Properties

Label 246.2.d.b.163.4
Level $246$
Weight $2$
Character 246.163
Analytic conductor $1.964$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [246,2,Mod(163,246)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("246.163"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(246, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 246 = 2 \cdot 3 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 246.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.96431988972\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{57})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 29x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 163.4
Root \(-3.27492i\) of defining polynomial
Character \(\chi\) \(=\) 246.163
Dual form 246.2.d.b.163.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000i q^{3} +1.00000 q^{4} +4.27492 q^{5} -1.00000i q^{6} -2.00000i q^{7} -1.00000 q^{8} -1.00000 q^{9} -4.27492 q^{10} -4.00000i q^{11} +1.00000i q^{12} +4.27492i q^{13} +2.00000i q^{14} +4.27492i q^{15} +1.00000 q^{16} -6.27492i q^{17} +1.00000 q^{18} +6.27492i q^{19} +4.27492 q^{20} +2.00000 q^{21} +4.00000i q^{22} -1.00000i q^{24} +13.2749 q^{25} -4.27492i q^{26} -1.00000i q^{27} -2.00000i q^{28} +6.54983i q^{29} -4.27492i q^{30} -1.72508 q^{31} -1.00000 q^{32} +4.00000 q^{33} +6.27492i q^{34} -8.54983i q^{35} -1.00000 q^{36} -6.00000 q^{37} -6.27492i q^{38} -4.27492 q^{39} -4.27492 q^{40} +(1.27492 + 6.27492i) q^{41} -2.00000 q^{42} -12.5498 q^{43} -4.00000i q^{44} -4.27492 q^{45} -2.54983i q^{47} +1.00000i q^{48} +3.00000 q^{49} -13.2749 q^{50} +6.27492 q^{51} +4.27492i q^{52} -2.00000i q^{53} +1.00000i q^{54} -17.0997i q^{55} +2.00000i q^{56} -6.27492 q^{57} -6.54983i q^{58} -2.27492 q^{59} +4.27492i q^{60} -6.54983 q^{61} +1.72508 q^{62} +2.00000i q^{63} +1.00000 q^{64} +18.2749i q^{65} -4.00000 q^{66} +1.72508i q^{67} -6.27492i q^{68} +8.54983i q^{70} -3.72508i q^{71} +1.00000 q^{72} +0.274917 q^{73} +6.00000 q^{74} +13.2749i q^{75} +6.27492i q^{76} -8.00000 q^{77} +4.27492 q^{78} -6.54983i q^{79} +4.27492 q^{80} +1.00000 q^{81} +(-1.27492 - 6.27492i) q^{82} -6.27492 q^{83} +2.00000 q^{84} -26.8248i q^{85} +12.5498 q^{86} -6.54983 q^{87} +4.00000i q^{88} -14.8248i q^{89} +4.27492 q^{90} +8.54983 q^{91} -1.72508i q^{93} +2.54983i q^{94} +26.8248i q^{95} -1.00000i q^{96} +0.549834i q^{97} -3.00000 q^{98} +4.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} + 2 q^{5} - 4 q^{8} - 4 q^{9} - 2 q^{10} + 4 q^{16} + 4 q^{18} + 2 q^{20} + 8 q^{21} + 38 q^{25} - 22 q^{31} - 4 q^{32} + 16 q^{33} - 4 q^{36} - 24 q^{37} - 2 q^{39} - 2 q^{40} - 10 q^{41}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/246\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(211\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000i 0.577350i
\(4\) 1.00000 0.500000
\(5\) 4.27492 1.91180 0.955901 0.293691i \(-0.0948835\pi\)
0.955901 + 0.293691i \(0.0948835\pi\)
\(6\) 1.00000i 0.408248i
\(7\) 2.00000i 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) −1.00000 −0.353553
\(9\) −1.00000 −0.333333
\(10\) −4.27492 −1.35185
\(11\) 4.00000i 1.20605i −0.797724 0.603023i \(-0.793963\pi\)
