Properties

Label 275.4.a.h.1.3
Level $275$
Weight $4$
Character 275.1
Self dual yes
Analytic conductor $16.226$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,4,Mod(1,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 275.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.2255252516\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 38x^{3} + 61x^{2} + 304x - 148 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.457079\) of defining polynomial
Character \(\chi\) \(=\) 275.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.457079 q^{2} -2.45289 q^{3} -7.79108 q^{4} -1.12116 q^{6} -23.1894 q^{7} -7.21777 q^{8} -20.9833 q^{9} -11.0000 q^{11} +19.1106 q^{12} +75.6462 q^{13} -10.5994 q^{14} +59.0295 q^{16} -40.8029 q^{17} -9.59104 q^{18} +61.5212 q^{19} +56.8809 q^{21} -5.02787 q^{22} +86.3856 q^{23} +17.7044 q^{24} +34.5763 q^{26} +117.698 q^{27} +180.670 q^{28} -236.491 q^{29} -237.800 q^{31} +84.7233 q^{32} +26.9818 q^{33} -18.6501 q^{34} +163.483 q^{36} +251.864 q^{37} +28.1200 q^{38} -185.552 q^{39} +446.841 q^{41} +25.9990 q^{42} +263.646 q^{43} +85.7019 q^{44} +39.4850 q^{46} +438.728 q^{47} -144.793 q^{48} +194.746 q^{49} +100.085 q^{51} -589.365 q^{52} +286.114 q^{53} +53.7971 q^{54} +167.375 q^{56} -150.905 q^{57} -108.095 q^{58} -529.452 q^{59} +75.7253 q^{61} -108.693 q^{62} +486.590 q^{63} -433.511 q^{64} +12.3328 q^{66} -384.462 q^{67} +317.898 q^{68} -211.894 q^{69} +7.15821 q^{71} +151.453 q^{72} -590.216 q^{73} +115.122 q^{74} -479.316 q^{76} +255.083 q^{77} -84.8117 q^{78} -139.112 q^{79} +277.851 q^{81} +204.242 q^{82} -719.121 q^{83} -443.164 q^{84} +120.507 q^{86} +580.086 q^{87} +79.3954 q^{88} +1647.00 q^{89} -1754.19 q^{91} -673.037 q^{92} +583.297 q^{93} +200.533 q^{94} -207.817 q^{96} +939.129 q^{97} +89.0144 q^{98} +230.817 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} + 40 q^{4} - 42 q^{6} + 40 q^{7} + 21 q^{8} + 31 q^{9} - 55 q^{11} + 125 q^{12} + 211 q^{13} - 133 q^{14} + 208 q^{16} + 72 q^{17} + 171 q^{18} + 23 q^{19} + 282 q^{21} - 22 q^{22} + 57 q^{23}+ \cdots - 341 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.457079 0.161602 0.0808009 0.996730i \(-0.474252\pi\)
0.0808009 + 0.996730i \(0.474252\pi\)
\(3\) −2.45289 −0.472059 −0.236029 0.971746i \(-0.575846\pi\)
−0.236029 + 0.971746i \(0.575846\pi\)
\(4\) −7.79108 −0.973885
\(5\) 0 0
\(6\) −1.12116 −0.0762855
\(7\) −23.1894 −1.25211 −0.626054 0.779780i \(-0.715331\pi\)
−0.626054 + 0.779780i \(0.715331\pi\)
\(8\) −7.21777 −0.318983
\(9\) −20.9833 −0.777161
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 19.1106 0.459731
\(13\) 75.6462 1.61388 0.806941 0.590631i \(-0.201121\pi\)
0.806941 + 0.590631i \(0.201121\pi\)
\(14\) −10.5994 −0.202343
\(15\) 0 0
\(16\) 59.0295 0.922337
\(17\) −40.8029 −0.582126 −0.291063 0.956704i \(-0.594009\pi\)
−0.291063 + 0.956704i \(0.594009\pi\)
\(18\) −9.59104 −0.125591
\(19\) 61.5212 0.742838 0.371419 0.928465i \(-0.378871\pi\)
0.371419 + 0.928465i \(0.378871\pi\)
\(20\) 0 0
\(21\) 56.8809 0.591068
\(22\) −5.02787 −0.0487247
\(23\) 86.3856 0.783159 0.391579 0.920144i \(-0.371929\pi\)
0.391579 + 0.920144i \(0.371929\pi\)
\(24\) 17.7044 0.150579
\(25\) 0 0
\(26\) 34.5763 0.260806
\(27\) 117.698 0.838924
\(28\) 180.670 1.21941
\(29\) −236.491 −1.51432 −0.757160 0.653229i \(-0.773414\pi\)
−0.757160 + 0.653229i \(0.773414\pi\)
\(30\) 0 0
\(31\) −237.800 −1.37775 −0.688874 0.724881i \(-0.741895\pi\)
−0.688874 + 0.724881i \(0.741895\pi\)
\(32\) 84.7233 0.468034
\(33\) 26.9818 0.142331
\(34\) −18.6501 −0.0940726
\(35\) 0 0
\(36\) 163.483 0.756865
\(37\) 251.864 1.11909 0.559543 0.828801i \(-0.310976\pi\)
0.559543 + 0.828801i \(0.310976\pi\)
\(38\) 28.1200 0.120044
\(39\) −185.552 −0.761847
\(40\) 0 0
\(41\) 446.841 1.70207 0.851035 0.525108i \(-0.175975\pi\)
0.851035 + 0.525108i \(0.175975\pi\)
\(42\) 25.9990 0.0955176
\(43\) 263.646 0.935015 0.467507 0.883989i \(-0.345152\pi\)
0.467507 + 0.883989i \(0.345152\pi\)
\(44\) 85.7019 0.293637
\(45\) 0 0
\(46\) 39.4850 0.126560
\(47\) 438.728 1.36160 0.680799 0.732471i \(-0.261633\pi\)
0.680799 + 0.732471i \(0.261633\pi\)
\(48\) −144.793 −0.435397
\(49\) 194.746 0.567773
\(50\) 0 0
\(51\) 100.085 0.274798
\(52\) −589.365 −1.57174
\(53\) 286.114 0.741525 0.370763 0.928728i \(-0.379096\pi\)
0.370763 + 0.928728i \(0.379096\pi\)
\(54\) 53.7971 0.135572
\(55\) 0 0
\(56\) 167.375 0.399401
\(57\) −150.905 −0.350663
\(58\) −108.095 −0.244717
\(59\) −529.452 −1.16828 −0.584142 0.811651i \(-0.698569\pi\)
−0.584142 + 0.811651i \(0.698569\pi\)
\(60\) 0 0
\(61\) 75.7253 0.158945 0.0794724 0.996837i \(-0.474676\pi\)
0.0794724 + 0.996837i \(0.474676\pi\)
\(62\) −108.693 −0.222646
\(63\) 486.590 0.973089
\(64\) −433.511 −0.846702
\(65\) 0 0
\(66\) 12.3328 0.0230009
