-0.303640\pi\)
0.578496 + 0.815685i \(0.303640\pi\)
\(992\) −20147.2 −0.644833
\(993\) 0 0
\(994\) −75.8724 −0.00242105
\(995\) 0 0
\(996\) 0 0
\(997\) −51210.1 −1.62672 −0.813360 0.581760i \(-0.802364\pi\)
−0.813360 + 0.581760i \(0.802364\pi\)
\(998\) 3252.62 0.103166
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2475.4.a.bl.1.3 5
3.2 odd 2 275.4.a.g.1.3 5
5.4 even 2 2475.4.a.bh.1.3 5
15.2 even 4 275.4.b.f.199.5 10
15.8 even 4 275.4.b.f.199.6 10
15.14 odd 2 275.4.a.h.1.3 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.4.a.g.1.3 5 3.2 odd 2
275.4.a.h.1.3 yes 5 15.14 odd 2
275.4.b.f.199.5 10 15.2 even 4
275.4.b.f.199.6 10 15.8 even 4
2475.4.a.bh.1.3 5 5.4 even 2
2475.4.a.bl.1.3 5 1.1 even 1 trivial