0.797724 0.603023i \(-0.206037\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 4.27492i 1.18565i 0.805332 + 0.592824i \(0.201987\pi\)
−0.805332 + 0.592824i \(0.798013\pi\)
\(14\) 2.00000i 0.534522i
\(15\) 4.27492i 1.10378i
\(16\) 1.00000 0.250000
\(17\) 6.27492i 1.52189i −0.648816 0.760945i \(-0.724735\pi\)
0.648816 0.760945i \(-0.275265\pi\)
\(18\) 1.00000 0.235702
\(19\) 6.27492i 1.43956i 0.694200 + 0.719782i \(0.255758\pi\)
−0.694200 + 0.719782i \(0.744242\pi\)
\(20\) 4.27492 0.955901
\(21\) 2.00000 0.436436
\(22\) 4.00000i 0.852803i
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 1.00000i 0.204124i
\(25\) 13.2749 2.65498
\(26\) 4.27492i 0.838380i
\(27\) 1.00000i 0.192450i
\(28\) 2.00000i 0.377964i
\(29\) 6.54983i 1.21627i 0.793832 + 0.608137i \(0.208083\pi\)
−0.793832 + 0.608137i \(0.791917\pi\)
\(30\) 4.27492i 0.780490i
\(31\) −1.72508 −0.309834 −0.154917 0.987927i \(-0.549511\pi\)
−0.154917 + 0.987927i \(0.549511\pi\)
\(32\) −1.00000 −0.176777
\(33\) 4.00000 0.696311
\(34\) 6.27492i 1.07614i
\(35\) 8.54983i 1.44519i
\(36\) −1.00000 −0.166667
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 6.27492i 1.01793i
\(39\) −4.27492 −0.684535
\(40\) −4.27492 −0.675924
\(41\) 1.27492 + 6.27492i 0.199109 + 0.979977i
\(42\) −2.00000 −0.308607
\(43\) −12.5498 −1.91383 −0.956916 0.290365i \(-0.906223\pi\)
−0.956916 + 0.290365i \(0.906223\pi\)
\(44\) 4.00000i 0.603023i
\(45\) −4.27492 −0.637267
\(46\) 0 0
\(47\) 2.54983i 0.371932i −0.982556 0.185966i \(-0.940459\pi\)
0.982556 0.185966i \(-0.0595414\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 3.00000 0.428571
\(50\) −13.2749 −1.87736
\(51\) 6.27492 0.878664
\(52\) 4.27492i 0.592824i
\(53\) 2.00000i 0.274721i −0.990521 0.137361i \(-0.956138\pi\)
0.990521 0.137361i \(-0.0438619\pi\)
\(54\) 1.00000i 0.136083i
\(55\) 17.0997i 2.30572i
\(56\) 2.00000i 0.267261i
\(57\) −6.27492 −0.831133
\(58\) 6.54983i 0.860035i
\(59\) −2.27492 −0.296169 −0.148084 0.988975i \(-0.547311\pi\)
−0.148084 + 0.988975i \(0.547311\pi\)
\(60\) 4.27492i 0.551889i
\(61\) −6.54983 −0.838620 −0.419310 0.907843i \(-0.637728\pi\)
−0.419310 + 0.907843i \(0.637728\pi\)
\(62\) 1.72508 0.219086
\(63\) 2.00000i 0.251976i
\(64\) 1.00000 0.125000
\(65\) 18.2749i 2.26672i
\(66\) −4.00000 −0.492366
\(67\) 1.72508i 0.210752i 0.994432 + 0.105376i \(0.0336047\pi\)
−0.994432 + 0.105376i \(0.966395\pi\)
\(68\) 6.27492i 0.760945i
\(69\) 0 0
\(70\) 8.54983i 1.02190i
\(71\) 3.72508i 0.442086i −0.975264 0.221043i \(-0.929054\pi\)
0.975264 0.221043i \(-0.0709461\pi\)
\(72\) 1.00000 0.117851
\(73\) 0.274917 0.0321766 0.0160883 0.999871i \(-0.494879\pi\)
0.0160883 + 0.999871i \(0.494879\pi\)
\(74\) 6.00000 0.697486
\(75\) 13.2749i 1.53286i
\(76\) 6.27492i 0.719782i
\(77\) −8.00000 −0.911685
\(78\) 4.27492 0.484039
\(79\) 6.54983i 0.736914i −0.929645 0.368457i \(-0.879886\pi\)
0.929645 0.368457i \(-0.120114\pi\)
\(80\) 4.27492 0.477950
\(81\) 1.00000 0.111111
\(82\) −1.27492 6.27492i −0.140791 0.692949i
\(83\) −6.27492 −0.688762 −0.344381 0.938830i \(-0.611911\pi\)
−0.344381 + 0.938830i \(0.611911\pi\)
\(84\) 2.00000 0.218218
\(85\) 26.8248i 2.90955i
\(86\) 12.5498 1.35328
\(87\) −6.54983 −0.702216
\(88\) 4.00000i 0.426401i
\(89\) 14.8248i 1.57142i −0.618595 0.785710i \(-0.712298\pi\)