\(67\) −384.462 −0.701037 −0.350518 0.936556i \(-0.613995\pi\)
−0.350518 + 0.936556i \(0.613995\pi\)
\(68\) 317.898 0.566924
\(69\) −211.894 −0.369697
\(70\) 0 0
\(71\) 7.15821 0.0119651 0.00598256 0.999982i \(-0.498096\pi\)
0.00598256 + 0.999982i \(0.498096\pi\)
\(72\) 151.453 0.247901
\(73\) −590.216 −0.946295 −0.473148 0.880983i \(-0.656882\pi\)
−0.473148 + 0.880983i \(0.656882\pi\)
\(74\) 115.122 0.180846
\(75\) 0 0
\(76\) −479.316 −0.723439
\(77\) 255.083 0.377525
\(78\) −84.8117 −0.123116
\(79\) −139.112 −0.198118 −0.0990589 0.995082i \(-0.531583\pi\)
−0.0990589 + 0.995082i \(0.531583\pi\)
\(80\) 0 0
\(81\) 277.851 0.381140
\(82\) 204.242 0.275058
\(83\) −719.121 −0.951009 −0.475505 0.879713i \(-0.657735\pi\)
−0.475505 + 0.879713i \(0.657735\pi\)
\(84\) −443.164 −0.575632
\(85\) 0 0
\(86\) 120.507 0.151100
\(87\) 580.086 0.714848
\(88\) 79.3954 0.0961770
\(89\) 1647.00 1.96159 0.980794 0.195046i \(-0.0624855\pi\)
0.980794 + 0.195046i \(0.0624855\pi\)
\(90\) 0 0
\(91\) −1754.19 −2.02075
\(92\) −673.037 −0.762706
\(93\) 583.297 0.650377
\(94\) 200.533 0.220036
\(95\) 0 0
\(96\) −207.817 −0.220940
\(97\) 939.129 0.983032 0.491516 0.870868i \(-0.336443\pi\)
0.491516 + 0.870868i \(0.336443\pi\)
\(98\) 89.0144 0.0917532
\(99\) 230.817 0.234323
\(100\) 0 0
\(101\) −611.529 −0.602470 −0.301235 0.953550i \(-0.597399\pi\)
−0.301235 + 0.953550i \(0.597399\pi\)
\(102\) 45.7467 0.0444078
\(103\) −1039.22 −0.994148 −0.497074 0.867708i \(-0.665592\pi\)
−0.497074 + 0.867708i \(0.665592\pi\)
\(104\) −545.996 −0.514801
\(105\) 0 0
\(106\) 130.777 0.119832
\(107\) −272.253 −0.245979 −0.122989 0.992408i \(-0.539248\pi\)
−0.122989 + 0.992408i \(0.539248\pi\)
\(108\) −916.993 −0.817015
\(109\) 1320.39 1.16028 0.580139 0.814517i \(-0.302998\pi\)
0.580139 + 0.814517i \(0.302998\pi\)
\(110\) 0 0
\(111\) −617.795 −0.528275
\(112\) −1368.86 −1.15486
\(113\) 904.125 0.752681 0.376341 0.926481i \(-0.377182\pi\)
0.376341 + 0.926481i \(0.377182\pi\)
\(114\) −68.9752 −0.0566677
\(115\) 0 0
\(116\) 1842.52 1.47477
\(117\) −1587.31 −1.25425
\(118\) −242.001 −0.188797
\(119\) 946.192 0.728885
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 34.6124 0.0256858
\(123\) −1096.05 −0.803477
\(124\) 1852.72 1.34177
\(125\) 0 0
\(126\) 222.410 0.157253
\(127\) 2059.56 1.43903 0.719514 0.694478i \(-0.244365\pi\)
0.719514 + 0.694478i \(0.244365\pi\)
\(128\) −875.935 −0.604863
\(129\) −646.694 −0.441382
\(130\) 0 0
\(131\) −1019.17 −0.679737 −0.339868 0.940473i \(-0.610383\pi\)
−0.339868 + 0.940473i \(0.610383\pi\)
\(132\) −210.217 −0.138614
\(133\) −1426.64 −0.930113
\(134\) −175.729 −0.113289
\(135\) 0 0
\(136\) 294.506 0.185689
\(137\) −1924.56 −1.20019 −0.600096 0.799928i \(-0.704871\pi\)
−0.600096 + 0.799928i \(0.704871\pi\)
\(138\) −96.8523 −0.0597436
\(139\) 814.169 0.496812 0.248406 0.968656i \(-0.420093\pi\)
0.248406 + 0.968656i \(0.420093\pi\)
\(140\) 0 0
\(141\) −1076.15 −0.642754
\(142\) 3.27186 0.00193358
\(143\) −832.108 −0.486604
\(144\) −1238.64 −0.716804
\(145\) 0 0
\(146\) −269.775 −0.152923
\(147\) −477.691 −0.268022
\(148\) −1962.29 −1.08986
\(149\) −629.177 −0.345934 −0.172967 0.984928i \(-0.555335\pi\)
−0.172967 + 0.984928i \(0.555335\pi\)
\(150\) 0 0
\(151\) 497.025 0.267863 0.133932 0.990991i \(-0.457240\pi\)
0.133932 + 0.990991i \(0.457240\pi\)
\(152\) −444.045 −0.236953
\(153\) 856.180 0.452406
\(154\) 116.593 0.0610086
\(155\) 0 0
\(156\) 1445.65 0.741951
\(157\) 1652.41 0.839977 0.419989 0.907529i \(-0.362034\pi\)
0.419989 + 0.907529i \(0.362034\pi\)
\(158\) −63.5851 −0.0320162
\(159\) −701.807 −0.350043
\(160\) 0 0
\(161\) −2003.23 −0.980599
\(162\) 127.000 0.0615928
\(163\) 1586.38 0.762299 0.381150 0.924513i \(-0.375528\pi\)
0.381150 + 0.924513i \(0.375528\pi\)
\(164\) −3481.38 −1.65762
\(165\) 0 0
\(166\) −328.695 −0.153685
\(167\) −259.897 −0.120428 −0.0602139 0.998185i \(-0.519178\pi\)
−0.0602139 + 0.998185i \(0.519178\pi\)
\(168\) −410.553 −0.188541
\(169\) 3525.35 1.60462
\(170\) 0 0
\(171\) −1290.92 −0.577305
\(172\) −2054.09 −0.910597
\(173\) −896.130 −0.393824 −0.196912 0.980421i \(-0.563091\pi\)
−0.196912 + 0.980421i \(0.563091\pi\)
\(174\) 265.145 0.115521
\(175\) 0 0
\(176\) −649.325 −0.278095
\(177\) 1298.69 0.551499
\(178\) 752.807 0.316996
\(179\) 3067.24 1.28076 0.640381 0.768057i \(-0.278776\pi\)
0.640381 + 0.768057i \(0.278776\pi\)
\(180\) 0 0
\(181\) 1011.00 0.415179 0.207589 0.978216i \(-0.433438\pi\)
0.207589 + 0.978216i \(0.433438\pi\)
\(182\) −801.801 −0.326557
\(183\) −185.746 −0.0750312
\(184\) −623.511 −0.249814
\(185\) 0 0
\(186\) 266.613 0.105102
\(187\) 448.832 0.175518
\(188\) −3418.17 −1.32604
\(189\) −2729.34 −1.05042
\(190\) 0 0
\(191\) 4659.09 1.76503 0.882514 0.470287i \(-0.155850\pi\)
0.882514 + 0.470287i \(0.155850\pi\)
\(192\) 1063.35 0.399693