0.618595 0.785710i \(-0.287702\pi\)
\(90\) 4.27492 0.450616
\(91\) 8.54983 0.896266
\(92\) 0 0
\(93\) 1.72508i 0.178883i
\(94\) 2.54983i 0.262995i
\(95\) 26.8248i 2.75216i
\(96\) 1.00000i 0.102062i
\(97\) 0.549834i 0.0558272i 0.999610 + 0.0279136i \(0.00888633\pi\)
−0.999610 + 0.0279136i \(0.991114\pi\)
\(98\) −3.00000 −0.303046
\(99\) 4.00000i 0.402015i
\(100\) 13.2749 1.32749
\(101\) 1.45017i 0.144297i −0.997394 0.0721484i \(-0.977014\pi\)
0.997394 0.0721484i \(-0.0229855\pi\)
\(102\) −6.27492 −0.621309
\(103\) 10.8248 1.06659 0.533297 0.845928i \(-0.320953\pi\)
0.533297 + 0.845928i \(0.320953\pi\)
\(104\) 4.27492i 0.419190i
\(105\) 8.54983 0.834378
\(106\) 2.00000i 0.194257i
\(107\) −10.8248 −1.04647 −0.523234 0.852189i \(-0.675275\pi\)
−0.523234 + 0.852189i \(0.675275\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) 11.0997i 1.06316i 0.847010 + 0.531578i \(0.178401\pi\)
−0.847010 + 0.531578i \(0.821599\pi\)
\(110\) 17.0997i 1.63039i
\(111\) 6.00000i 0.569495i
\(112\) 2.00000i 0.188982i
\(113\) −10.5498 −0.992445 −0.496222 0.868195i \(-0.665280\pi\)
−0.496222 + 0.868195i \(0.665280\pi\)
\(114\) 6.27492 0.587700
\(115\) 0 0
\(116\) 6.54983i 0.608137i
\(117\) 4.27492i 0.395216i
\(118\) 2.27492 0.209423
\(119\) −12.5498 −1.15044
\(120\) 4.27492i 0.390245i
\(121\) −5.00000 −0.454545
\(122\) 6.54983 0.592994
\(123\) −6.27492 + 1.27492i −0.565790 + 0.114955i
\(124\) −1.72508 −0.154917
\(125\) 35.3746 3.16400
\(126\) 2.00000i 0.178174i
\(127\) −6.27492 −0.556809 −0.278404 0.960464i \(-0.589806\pi\)
−0.278404 + 0.960464i \(0.589806\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 12.5498i 1.10495i
\(130\) 18.2749i 1.60282i
\(131\) 16.0000 1.39793 0.698963 0.715158i \(-0.253645\pi\)
0.698963 + 0.715158i \(0.253645\pi\)
\(132\) 4.00000 0.348155
\(133\) 12.5498 1.08821
\(134\) 1.72508i 0.149024i
\(135\) 4.27492i 0.367926i
\(136\) 6.27492i 0.538070i
\(137\) 4.54983i 0.388719i −0.980930 0.194359i \(-0.937737\pi\)
0.980930 0.194359i \(-0.0622628\pi\)
\(138\) 0 0
\(139\) 4.54983 0.385912 0.192956 0.981207i \(-0.438193\pi\)
0.192956 + 0.981207i \(0.438193\pi\)
\(140\) 8.54983i 0.722593i
\(141\) 2.54983 0.214735
\(142\) 3.72508i 0.312602i
\(143\) 17.0997 1.42995
\(144\) −1.00000 −0.0833333
\(145\) 28.0000i 2.32527i
\(146\) −0.274917 −0.0227523
\(147\) 3.00000i 0.247436i
\(148\) −6.00000 −0.493197
\(149\) 1.45017i 0.118802i −0.998234 0.0594011i \(-0.981081\pi\)
0.998234 0.0594011i \(-0.0189191\pi\)
\(150\) 13.2749i 1.08389i
\(151\) 2.00000i 0.162758i 0.996683 + 0.0813788i \(0.0259324\pi\)
−0.996683 + 0.0813788i \(0.974068\pi\)
\(152\) 6.27492i 0.508963i
\(153\) 6.27492i 0.507297i
\(154\) 8.00000 0.644658
\(155\) −7.37459 −0.592341
\(156\) −4.27492 −0.342267
\(157\) 14.0000i 1.11732i 0.829396 + 0.558661i \(0.188685\pi\)
−0.829396 + 0.558661i \(0.811315\pi\)
\(158\) 6.54983i 0.521077i
\(159\) 2.00000 0.158610
\(160\) −4.27492 −0.337962
\(161\) 0 0
\(162\) −1.00000 −0.0785674
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 1.27492 + 6.27492i 0.0995543 + 0.489989i
\(165\) 17.0997 1.33121
\(166\) 6.27492 0.487028
\(167\) 8.27492i 0.640332i −0.947361 0.320166i \(-0.896261\pi\)
0.947361 0.320166i \(-0.103739\pi\)
\(168\) −2.00000 −0.154303
\(169\) −5.27492 −0.405763
\(170\) 26.8248i 2.05736i
\(171\) 6.27492i 0.479855i
\(172\) −12.5498 −0.956916
\(173\) −7.09967 −0.539778 −0.269889 0.962891i \(-0.586987\pi\)
−0.269889 + 0.962891i \(0.586987\pi\)
\(174\) 6.54983 0.496542
\(175\) 26.5498i 2.00698i
\(176\) 4.00000i 0.301511i
\(177\) 2.27492i 0.170993i
\(178\) 14.8248i 1.11116i
\(179\) 21.0997i 1.57706i 0.614994 + 0.788532i \(0.289158\pi\)
−0.614994 + 0.788532i \(0.710842\pi\)
\(180\) −4.27492 −0.318634
\(181\) 3.72508i 0.276883i −0.990371 0.138442i \(-0.955791\pi\)
0.990371 0.138442i \(-0.0442093\pi\)
\(182\) −8.54983 −0.633756
\(183\) 6.54983i 0.484178i
\(184\) 0 0
\(185\) −25.6495 −1.88579
\(186\) 1.72508i 0.126489i
\(187\) −25.0997 −1.83547
\(188\) 2.54983i 0.185966i
\(189\) −2.00000 −0.145479
\(190\) 26.8248i 1.94607i
\(191\) 10.5498i 0.763359i 0.924295 + 0.381680i \(0.124654\pi\)
−0.924295 + 0.381680i \(0.875346\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) 20.0000i 1.43963i −0.694165 0.719816i \(-0.744226\pi\)
0.694165 0.719816i \(-0.255774\pi\)
\(194\) 0.549834i 0.0394758i
\(195\) −18.2749 −1.30869
\(196\) 3.00000 0.214286
\(197\) −15.7251 −1.12037 −0.560183 0.828369i \(-0.689269\pi\)
−0.560183 + 0.828369i \(0.689269\pi\)
\(198\) 4.00000i 0.284268i
\(199\) 2.00000i 0.141776i −0.997484 0.0708881i \(-0.977417\pi\)
0.997484 0.0708881i \(-0.0225833\pi\)
\(200\) −13.2749 −0.938678
\(201\) −1.72508 −0.121678
\(202\) 1.45017i 0.102033i
\(203\) 13.0997 0.919417
\(204\) 6.27492 0.439332
\(205\) 5.45017 + 26.8248i 0.380656 + 1.87352i
\(206\) −10.8248 −0.754196
\(207\) 0 0
\(208\) 4.27492i 0.296412i
\(209\) 25.0997 1.73618
\(210\) −8.54983 −0.589995
\(211\) 1.72508i 0.118760i 0.998235 + 0.0593798i \(0.0189123\pi\)
−0.998235 + 0.0593798i \(0.981088\pi\)
\(212\) 2.00000i 0.137361i
\(213\) 3.72508 0.255238
\(214\) 10.8248 0.739965
\(215\) −53.6495 −3.65887
\(216\) 1.00000i 0.0680414i
\(217\) 3.45017i 0.234212i
\(218\) 11.0997i 0.751764i
\(219\) 0.274917i 0.0185772i
\(220\) 17.0997i 1.15286i
\(221\) 26.8248 1.80443
\(222\) 6.00000i 0.402694i
\(223\) 17.7251 1.18696 0.593480 0.804849i \(-0.297754\pi\)
0.593480 + 0.804849i \(0.297754\pi\)
\(224\) 2.00000i 0.133631i
\(225\) −13.2749 −0.884994
\(226\) 10.5498 0.701765
\(227\) 11.4502i 0.759974i 0.924992 + 0.379987i \(0.124072\pi\)
−0.924992 + 0.379987i \(0.875928\pi\)
\(228\) −6.27492 −0.415567
\(229\) 11.0997i 0.733487i −0.930322 0.366743i \(-0.880473\pi\)
0.930322 0.366743i \(-0.119527\pi\)
\(230\) 0 0
\(231\) 8.00000i 0.526361i
\(232\) 6.54983i 0.430018i
\(233\) 14.8248i 0.971202i −0.874181 0.485601i \(-0.838601\pi\)
0.874181 0.485601i \(-0.161399\pi\)
\(234\) 4.27492i 0.279460i
\(235\) 10.9003i 0.711059i
\(236\) −2.27492 −0.148084
\(237\) 6.54983 0.425457
\(238\) 12.5498 0.813485
\(239\) 7.72508i 0.499694i 0.968285 + 0.249847i \(0.0803803\pi\)
−0.968285 + 0.249847i \(0.919620\pi\)
\(240\) 4.27492i 0.275945i
\(241\) −12.8248 −0.826115 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(242\) 5.00000 0.321412
\(243\) 1.00000i 0.0641500i
\(244\) −6.54983 −0.419310
\(245\) 12.8248 0.819343
\(246\) 6.27492 1.27492i 0.400074 0.0812858i
\(247\) −26.8248 −1.70682