\(193\) 4808.84 1.79351 0.896757 0.442524i \(-0.145917\pi\)
0.896757 + 0.442524i \(0.145917\pi\)
\(194\) 429.256 0.158860
\(195\) 0 0
\(196\) −1517.28 −0.552946
\(197\) 2661.39 0.962518 0.481259 0.876578i \(-0.340180\pi\)
0.481259 + 0.876578i \(0.340180\pi\)
\(198\) 105.501 0.0378670
\(199\) 745.497 0.265562 0.132781 0.991145i \(-0.457609\pi\)
0.132781 + 0.991145i \(0.457609\pi\)
\(200\) 0 0
\(201\) 943.041 0.330930
\(202\) −279.517 −0.0973601
\(203\) 5484.08 1.89609
\(204\) −779.769 −0.267621
\(205\) 0 0
\(206\) −475.005 −0.160656
\(207\) −1812.66 −0.608640
\(208\) 4465.36 1.48854
\(209\) −676.733 −0.223974
\(210\) 0 0
\(211\) −3149.89 −1.02771 −0.513856 0.857876i \(-0.671783\pi\)
−0.513856 + 0.857876i \(0.671783\pi\)
\(212\) −2229.14 −0.722160
\(213\) −17.5583 −0.00564823
\(214\) −124.441 −0.0397506
\(215\) 0 0
\(216\) −849.515 −0.267603
\(217\) 5514.43 1.72509
\(218\) 603.522 0.187503
\(219\) 1447.73 0.446707
\(220\) 0 0
\(221\) −3086.58 −0.939484
\(222\) −282.381 −0.0853701
\(223\) −2003.22 −0.601549 −0.300774 0.953695i \(-0.597245\pi\)
−0.300774 + 0.953695i \(0.597245\pi\)
\(224\) −1964.68 −0.586029
\(225\) 0 0
\(226\) 413.256 0.121635
\(227\) 957.035 0.279827 0.139913 0.990164i \(-0.455318\pi\)
0.139913 + 0.990164i \(0.455318\pi\)
\(228\) 1175.71 0.341505
\(229\) −3125.34 −0.901869 −0.450934 0.892557i \(-0.648909\pi\)
−0.450934 + 0.892557i \(0.648909\pi\)
\(230\) 0 0
\(231\) −625.690 −0.178214
\(232\) 1706.94 0.483043
\(233\) 834.501 0.234635 0.117318 0.993094i \(-0.462570\pi\)
0.117318 + 0.993094i \(0.462570\pi\)
\(234\) −725.525 −0.202688
\(235\) 0 0
\(236\) 4125.00 1.13777
\(237\) 341.226 0.0935232
\(238\) 432.484 0.117789
\(239\) −4590.83 −1.24249 −0.621247 0.783615i \(-0.713374\pi\)
−0.621247 + 0.783615i \(0.713374\pi\)
\(240\) 0 0
\(241\) 4922.60 1.31574 0.657869 0.753132i \(-0.271458\pi\)
0.657869 + 0.753132i \(0.271458\pi\)
\(242\) 55.3065 0.0146911
\(243\) −3859.38 −1.01884
\(244\) −589.982 −0.154794
\(245\) 0 0
\(246\) −500.982 −0.129843
\(247\) 4653.84 1.19885
\(248\) 1716.39 0.439478
\(249\) 1763.92 0.448932
\(250\) 0 0
\(251\) 4824.17 1.21314 0.606572 0.795029i \(-0.292544\pi\)
0.606572 + 0.795029i \(0.292544\pi\)
\(252\) −3791.06 −0.947677
\(253\) −950.242 −0.236131
\(254\) 941.382 0.232549
\(255\) 0 0
\(256\) 3067.72 0.748955
\(257\) 1571.39 0.381404 0.190702 0.981648i \(-0.438924\pi\)
0.190702 + 0.981648i \(0.438924\pi\)
\(258\) −295.590 −0.0713280
\(259\) −5840.57 −1.40122
\(260\) 0 0
\(261\) 4962.37 1.17687
\(262\) −465.842 −0.109847
\(263\) −749.271 −0.175673 −0.0878366 0.996135i \(-0.527995\pi\)
−0.0878366 + 0.996135i \(0.527995\pi\)
\(264\) −194.748 −0.0454012
\(265\) 0 0
\(266\) −652.085 −0.150308
\(267\) −4039.90 −0.925984
\(268\) 2995.37 0.682729
\(269\) 304.815 0.0690888 0.0345444 0.999403i \(-0.489002\pi\)
0.0345444 + 0.999403i \(0.489002\pi\)
\(270\) 0 0
\(271\) −4172.68 −0.935322 −0.467661 0.883908i \(-0.654903\pi\)
−0.467661 + 0.883908i \(0.654903\pi\)
\(272\) −2408.57 −0.536917
\(273\) 4302.82 0.953915
\(274\) −879.676 −0.193953
\(275\) 0 0
\(276\) 1650.88 0.360042
\(277\) 3788.49 0.821763 0.410881 0.911689i \(-0.365221\pi\)
0.410881 + 0.911689i \(0.365221\pi\)
\(278\) 372.139 0.0802857
\(279\) 4989.84 1.07073
\(280\) 0 0
\(281\) 8894.59 1.88828 0.944140 0.329543i \(-0.106895\pi\)
0.944140 + 0.329543i \(0.106895\pi\)
\(282\) −491.886 −0.103870
\(283\) 8365.30 1.75712 0.878560 0.477631i \(-0.158504\pi\)
0.878560 + 0.477631i \(0.158504\pi\)
\(284\) −55.7702 −0.0116526
\(285\) 0 0
\(286\) −380.339 −0.0786360
\(287\) −10362.0 −2.13118
\(288\) −1777.78 −0.363738
\(289\) −3248.13 −0.661129
\(290\) 0 0
\(291\) −2303.58 −0.464049
\(292\) 4598.42 0.921583
\(293\) −7094.63 −1.41458 −0.707291 0.706923i \(-0.750083\pi\)
−0.707291 + 0.706923i \(0.750083\pi\)
\(294\) −218.342 −0.0433129
\(295\) 0 0
\(296\) −1817.90 −0.356970
\(297\) −1294.68 −0.252945
\(298\) −287.583 −0.0559035
\(299\) 6534.74 1.26393
\(300\) 0 0
\(301\) −6113.78 −1.17074
\(302\) 227.180 0.0432872
\(303\) 1500.01 0.284401
\(304\) 3631.57 0.685147
\(305\) 0 0
\(306\) 391.342 0.0731096
\(307\) −167.179 −0.0310795 −0.0155397 0.999879i \(-0.504947\pi\)
−0.0155397 + 0.999879i \(0.504947\pi\)
\(308\) −1987.37 −0.367666
\(309\) 2549.09 0.469296
\(310\) 0 0
\(311\) −5182.66 −0.944956 −0.472478 0.881342i \(-0.656640\pi\)
−0.472478 + 0.881342i \(0.656640\pi\)
\(312\) 1339.27 0.243016
\(313\) 7854.87 1.41848 0.709239 0.704968i \(-0.249039\pi\)
0.709239 + 0.704968i \(0.249039\pi\)
\(314\) 755.280 0.135742
\(315\) 0 0
\(316\) 1083.83 0.192944
\(317\) 6898.30 1.22223 0.611115 0.791542i \(-0.290721\pi\)
0.611115 + 0.791542i \(0.290721\pi\)
\(318\) −320.781 −0.0565676
\(319\) 2601.40 0.456585
\(320\) 0 0
\(321\) 667.807 0.116116
\(322\) −915.632 −0.158466
\(323\) −2510.24 −0.432426