\(248\) 1.72508 0.109543
\(249\) 6.27492i 0.397657i
\(250\) −35.3746 −2.23729
\(251\) 1.09967 0.0694105 0.0347052 0.999398i \(-0.488951\pi\)
0.0347052 + 0.999398i \(0.488951\pi\)
\(252\) 2.00000i 0.125988i
\(253\) 0 0
\(254\) 6.27492 0.393723
\(255\) 26.8248 1.67983
\(256\) 1.00000 0.0625000
\(257\) 16.5498i 1.03235i −0.856483 0.516175i \(-0.827355\pi\)
0.856483 0.516175i \(-0.172645\pi\)
\(258\) 12.5498i 0.781319i
\(259\) 12.0000i 0.745644i
\(260\) 18.2749i 1.13336i
\(261\) 6.54983i 0.405425i
\(262\) −16.0000 −0.988483
\(263\) 29.9244i 1.84522i 0.385736 + 0.922609i \(0.373948\pi\)
−0.385736 + 0.922609i \(0.626052\pi\)
\(264\) −4.00000 −0.246183
\(265\) 8.54983i 0.525212i
\(266\) −12.5498 −0.769480
\(267\) 14.8248 0.907260
\(268\) 1.72508i 0.105376i
\(269\) 8.27492 0.504531 0.252265 0.967658i \(-0.418824\pi\)
0.252265 + 0.967658i \(0.418824\pi\)
\(270\) 4.27492i 0.260163i
\(271\) 25.0997 1.52470 0.762348 0.647167i \(-0.224046\pi\)
0.762348 + 0.647167i \(0.224046\pi\)
\(272\) 6.27492i 0.380473i
\(273\) 8.54983i 0.517460i
\(274\) 4.54983i 0.274866i
\(275\) 53.0997i 3.20203i
\(276\) 0 0
\(277\) 30.5498 1.83556 0.917781 0.397087i \(-0.129979\pi\)
0.917781 + 0.397087i \(0.129979\pi\)
\(278\) −4.54983 −0.272881
\(279\) 1.72508 0.103278
\(280\) 8.54983i 0.510950i
\(281\) 2.27492i 0.135710i 0.997695 + 0.0678551i \(0.0216156\pi\)
−0.997695 + 0.0678551i \(0.978384\pi\)
\(282\) −2.54983 −0.151840
\(283\) 21.6495 1.28693 0.643465 0.765476i \(-0.277496\pi\)
0.643465 + 0.765476i \(0.277496\pi\)
\(284\) 3.72508i 0.221043i
\(285\) −26.8248 −1.58896
\(286\) −17.0997 −1.01112
\(287\) 12.5498 2.54983i 0.740793 0.150512i
\(288\) 1.00000 0.0589256
\(289\) −22.3746 −1.31615
\(290\) 28.0000i 1.64422i
\(291\) −0.549834 −0.0322319
\(292\) 0.274917 0.0160883
\(293\) 2.00000i 0.116841i −0.998292 0.0584206i \(-0.981394\pi\)
0.998292 0.0584206i \(-0.0186065\pi\)
\(294\) 3.00000i 0.174964i
\(295\) −9.72508 −0.566216
\(296\) 6.00000 0.348743
\(297\) −4.00000 −0.232104
\(298\) 1.45017i 0.0840058i
\(299\) 0 0
\(300\) 13.2749i 0.766428i
\(301\) 25.0997i 1.44672i
\(302\) 2.00000i 0.115087i
\(303\) 1.45017 0.0833098
\(304\) 6.27492i 0.359891i
\(305\) −28.0000 −1.60328
\(306\) 6.27492i 0.358713i
\(307\) 2.90033 0.165531 0.0827653 0.996569i \(-0.473625\pi\)
0.0827653 + 0.996569i \(0.473625\pi\)
\(308\) −8.00000 −0.455842
\(309\) 10.8248i 0.615799i
\(310\) 7.37459 0.418848
\(311\) 28.2749i 1.60332i 0.597778 + 0.801662i \(0.296050\pi\)
−0.597778 + 0.801662i \(0.703950\pi\)
\(312\) 4.27492 0.242020
\(313\) 25.6495i 1.44980i 0.688856 + 0.724898i \(0.258113\pi\)
−0.688856 + 0.724898i \(0.741887\pi\)
\(314\) 14.0000i 0.790066i
\(315\) 8.54983i 0.481729i
\(316\) 6.54983i 0.368457i
\(317\) 30.5498i 1.71585i −0.513775 0.857925i \(-0.671753\pi\)
0.513775 0.857925i \(-0.328247\pi\)
\(318\) −2.00000 −0.112154
\(319\) 26.1993 1.46688
\(320\) 4.27492 0.238975
\(321\) 10.8248i 0.604179i
\(322\) 0 0
\(323\) 39.3746 2.19086
\(324\) 1.00000 0.0555556
\(325\) 56.7492i 3.14788i
\(326\) 4.00000 0.221540
\(327\) −11.0997 −0.613813
\(328\) −1.27492 6.27492i −0.0703955 0.346474i
\(329\) −5.09967 −0.281154
\(330\) −17.0997 −0.941306
\(331\) 1.09967i 0.0604433i 0.999543 + 0.0302216i \(0.00962131\pi\)
−0.999543 + 0.0302216i \(0.990379\pi\)
\(332\) −6.27492 −0.344381
\(333\) 6.00000 0.328798
\(334\) 8.27492i 0.452783i
\(335\) 7.37459i 0.402917i
\(336\) 2.00000 0.109109
\(337\) −12.8248 −0.698609 −0.349304 0.937009i \(-0.613582\pi\)
−0.349304 + 0.937009i \(0.613582\pi\)
\(338\) 5.27492 0.286918
\(339\) 10.5498i 0.572988i
\(340\) 26.8248i 1.45478i
\(341\) 6.90033i 0.373674i
\(342\) 6.27492i 0.339309i
\(343\) 20.0000i 1.07990i
\(344\) 12.5498 0.676642
\(345\) 0 0
\(346\) 7.09967 0.381681
\(347\) 17.0997i 0.917958i −0.888447 0.458979i \(-0.848215\pi\)
0.888447 0.458979i \(-0.151785\pi\)
\(348\) −6.54983 −0.351108
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) 26.5498i 1.41915i
\(351\) 4.27492 0.228178
\(352\) 4.00000i 0.213201i
\(353\) 10.5498 0.561511 0.280756 0.959779i \(-0.409415\pi\)
0.280756 + 0.959779i \(0.409415\pi\)
\(354\) 2.27492i 0.120910i
\(355\) 15.9244i 0.845180i
\(356\) 14.8248i 0.785710i
\(357\) 12.5498i 0.664208i
\(358\) 21.0997i 1.11515i
\(359\) 17.0997 0.902486 0.451243 0.892401i \(-0.350981\pi\)
0.451243 + 0.892401i \(0.350981\pi\)
\(360\) 4.27492 0.225308
\(361\) −20.3746 −1.07235
\(362\) 3.72508i 0.195786i
\(363\) 5.00000i 0.262432i
\(364\) 8.54983 0.448133
\(365\) 1.17525 0.0615153
\(366\) 6.54983i 0.342365i
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) −1.27492 6.27492i −0.0663695 0.326659i
\(370\) 25.6495 1.33345
\(371\) −4.00000 −0.207670
\(372\) 1.72508i 0.0894414i
\(373\) 7.09967 0.367607 0.183803 0.982963i \(-0.441159\pi\)
0.183803 + 0.982963i \(0.441159\pi\)
\(374\) 25.0997 1.29787
\(375\) 35.3746i 1.82674i
\(376\) 2.54983i 0.131498i
\(377\) −28.0000 −1.44207
\(378\) 2.00000 0.102869
\(379\) 28.5498 1.46651 0.733253 0.679956i \(-0.238001\pi\)
0.733253 + 0.679956i \(0.238001\pi\)
\(380\) 26.8248i 1.37608i
\(381\) 6.27492i 0.321474i
\(382\) 10.5498i 0.539776i
\(383\) 0.824752i 0.0421428i 0.999778 + 0.0210714i \(0.00670774\pi\)
−0.999778 + 0.0210714i \(0.993292\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) −34.1993 −1.74296
\(386\) 20.0000i 1.01797i
\(387\) 12.5498 0.637944
\(388\) 0.549834i 0.0279136i
\(389\) 21.9244 1.11161 0.555806 0.831312i \(-0.312410\pi\)
0.555806 + 0.831312i \(0.312410\pi\)
\(390\) 18.2749 0.925386
\(391\) 0 0
\(392\) −3.00000 −0.151523
\(393\) 16.0000i 0.807093i
\(394\) 15.7251 0.792218
\(395\) 28.0000i 1.40883i
\(396\) 4.00000i 0.201008i
\(397\) 7.17525i 0.360115i 0.983656 + 0.180058i \(0.0576284\pi\)
−0.983656 + 0.180058i \(0.942372\pi\)
\(398\) 2.00000i 0.100251i
\(399\) 12.5498i 0.628278i
\(400\) 13.2749 0.663746
\(401\) −23.0997 −1.15354 −0.576771 0.816906i \(-0.695688\pi\)
−0.576771 + 0.816906i \(0.695688\pi\)
\(402\) 1.72508 0.0860393
\(403\) 7.37459i 0.367354i
\(404\) 1.45017i 0.0721484i
\(405\) 4.27492 0.212422
\(406\) −13.0997 −0.650126
\(407\) 24.0000i 1.18964i
\(408\) −6.27492 −0.310655
\(409\) −8.27492 −0.409168 −0.204584 0.978849i \(-0.565584\pi\)
−0.204584 + 0.978849i \(0.565584\pi\)
\(410\) −5.45017 26.8248i −0.269164 1.32478i
\(411\) 4.54983 0.224427
\(412\) 10.8248 0.533297
\(413\) 4.54983i 0.223883i
\(414\) 0 0
\(415\) −26.8248 −1.31678
\(416\) 4.27492i 0.209595i
\(417\) 4.54983i 0.222806i
\(418\) −25.0997 −1.22766