\(324\) −2164.76 −0.371186
\(325\) 0 0
\(326\) 725.100 0.123189
\(327\) −3238.77 −0.547719
\(328\) −3225.20 −0.542932
\(329\) −10173.8 −1.70487
\(330\) 0 0
\(331\) −11335.3 −1.88232 −0.941158 0.337967i \(-0.890261\pi\)
−0.941158 + 0.337967i \(0.890261\pi\)
\(332\) 5602.73 0.926174
\(333\) −5284.95 −0.869710
\(334\) −118.794 −0.0194614
\(335\) 0 0
\(336\) 3357.65 0.545164
\(337\) 5783.14 0.934801 0.467400 0.884046i \(-0.345191\pi\)
0.467400 + 0.884046i \(0.345191\pi\)
\(338\) 1611.36 0.259309
\(339\) −2217.72 −0.355310
\(340\) 0 0
\(341\) 2615.80 0.415407
\(342\) −590.052 −0.0932934
\(343\) 3437.91 0.541194
\(344\) −1902.94 −0.298254
\(345\) 0 0
\(346\) −409.602 −0.0636426
\(347\) 1737.90 0.268863 0.134432 0.990923i \(-0.457079\pi\)
0.134432 + 0.990923i \(0.457079\pi\)
\(348\) −4519.50 −0.696180
\(349\) 6935.84 1.06380 0.531901 0.846806i \(-0.321478\pi\)
0.531901 + 0.846806i \(0.321478\pi\)
\(350\) 0 0
\(351\) 8903.39 1.35392
\(352\) −931.956 −0.141118
\(353\) −11417.5 −1.72151 −0.860753 0.509023i \(-0.830007\pi\)
−0.860753 + 0.509023i \(0.830007\pi\)
\(354\) 593.602 0.0891231
\(355\) 0 0
\(356\) −12831.9 −1.91036
\(357\) −2320.90 −0.344076
\(358\) 1401.97 0.206973
\(359\) 8223.54 1.20897 0.604487 0.796615i \(-0.293378\pi\)
0.604487 + 0.796615i \(0.293378\pi\)
\(360\) 0 0
\(361\) −3074.15 −0.448192
\(362\) 462.108 0.0670936
\(363\) −296.799 −0.0429144
\(364\) 13667.0 1.96798
\(365\) 0 0
\(366\) −84.9004 −0.0121252
\(367\) 2235.51 0.317963 0.158982 0.987282i \(-0.449179\pi\)
0.158982 + 0.987282i \(0.449179\pi\)
\(368\) 5099.30 0.722336
\(369\) −9376.23 −1.32278
\(370\) 0 0
\(371\) −6634.81 −0.928470
\(372\) −4544.51 −0.633393
\(373\) 5243.63 0.727895 0.363947 0.931420i \(-0.381429\pi\)
0.363947 + 0.931420i \(0.381429\pi\)
\(374\) 205.151 0.0283640
\(375\) 0 0
\(376\) −3166.64 −0.434327
\(377\) −17889.7 −2.44394
\(378\) −1247.52 −0.169750
\(379\) −5262.50 −0.713237 −0.356618 0.934250i \(-0.616070\pi\)
−0.356618 + 0.934250i \(0.616070\pi\)
\(380\) 0 0
\(381\) −5051.87 −0.679305
\(382\) 2129.57 0.285231
\(383\) −12845.0 −1.71370 −0.856851 0.515564i \(-0.827582\pi\)
−0.856851 + 0.515564i \(0.827582\pi\)
\(384\) 2148.57 0.285531
\(385\) 0 0
\(386\) 2198.02 0.289835
\(387\) −5532.17 −0.726657
\(388\) −7316.83 −0.957360
\(389\) −12471.0 −1.62546 −0.812731 0.582640i \(-0.802020\pi\)
−0.812731 + 0.582640i \(0.802020\pi\)
\(390\) 0 0
\(391\) −3524.78 −0.455897
\(392\) −1405.63 −0.181110
\(393\) 2499.92 0.320876
\(394\) 1216.46 0.155545
\(395\) 0 0
\(396\) −1798.31 −0.228203
\(397\) −4136.07 −0.522880 −0.261440 0.965220i \(-0.584197\pi\)
−0.261440 + 0.965220i \(0.584197\pi\)
\(398\) 340.751 0.0429153
\(399\) 3499.38 0.439068
\(400\) 0 0
\(401\) 3334.81 0.415292 0.207646 0.978204i \(-0.433420\pi\)
0.207646 + 0.978204i \(0.433420\pi\)
\(402\) 431.044 0.0534789
\(403\) −17988.7 −2.22352
\(404\) 4764.47 0.586736
\(405\) 0 0
\(406\) 2506.65 0.306412
\(407\) −2770.51 −0.337417
\(408\) −722.389 −0.0876559
\(409\) 11146.6 1.34758 0.673792 0.738921i \(-0.264664\pi\)
0.673792 + 0.738921i \(0.264664\pi\)
\(410\) 0 0
\(411\) 4720.73 0.566561
\(412\) 8096.63 0.968186
\(413\) 12277.7 1.46282
\(414\) −828.528 −0.0983573
\(415\) 0 0
\(416\) 6408.99 0.755353
\(417\) −1997.06 −0.234524
\(418\) −309.320 −0.0361946
\(419\) 8914.70 1.03941 0.519703 0.854347i \(-0.326042\pi\)
0.519703 + 0.854347i \(0.326042\pi\)
\(420\) 0 0
\(421\) 619.364 0.0717006 0.0358503 0.999357i \(-0.488586\pi\)
0.0358503 + 0.999357i \(0.488586\pi\)
\(422\) −1439.75 −0.166080
\(423\) −9205.98 −1.05818
\(424\) −2065.11 −0.236534
\(425\) 0 0
\(426\) −8.02551 −0.000912764 0
\(427\) −1756.02 −0.199016
\(428\) 2121.15 0.239555
\(429\) 2041.07 0.229706
\(430\) 0 0
\(431\) 9544.05 1.06664 0.533319 0.845914i \(-0.320945\pi\)
0.533319 + 0.845914i \(0.320945\pi\)
\(432\) 6947.65 0.773770
\(433\) −2043.50 −0.226800 −0.113400 0.993549i \(-0.536174\pi\)
−0.113400 + 0.993549i \(0.536174\pi\)
\(434\) 2520.53 0.278777
\(435\) 0 0
\(436\) −10287.3 −1.12998
\(437\) 5314.54 0.581760
\(438\) 661.728 0.0721886
\(439\) −3972.17 −0.431848 −0.215924 0.976410i \(-0.569276\pi\)
−0.215924 + 0.976410i \(0.569276\pi\)
\(440\) 0 0
\(441\) −4086.43 −0.441251
\(442\) −1410.81 −0.151822
\(443\) −11124.2 −1.19306 −0.596532 0.802589i \(-0.703455\pi\)
−0.596532 + 0.802589i \(0.703455\pi\)
\(444\) 4813.29 0.514479
\(445\) 0 0
\(446\) −915.628 −0.0972113
\(447\) 1543.30 0.163301
\(448\) 10052.8 1.06016
\(449\) −7023.26 −0.738192 −0.369096 0.929391i \(-0.620333\pi\)
−0.369096 + 0.929391i \(0.620333\pi\)
\(450\) 0 0
\(451\) −4915.26 −0.513194
\(452\) −7044.11 −0.733025
\(453\) −1219.15 −0.126447
\(454\) 437.440 0.0452204
\(455\) 0 0
\(456\) 1089.19 0.111856
\(457\) −1723.31 −0.176396 −0.0881979 0.996103i \(-0.528111\pi\)
−0.0881979 + 0.996103i \(0.528111\pi\)
\(458\) −1428.52 −0.145744
\(459\) −4802.41 −0.488360
\(460\) 0 0
\(461\) 7282.40 0.735738 0.367869 0.929878i \(-0.380088\pi\)
0.367869 + 0.929878i \(0.380088\pi\)
\(462\) −285.989 −0.0287996
\(463\) −15632.3 −1.56910 −0.784550 0.620065i \(-0.787106\pi\)
−0.784550 + 0.620065i \(0.787106\pi\)
\(464\) −13960.0 −1.39671
\(465\) 0 0
\(466\) 381.433 0.0379174
\(467\) −7075.86 −0.701139 −0.350569 0.936537i \(-0.614012\pi\)
−0.350569 + 0.936537i \(0.614012\pi\)
\(468\) 12366.9 1.22149
\(469\) 8915.42 0.877773
\(470\) 0 0
\(471\) −4053.17 −0.396518
\(472\) 3821.46 0.372663
\(473\) −2900.11 −0.281918
\(474\) 155.967 0.0151135
\(475\) 0 0
\(476\) −7371.86 −0.709850
\(477\) −6003.64 −0.576284
\(478\) −2098.37 −0.200789
\(479\) −4240.40 −0.404486 −0.202243 0.979335i \(-0.564823\pi\)
−0.202243 + 0.979335i \(0.564823\pi\)
\(480\) 0 0
\(481\) 19052.6 1.80608
\(482\) 2250.02 0.212626
\(483\) 4913.69 0.462900
\(484\) −942.721 −0.0885350
\(485\) 0 0
\(486\) −1764.04 −0.164647
\(487\) 19796.8 1.84205 0.921026 0.389502i \(-0.127353\pi\)
0.921026 + 0.389502i \(0.127353\pi\)
\(488\) −546.568 −0.0507007
\(489\) −3891.21 −0.359850
\(490\) 0 0
\(491\) −7113.02 −0.653780 −0.326890 0.945062i \(-0.606001\pi\)
−0.326890 + 0.945062i \(0.606001\pi\)
\(492\) 8539.43 0.782494
\(493\) 9649.52 0.881526
\(494\) 2127.17 0.193737
\(495\) 0 0
\(496\) −14037.2 −1.27075
\(497\) −165.994 −0.0149816
\(498\) 806.251 0.0725482
\(499\) 7116.10 0.638398 0.319199 0.947688i \(-0.396586\pi\)
0.319199 + 0.947688i \(0.396586\pi\)
\(500\) 0 0
\(501\) 637.499 0.0568490
\(502\) 2205.03 0.196046
\(503\) 759.231 0.0673010 0.0336505 0.999434i \(-0.489287\pi\)
0.0336505 + 0.999434i \(0.489287\pi\)
\(504\) −3512.09 −0.310399
\(505\) 0 0
\(506\) −434.335 −0.0381592
\(507\) −8647.28 −0.757473
\(508\) −16046.2 −1.40145
\(509\) 4259.50 0.370922 0.185461 0.982652i \(-0.440622\pi\)
0.185461 + 0.982652i \(0.440622\pi\)
\(510\) 0 0
\(511\) 13686.7 1.18486
\(512\) 8409.67 0.725895
\(513\) 7240.90 0.623185
\(514\) 718.251 0.0616356
\(515\) 0 0
\(516\) 5038.45 0.429855
\(517\) −4826.01 −0.410537
\(518\) −2669.60 −0.226439
\(519\) 2198.11 0.185908
\(520\) 0 0
\(521\) −6037.10 −0.507659 −0.253829 0.967249i \(-0.581690\pi\)
−0.253829 + 0.967249i \(0.581690\pi\)
\(522\) 2268.20 0.190184
\(523\) 20359.6 1.70222 0.851110 0.524987i \(-0.175930\pi\)
0.851110 + 0.524987i \(0.175930\pi\)
\(524\) 7940.45 0.661985
\(525\) 0 0
\(526\) −342.476 −0.0283891
\(527\) 9702.93 0.802023
\(528\) 1592.72 0.131277
\(529\) −4704.52 −0.386663
\(530\) 0 0
\(531\) 11109.7 0.907945
\(532\) 11115.0 0.905823
\(533\) 33801.8 2.74694
\(534\) −1846.55 −0.149641
\(535\) 0 0
\(536\) 2774.95 0.223619
\(537\) −7523.60 −0.604595
\(538\) 139.324 0.0111649
\(539\) −2142.21 −0.171190
\(540\) 0 0
\(541\) 9521.19 0.756650 0.378325 0.925673i \(-0.376500\pi\)
0.378325 + 0.925673i \(0.376500\pi\)
\(542\) −1907.24 −0.151150
\(543\) −2479.88 −0.195989
\(544\) −3456.95 −0.272455
\(545\) 0 0
\(546\) 1966.73 0.154154
\(547\) 408.097 0.0318994 0.0159497 0.999873i \(-0.494923\pi\)
0.0159497 + 0.999873i \(0.494923\pi\)
\(548\) 14994.4 1.16885
\(549\) −1588.97 −0.123526
\(550\) 0 0
\(551\) −14549.2 −1.12490
\(552\) 1529.40 0.117927
\(553\) 3225.92 0.248065
\(554\) 1731.64 0.132798
\(555\) 0 0
\(556\) −6343.25 −0.483838
\(557\) −21981.3 −1.67213 −0.836067 0.548627i \(-0.815151\pi\)
−0.836067 + 0.548627i \(0.815151\pi\)
\(558\) 2280.75 0.173032
\(559\) 19943.8 1.50900
\(560\) 0 0
\(561\) −1100.93 −0.0828546
\(562\) 4065.53 0.305149
\(563\) 6384.70 0.477945 0.238973 0.971026i \(-0.423189\pi\)
0.238973 + 0.971026i \(0.423189\pi\)
\(564\) 8384.38 0.625968
\(565\) 0 0
\(566\) 3823.60 0.283954
\(567\) −6443.18 −0.477228
\(568\) −51.6663 −0.00381667
\(569\) −25115.1 −1.85040 −0.925202 0.379475i \(-0.876104\pi\)
−0.925202 + 0.379475i \(0.876104\pi\)
\(570\) 0 0
\(571\) −11128.6 −0.815616 −0.407808 0.913068i \(-0.633707\pi\)
−0.407808 + 0.913068i \(0.633707\pi\)
\(572\) 6483.02 0.473896
\(573\) −11428.2 −0.833196
\(574\) −4736.23 −0.344402
\(575\) 0 0
\(576\) 9096.51 0.658023
\(577\) 1957.55 0.141237 0.0706185 0.997503i \(-0.477503\pi\)
0.0706185 + 0.997503i \(0.477503\pi\)
\(578\) −1484.65 −0.106840
\(579\) −11795.6 −0.846643
\(580\) 0 0
\(581\) 16675.9 1.19077
\(582\) −1052.92 −0.0749911
\(583\) −3147.26 −0.223578
\(584\) 4260.04 0.301852
\(585\) 0 0
\(586\) −3242.80 −0.228599
\(587\) −26875.7 −1.88974 −0.944870 0.327447i \(-0.893812\pi\)
−0.944870 + 0.327447i \(0.893812\pi\)
\(588\) 3721.73 0.261023
\(589\) −14629.7 −1.02344
\(590\) 0 0
\(591\) −6528.09 −0.454365
\(592\) 14867.4 1.03217
\(593\) 18231.3 1.26251 0.631255 0.775575i \(-0.282540\pi\)
0.631255 + 0.775575i \(0.282540\pi\)
\(594\) −591.768 −0.0408764
\(595\) 0 0
\(596\) 4901.96 0.336900
\(597\) −1828.62 −0.125361