\(419\) −34.2749 −1.67444 −0.837220 0.546867i \(-0.815820\pi\)
−0.837220 + 0.546867i \(0.815820\pi\)
\(420\) 8.54983 0.417189
\(421\) 3.17525i 0.154752i −0.997002 0.0773761i \(-0.975346\pi\)
0.997002 0.0773761i \(-0.0246542\pi\)
\(422\) 1.72508i 0.0839757i
\(423\) 2.54983i 0.123977i
\(424\) 2.00000i 0.0971286i
\(425\) 83.2990i 4.04060i
\(426\) −3.72508 −0.180481
\(427\) 13.0997i 0.633937i
\(428\) −10.8248 −0.523234
\(429\) 17.0997i 0.825580i
\(430\) 53.6495 2.58721
\(431\) 19.4502 0.936882 0.468441 0.883495i \(-0.344816\pi\)
0.468441 + 0.883495i \(0.344816\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) −16.2749 −0.782123 −0.391061 0.920365i \(-0.627892\pi\)
−0.391061 + 0.920365i \(0.627892\pi\)
\(434\) 3.45017i 0.165613i
\(435\) −28.0000 −1.34250
\(436\) 11.0997i 0.531578i
\(437\) 0 0
\(438\) 0.274917i 0.0131361i
\(439\) 39.0997i 1.86613i −0.359714 0.933063i \(-0.617126\pi\)
0.359714 0.933063i \(-0.382874\pi\)
\(440\) 17.0997i 0.815195i
\(441\) −3.00000 −0.142857
\(442\) −26.8248 −1.27592
\(443\) 23.3746 1.11056 0.555280 0.831663i \(-0.312611\pi\)
0.555280 + 0.831663i \(0.312611\pi\)
\(444\) 6.00000i 0.284747i
\(445\) 63.3746i 3.00424i
\(446\) −17.7251 −0.839307
\(447\) 1.45017 0.0685905
\(448\) 2.00000i 0.0944911i
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) 13.2749 0.625786
\(451\) 25.0997 5.09967i 1.18190 0.240134i
\(452\) −10.5498 −0.496222
\(453\) −2.00000 −0.0939682
\(454\) 11.4502i 0.537383i
\(455\) 36.5498 1.71348
\(456\) 6.27492 0.293850
\(457\) 29.0997i 1.36123i 0.732644 + 0.680613i \(0.238286\pi\)
−0.732644 + 0.680613i \(0.761714\pi\)
\(458\) 11.0997i 0.518653i
\(459\) −6.27492 −0.292888
\(460\) 0 0
\(461\) −27.0997 −1.26216 −0.631079 0.775719i \(-0.717388\pi\)
−0.631079 + 0.775719i \(0.717388\pi\)
\(462\) 8.00000i 0.372194i
\(463\) 26.5498i 1.23388i 0.787012 + 0.616938i \(0.211627\pi\)
−0.787012 + 0.616938i \(0.788373\pi\)
\(464\) 6.54983i 0.304068i
\(465\) 7.37459i 0.341988i
\(466\) 14.8248i 0.686743i
\(467\) −21.7251 −1.00532 −0.502658 0.864485i \(-0.667645\pi\)
−0.502658 + 0.864485i \(0.667645\pi\)
\(468\) 4.27492i 0.197608i
\(469\) 3.45017 0.159314
\(470\) 10.9003i 0.502795i
\(471\) −14.0000 −0.645086
\(472\) 2.27492 0.104712
\(473\) 50.1993i 2.30817i
\(474\) −6.54983 −0.300844
\(475\) 83.2990i 3.82202i
\(476\) −12.5498 −0.575221
\(477\) 2.00000i 0.0915737i
\(478\) 7.72508i 0.353337i
\(479\) 33.9244i 1.55005i −0.631933 0.775023i \(-0.717738\pi\)
0.631933 0.775023i \(-0.282262\pi\)
\(480\) 4.27492i 0.195122i
\(481\) 25.6495i 1.16952i
\(482\) 12.8248 0.584151
\(483\) 0 0
\(484\) −5.00000 −0.227273
\(485\) 2.35050i 0.106731i
\(486\) 1.00000i 0.0453609i
\(487\) 13.1752 0.597027 0.298514 0.954405i \(-0.403509\pi\)
0.298514 + 0.954405i \(0.403509\pi\)
\(488\) 6.54983 0.296497
\(489\) 4.00000i 0.180886i
\(490\) −12.8248 −0.579363
\(491\) −14.8248 −0.669032 −0.334516 0.942390i \(-0.608573\pi\)
−0.334516 + 0.942390i \(0.608573\pi\)
\(492\) −6.27492 + 1.27492i −0.282895 + 0.0574777i
\(493\) 41.0997 1.85104
\(494\) 26.8248 1.20690
\(495\) 17.0997i 0.768573i
\(496\) −1.72508 −0.0774585
\(497\) −7.45017 −0.334186
\(498\) 6.27492i 0.281186i
\(499\) 23.3746i 1.04639i 0.852213 + 0.523195i \(0.175260\pi\)