\(598\) 2986.89 0.204253
\(599\) −24200.0 −1.65073 −0.825364 0.564601i \(-0.809030\pi\)
−0.825364 + 0.564601i \(0.809030\pi\)
\(600\) 0 0
\(601\) −92.5601 −0.00628221 −0.00314110 0.999995i \(-0.501000\pi\)
−0.00314110 + 0.999995i \(0.501000\pi\)
\(602\) −2794.48 −0.189193
\(603\) 8067.29 0.544818
\(604\) −3872.36 −0.260868
\(605\) 0 0
\(606\) 685.624 0.0459597
\(607\) 6711.75 0.448800 0.224400 0.974497i \(-0.427958\pi\)
0.224400 + 0.974497i \(0.427958\pi\)
\(608\) 5212.27 0.347674
\(609\) −13451.8 −0.895067
\(610\) 0 0
\(611\) 33188.1 2.19746
\(612\) −6670.57 −0.440591
\(613\) −1130.01 −0.0744549 −0.0372274 0.999307i \(-0.511853\pi\)
−0.0372274 + 0.999307i \(0.511853\pi\)
\(614\) −76.4139 −0.00502250
\(615\) 0 0
\(616\) −1841.13 −0.120424
\(617\) 19798.5 1.29183 0.645913 0.763411i \(-0.276477\pi\)
0.645913 + 0.763411i \(0.276477\pi\)
\(618\) 1165.13 0.0758390
\(619\) 7620.34 0.494810 0.247405 0.968912i \(-0.420422\pi\)
0.247405 + 0.968912i \(0.420422\pi\)
\(620\) 0 0
\(621\) 10167.4 0.657010
\(622\) −2368.88 −0.152707
\(623\) −38192.8 −2.45612
\(624\) −10953.0 −0.702680
\(625\) 0 0
\(626\) 3590.30 0.229229
\(627\) 1659.95 0.105729
\(628\) −12874.0 −0.818041
\(629\) −10276.8 −0.651450
\(630\) 0 0
\(631\) 7542.23 0.475834 0.237917 0.971285i \(-0.423535\pi\)
0.237917 + 0.971285i \(0.423535\pi\)
\(632\) 1004.08 0.0631963
\(633\) 7726.32 0.485140
\(634\) 3153.06 0.197515
\(635\) 0 0
\(636\) 5467.83 0.340902
\(637\) 14731.8 0.916320
\(638\) 1189.05 0.0737849
\(639\) −150.203 −0.00929881
\(640\) 0 0
\(641\) −27329.5 −1.68401 −0.842005 0.539470i \(-0.818625\pi\)
−0.842005 + 0.539470i \(0.818625\pi\)
\(642\) 305.240 0.0187646
\(643\) −8792.26 −0.539243 −0.269621 0.962966i \(-0.586899\pi\)
−0.269621 + 0.962966i \(0.586899\pi\)
\(644\) 15607.3 0.954990
\(645\) 0 0
\(646\) −1147.38 −0.0698807
\(647\) 8420.01 0.511630 0.255815 0.966726i \(-0.417656\pi\)
0.255815 + 0.966726i \(0.417656\pi\)
\(648\) −2005.46 −0.121577
\(649\) 5823.97 0.352251
\(650\) 0 0
\(651\) −13526.3 −0.814343
\(652\) −12359.6 −0.742392
\(653\) 23596.6 1.41410 0.707050 0.707164i \(-0.250026\pi\)
0.707050 + 0.707164i \(0.250026\pi\)
\(654\) −1480.37 −0.0885124
\(655\) 0 0
\(656\) 26376.8 1.56988
\(657\) 12384.7 0.735424
\(658\) −4650.24 −0.275509
\(659\) −804.250 −0.0475404 −0.0237702 0.999717i \(-0.507567\pi\)
−0.0237702 + 0.999717i \(0.507567\pi\)
\(660\) 0 0
\(661\) 17912.6 1.05404 0.527019 0.849854i \(-0.323310\pi\)
0.527019 + 0.849854i \(0.323310\pi\)
\(662\) −5181.14 −0.304186
\(663\) 7571.04 0.443491
\(664\) 5190.45 0.303356
\(665\) 0 0
\(666\) −2415.64 −0.140547
\(667\) −20429.4 −1.18595
\(668\) 2024.88 0.117283
\(669\) 4913.67 0.283966
\(670\) 0 0
\(671\) −832.978 −0.0479237
\(672\) 4819.14 0.276640
\(673\) 942.349 0.0539746 0.0269873 0.999636i \(-0.491409\pi\)
0.0269873 + 0.999636i \(0.491409\pi\)
\(674\) 2643.35 0.151065
\(675\) 0 0
\(676\) −27466.2 −1.56271
\(677\) 13681.1 0.776673 0.388336 0.921518i \(-0.373050\pi\)
0.388336 + 0.921518i \(0.373050\pi\)
\(678\) −1013.67 −0.0574186
\(679\) −21777.8 −1.23086
\(680\) 0 0
\(681\) −2347.50 −0.132094
\(682\) 1195.63 0.0671304
\(683\) −7909.32 −0.443107 −0.221553 0.975148i \(-0.571113\pi\)
−0.221553 + 0.975148i \(0.571113\pi\)
\(684\) 10057.7 0.562228
\(685\) 0 0
\(686\) 1571.39 0.0874579
\(687\) 7666.10 0.425735
\(688\) 15562.9 0.862399
\(689\) 21643.5 1.19674
\(690\) 0 0
\(691\) −11314.6 −0.622903 −0.311452 0.950262i \(-0.600815\pi\)
−0.311452 + 0.950262i \(0.600815\pi\)
\(692\) 6981.82 0.383539
\(693\) −5352.49 −0.293397
\(694\) 794.358 0.0434487
\(695\) 0 0
\(696\) −4186.93 −0.228024
\(697\) −18232.4 −0.990820
\(698\) 3170.23 0.171912
\(699\) −2046.94 −0.110762
\(700\) 0 0
\(701\) −5833.23 −0.314291 −0.157146 0.987575i \(-0.550229\pi\)
−0.157146 + 0.987575i \(0.550229\pi\)
\(702\) 4069.55 0.218797
\(703\) 15495.0 0.831300
\(704\) 4768.62 0.255290
\(705\) 0 0
\(706\) −5218.69 −0.278198
\(707\) 14181.0 0.754357
\(708\) −10118.2 −0.537096
\(709\) 31717.5 1.68008 0.840038 0.542527i \(-0.182532\pi\)
0.840038 + 0.542527i \(0.182532\pi\)
\(710\) 0 0
\(711\) 2919.03 0.153969
\(712\) −11887.6 −0.625714
\(713\) −20542.5 −1.07899
\(714\) −1060.84 −0.0556033
\(715\) 0 0
\(716\) −23897.1 −1.24731
\(717\) 11260.8 0.586530
\(718\) 3758.80 0.195372
\(719\) 20176.6 1.04654 0.523269 0.852167i \(-0.324712\pi\)
0.523269 + 0.852167i \(0.324712\pi\)
\(720\) 0 0
\(721\) 24098.8 1.24478
\(722\) −1405.13 −0.0724285
\(723\) −12074.6 −0.621105
\(724\) −7876.81 −0.404336
\(725\) 0 0
\(726\) −135.661 −0.00693504
\(727\) −23555.4 −1.20168 −0.600839 0.799370i \(-0.705167\pi\)
−0.600839 + 0.799370i \(0.705167\pi\)
\(728\) 12661.3 0.644587
\(729\) 1964.65 0.0998144
\(730\) 0 0
\(731\) −10757.5 −0.544297
\(732\) 1447.16 0.0730718
\(733\) 32919.2 1.65880 0.829399 0.558656i \(-0.188683\pi\)
0.829399 + 0.558656i \(0.188683\pi\)
\(734\) 1021.80 0.0513834
\(735\) 0 0
\(736\) 7318.87 0.366545
\(737\) 4229.08 0.211370
\(738\) −4285.67 −0.213764
\(739\) 7979.80 0.397215 0.198607 0.980079i \(-0.436358\pi\)
0.198607 + 0.980079i \(0.436358\pi\)
\(740\) 0 0
\(741\) −11415.4 −0.565929
\(742\) −3032.63 −0.150042
\(743\) −36491.6 −1.80181 −0.900907 0.434013i \(-0.857097\pi\)
−0.900907 + 0.434013i \(0.857097\pi\)
\(744\) −4210.10 −0.207459
\(745\) 0 0
\(746\) 2396.75 0.117629
\(747\) 15089.6 0.739087
\(748\) −3496.88 −0.170934
\(749\) 6313.38 0.307992
\(750\) 0 0
\(751\) −8064.10 −0.391828 −0.195914 0.980621i \(-0.562767\pi\)
−0.195914 + 0.980621i \(0.562767\pi\)
\(752\) 25897.9 1.25585
\(753\) −11833.2 −0.572675
\(754\) −8176.98 −0.394944
\(755\) 0 0
\(756\) 21264.5 1.02299
\(757\) −164.260 −0.00788659 −0.00394329 0.999992i \(-0.501255\pi\)
−0.00394329 + 0.999992i \(0.501255\pi\)
\(758\) −2405.38 −0.115260
\(759\) 2330.84 0.111468
\(760\) 0 0
\(761\) 6387.72 0.304277 0.152138 0.988359i \(-0.451384\pi\)
0.152138 + 0.988359i \(0.451384\pi\)
\(762\) −2309.10 −0.109777
\(763\) −30619.0 −1.45279
\(764\) −36299.4 −1.71893
\(765\) 0 0
\(766\) −5871.17 −0.276937
\(767\) −40051.0 −1.88547
\(768\) −7524.77 −0.353550
\(769\) −4920.10 −0.230719 −0.115360 0.993324i \(-0.536802\pi\)
−0.115360 + 0.993324i \(0.536802\pi\)
\(770\) 0 0
\(771\) −3854.46 −0.180045
\(772\) −37466.1 −1.74668
\(773\) −25930.2 −1.20653 −0.603264 0.797542i \(-0.706133\pi\)
−0.603264 + 0.797542i \(0.706133\pi\)
\(774\) −2528.64 −0.117429
\(775\) 0 0
\(776\) −6778.41 −0.313571
\(777\) 14326.3 0.661457
\(778\) −5700.22 −0.262677
\(779\) 27490.2 1.26436
\(780\) 0 0
\(781\) −78.7403 −0.00360762
\(782\) −1611.10 −0.0736738
\(783\) −27834.5 −1.27040
\(784\) 11495.8 0.523678
\(785\) 0 0
\(786\) 1142.66 0.0518540
\(787\) 876.332 0.0396923 0.0198462 0.999803i \(-0.493682\pi\)
0.0198462 + 0.999803i \(0.493682\pi\)
\(788\) −20735.1 −0.937382
\(789\) 1837.88 0.0829280
\(790\) 0 0
\(791\) −20966.1 −0.942438
\(792\) −1665.98 −0.0747450
\(793\) 5728.33 0.256518
\(794\) −1890.51 −0.0844983
\(795\) 0 0
\(796\) −5808.22 −0.258627
\(797\) 20900.9 0.928917 0.464458 0.885595i \(-0.346249\pi\)
0.464458 + 0.885595i \(0.346249\pi\)
\(798\) 1599.49 0.0709541
\(799\) −17901.4 −0.792622
\(800\) 0 0
\(801\) −34559.5 −1.52447
\(802\) 1524.27 0.0671120
\(803\) 6492.38 0.285319
\(804\) −7347.31 −0.322288
\(805\) 0 0
\(806\) −8222.24 −0.359325
\(807\) −747.676 −0.0326139
\(808\) 4413.87 0.192178
\(809\) 7164.89 0.311377 0.155689 0.987806i \(-0.450240\pi\)
0.155689 + 0.987806i \(0.450240\pi\)
\(810\) 0 0
\(811\) −4229.19 −0.183116 −0.0915580 0.995800i \(-0.529185\pi\)
−0.0915580 + 0.995800i \(0.529185\pi\)
\(812\) −42726.9 −1.84658
\(813\) 10235.1 0.441527
\(814\) −1266.34 −0.0545272
\(815\) 0 0
\(816\) 5907.96 0.253456
\(817\) 16219.8 0.694565
\(818\) 5094.85 0.217772
\(819\) 36808.7 1.57045
\(820\) 0 0
\(821\) −31556.0 −1.34143 −0.670713 0.741717i \(-0.734012\pi\)
−0.670713 + 0.741717i \(0.734012\pi\)
\(822\) 2157.75 0.0915572
\(823\) 36827.7 1.55982 0.779910 0.625891i \(-0.215265\pi\)
0.779910 + 0.625891i \(0.215265\pi\)
\(824\) 7500.83 0.317116
\(825\) 0 0
\(826\) 5611.85 0.236394
\(827\) −1188.45 −0.0499714 −0.0249857 0.999688i \(-0.507954\pi\)
−0.0249857 + 0.999688i \(0.507954\pi\)
\(828\) 14122.6 0.592745
\(829\) −37008.8 −1.55051 −0.775253 0.631651i \(-0.782378\pi\)
−0.775253 + 0.631651i \(0.782378\pi\)
\(830\) 0 0
\(831\) −9292.74 −0.387920
\(832\) −32793.5 −1.36648
\(833\) −7946.21 −0.330516
\(834\) −912.815 −0.0378995
\(835\) 0 0
\(836\) 5272.48 0.218125
\(837\) −27988.5 −1.15583
\(838\) 4074.72 0.167970
\(839\) −11427.0 −0.470206 −0.235103 0.971970i \(-0.575543\pi\)
−0.235103 + 0.971970i \(0.575543\pi\)
\(840\) 0 0
\(841\) 31539.1 1.29317
\(842\) 283.098 0.0115869
\(843\) −21817.4 −0.891379
\(844\) 24541.0 1.00087
\(845\) 0 0
\(846\) −4207.86 −0.171004
\(847\) −2805.91 −0.113828
\(848\) 16889.2 0.683936
\(849\) −20519.1 −0.829464
\(850\) 0 0
\(851\) 21757.4 0.876423
\(852\) 136.798 0.00550073
\(853\) 5084.37 0.204086 0.102043 0.994780i \(-0.467462\pi\)
0.102043 + 0.994780i \(0.467462\pi\)
\(854\) −802.640 −0.0321613
\(855\) 0 0
\(856\) 1965.06 0.0784631
\(857\) −36268.5 −1.44563 −0.722816 0.691040i \(-0.757153\pi\)
−0.722816 + 0.691040i \(0.757153\pi\)
\(858\) 932.929 0.0371208
\(859\) 36158.6 1.43622 0.718111 0.695928i \(-0.245007\pi\)
0.718111 + 0.695928i \(0.245007\pi\)
\(860\) 0 0
\(861\) 25416.7 1.00604
\(862\) 4362.38 0.172370
\(863\) −5105.14 −0.201368 −0.100684 0.994918i \(-0.532103\pi\)
−0.100684 + 0.994918i \(0.532103\pi\)
\(864\) 9971.74 0.392645
\(865\) 0 0
\(866\) −934.039 −0.0366512
\(867\) 7967.29 0.312091
\(868\) −42963.4 −1.68004
\(869\) 1530.23 0.0597348
\(870\) 0 0
\(871\) −29083.0 −1.13139
\(872\) −9530.26 −0.370109
\(873\) −19706.1 −0.763974
\(874\) 2429.16 0.0940134
\(875\) 0 0
\(876\) −11279.4 −0.435041
\(877\) 33922.6 1.30614 0.653071 0.757297i \(-0.273480\pi\)
0.653071 + 0.757297i \(0.273480\pi\)
\(878\) −1815.59 −0.0697874
\(879\) 17402.3 0.667765
\(880\) 0 0
\(881\) 12610.2 0.482235 0.241117 0.970496i \(-0.422486\pi\)
0.241117 + 0.970496i \(0.422486\pi\)
\(882\) −1867.82 −0.0713070
\(883\) −40762.8 −1.55354 −0.776771 0.629783i \(-0.783144\pi\)
−0.776771 + 0.629783i \(0.783144\pi\)
\(884\) 24047.8 0.914949
\(885\) 0 0
\(886\) −5084.64 −0.192801
\(887\) 29954.3 1.13390 0.566949 0.823753i \(-0.308123\pi\)
0.566949 + 0.823753i \(0.308123\pi\)
\(888\) 4459.10 0.168511
\(889\) −47759.9 −1.80182
\(890\) 0 0
\(891\) −3056.36 −0.114918
\(892\) 15607.2 0.585839
\(893\) 26991.1 1.01145
\(894\) 705.409 0.0263897
\(895\) 0 0
\(896\) 20312.4 0.757353
\(897\) −16029.0 −0.596647
\(898\) −3210.18 −0.119293
\(899\) 56237.6 2.08635
\(900\) 0 0
\(901\) −11674.3 −0.431662
\(902\) −2246.66 −0.0829330
\(903\) 14996.4 0.552657
\(904\) −6525.76 −0.240093
\(905\) 0 0
\(906\) −557.246 −0.0204341
\(907\) −29053.0 −1.06360 −0.531802 0.846869i \(-0.678485\pi\)
−0.531802 + 0.846869i \(0.678485\pi\)
\(908\) −7456.33 −0.272519
\(909\) 12831.9 0.468216
\(910\) 0 0
\(911\) −3562.14 −0.129549 −0.0647744 0.997900i \(-0.520633\pi\)
−0.0647744 + 0.997900i \(0.520633\pi\)
\(912\) −8907.83 −0.323429
\(913\) 7910.33 0.286740
\(914\) −787.687 −0.0285059
\(915\) 0 0
\(916\) 24349.7 0.878317
\(917\) 23634.0 0.851104
\(918\) −2195.08 −0.0789198
\(919\) 2936.50 0.105404 0.0527020 0.998610i \(-0.483217\pi\)
0.0527020 + 0.998610i \(0.483217\pi\)
\(920\) 0 0
\(921\) 410.071 0.0146713
\(922\) 3328.63 0.118896
\(923\) 541.491 0.0193103
\(924\) 4874.80 0.173560
\(925\) 0 0
\(926\) −7145.18 −0.253569
\(927\) 21806.3 0.772613
\(928\) −20036.3 −0.708754
\(929\) −16941.3 −0.598306 −0.299153 0.954205i \(-0.596704\pi\)
−0.299153 + 0.954205i \(0.596704\pi\)
\(930\) 0 0
\(931\) 11981.0 0.421764
\(932\) −6501.66 −0.228508
\(933\) 12712.5 0.446075
\(934\) −3234.22 −0.113305
\(935\) 0 0
\(936\) 11456.8 0.400084
\(937\) 19863.3 0.692537 0.346269 0.938135i \(-0.387449\pi\)
0.346269 + 0.938135i \(0.387449\pi\)
\(938\) 4075.05 0.141850
\(939\) −19267.1 −0.669605
\(940\) 0 0
\(941\) −39408.8 −1.36524 −0.682620 0.730773i \(-0.739160\pi\)
−0.682620 + 0.730773i \(0.739160\pi\)
\(942\) −1852.62 −0.0640781
\(943\) 38600.7 1.33299
\(944\) −31253.3 −1.07755
\(945\) 0 0
\(946\) −1325.58 −0.0455584
\(947\) 40190.4 1.37910 0.689552 0.724236i \(-0.257807\pi\)
0.689552 + 0.724236i \(0.257807\pi\)
\(948\) −2658.52 −0.0910809
\(949\) −44647.6 −1.52721
\(950\) 0 0
\(951\) −16920.8 −0.576964
\(952\) −6829.39 −0.232502
\(953\) 43114.9 1.46551 0.732754 0.680493i \(-0.238235\pi\)
0.732754 + 0.680493i \(0.238235\pi\)
\(954\) −2744.13 −0.0931286
\(955\) 0 0
\(956\) 35767.5 1.21005
\(957\) −6380.95 −0.215535
\(958\) −1938.20 −0.0653657
\(959\) 44629.3 1.50277
\(960\) 0 0
\(961\) 26757.9 0.898188
\(962\) 8708.52 0.291865
\(963\) 5712.78 0.191165
\(964\) −38352.4 −1.28138
\(965\) 0 0
\(966\) 2245.94 0.0748054
\(967\) −15536.2 −0.516659 −0.258330 0.966057i \(-0.583172\pi\)
−0.258330 + 0.966057i \(0.583172\pi\)
\(968\) −873.350 −0.0289985
\(969\) 6157.34 0.204130
\(970\) 0 0
\(971\) −18466.6 −0.610320 −0.305160 0.952301i \(-0.598710\pi\)
−0.305160 + 0.952301i \(0.598710\pi\)
\(972\) 30068.7 0.992237
\(973\) −18880.0 −0.622062
\(974\) 9048.70 0.297679
\(975\) 0 0
\(976\) 4470.03 0.146601
\(977\) 13352.4 0.437236 0.218618 0.975810i \(-0.429845\pi\)
0.218618 + 0.975810i \(0.429845\pi\)
\(978\) −1778.59 −0.0581524
\(979\) −18117.0 −0.591441
\(980\) 0 0
\(981\) −27706.2 −0.901723
\(982\) −3251.21 −0.105652
\(983\) 9970.61 0.323513 0.161756 0.986831i \(-0.448284\pi\)
0.161756 + 0.986831i \(0.448284\pi\)
\(984\) 7911.05 0.256296
\(985\) 0 0
\(986\) 4410.59 0.142456
\(987\) 24955.3 0.804797
\(988\) −36258.4 −1.16755
\(989\) 22775.2 0.732265
\(990\) 0 0
\(991\) 36094.5 1.15699 0.578496 0.815685i \(-0.303640\pi\)
0.578496 + 0.815685i \(0.303640\pi\)
\(992\) −20147.2 −0.644833
\(993\) 27804.3 0.888563
\(994\) −75.8724 −0.00242105
\(995\) 0 0
\(996\) −13742.9 −0.437208
\(997\) 51210.1 1.62672 0.813360 0.581760i \(-0.197636\pi\)
0.813360 + 0.581760i \(0.197636\pi\)
\(998\) 3252.62 0.103166
\(999\) 29643.9 0.938829
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.4.a.h.1.3 yes 5
3.2 odd 2 2475.4.a.bh.1.3 5
5.2 odd 4 275.4.b.f.199.6 10
5.3 odd 4 275.4.b.f.199.5 10
5.4 even 2 275.4.a.g.1.3 5
15.14 odd 2 2475.4.a.bl.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.4.a.g.1.3 5 5.4 even 2
275.4.a.h.1.3 yes 5 1.1 even 1 trivial
275.4.b.f.199.5 10 5.3 odd 4
275.4.b.f.199.6 10 5.2 odd 4
2475.4.a.bh.1.3 5 3.2 odd 2
2475.4.a.bl.1.3 5 15.14 odd 2