−0.852213 + 0.523195i \(0.824740\pi\)
\(500\) 35.3746 1.58200
\(501\) 8.27492 0.369696
\(502\) −1.09967 −0.0490806
\(503\) 20.2749i 0.904014i −0.892014 0.452007i \(-0.850708\pi\)
0.892014 0.452007i \(-0.149292\pi\)
\(504\) 2.00000i 0.0890871i
\(505\) 6.19934i 0.275867i
\(506\) 0 0
\(507\) 5.27492i 0.234267i
\(508\) −6.27492 −0.278404
\(509\) 7.64950i 0.339058i −0.985525 0.169529i \(-0.945775\pi\)
0.985525 0.169529i \(-0.0542247\pi\)
\(510\) −26.8248 −1.18782
\(511\) 0.549834i 0.0243232i
\(512\) −1.00000 −0.0441942
\(513\) 6.27492 0.277044
\(514\) 16.5498i 0.729982i
\(515\) 46.2749 2.03912
\(516\) 12.5498i 0.552476i
\(517\) −10.1993 −0.448566
\(518\) 12.0000i 0.527250i
\(519\) 7.09967i 0.311641i
\(520\) 18.2749i 0.801408i
\(521\) 17.7251i 0.776550i −0.921544 0.388275i \(-0.873071\pi\)
0.921544 0.388275i \(-0.126929\pi\)
\(522\) 6.54983i 0.286678i
\(523\) −33.6495 −1.47139 −0.735695 0.677313i \(-0.763144\pi\)
−0.735695 + 0.677313i \(0.763144\pi\)
\(524\) 16.0000 0.698963
\(525\) 26.5498 1.15873
\(526\) 29.9244i 1.30477i
\(527\) 10.8248i 0.471534i
\(528\) 4.00000 0.174078
\(529\) −23.0000 −1.00000
\(530\) 8.54983i 0.371381i
\(531\) 2.27492 0.0987230
\(532\) 12.5498 0.544104
\(533\) −26.8248 + 5.45017i −1.16191 + 0.236073i
\(534\) −14.8248 −0.641530
\(535\) −46.2749 −2.00064
\(536\) 1.72508i 0.0745122i
\(537\) −21.0997 −0.910518
\(538\) −8.27492 −0.356757
\(539\) 12.0000i 0.516877i
\(540\) 4.27492i 0.183963i
\(541\) 40.7492 1.75194 0.875972 0.482362i \(-0.160221\pi\)
0.875972 + 0.482362i \(0.160221\pi\)
\(542\) −25.0997 −1.07812
\(543\) 3.72508 0.159859
\(544\) 6.27492i 0.269035i
\(545\) 47.4502i 2.03254i
\(546\) 8.54983i 0.365899i
\(547\) 43.3746i 1.85456i 0.374364 + 0.927282i \(0.377861\pi\)
−0.374364 + 0.927282i \(0.622139\pi\)
\(548\) 4.54983i 0.194359i
\(549\) 6.54983 0.279540
\(550\) 53.0997i 2.26418i
\(551\) −41.0997 −1.75090
\(552\) 0 0
\(553\) −13.0997 −0.557055
\(554\) −30.5498 −1.29794
\(555\) 25.6495i 1.08876i
\(556\) 4.54983 0.192956
\(557\) 43.0997i 1.82619i −0.407745 0.913096i \(-0.633685\pi\)
0.407745 0.913096i \(-0.366315\pi\)
\(558\) −1.72508 −0.0730286
\(559\) 53.6495i 2.26913i
\(560\) 8.54983i 0.361296i
\(561\) 25.0997i 1.05971i
\(562\) 2.27492i 0.0959616i
\(563\) 4.54983i 0.191753i 0.995393 + 0.0958763i \(0.0305653\pi\)
−0.995393 + 0.0958763i \(0.969435\pi\)
\(564\) 2.54983 0.107367
\(565\) −45.0997 −1.89736
\(566\) −21.6495 −0.909996
\(567\) 2.00000i 0.0839921i
\(568\) 3.72508i 0.156301i
\(569\) −34.5498 −1.44840 −0.724202 0.689588i \(-0.757792\pi\)
−0.724202 + 0.689588i \(0.757792\pi\)
\(570\) 26.8248 1.12357
\(571\) 33.0997i 1.38518i −0.721332 0.692589i \(-0.756470\pi\)
0.721332 0.692589i \(-0.243530\pi\)
\(572\) 17.0997 0.714973
\(573\) −10.5498 −0.440726
\(574\) −12.5498 + 2.54983i −0.523820 + 0.106428i
\(575\) 0 0
\(576\) −1.00000 −0.0416667
\(577\) 17.0997i 0.711869i 0.934511 + 0.355934i \(0.115837\pi\)
−0.934511 + 0.355934i \(0.884163\pi\)
\(578\) 22.3746 0.930660
\(579\) 20.0000 0.831172
\(580\) 28.0000i 1.16264i
\(581\) 12.5498i 0.520655i
\(582\) 0.549834 0.0227914
\(583\) −8.00000 −0.331326
\(584\) −0.274917 −0.0113762
\(585\) 18.2749i 0.755575i
\(586\) 2.00000i 0.0826192i
\(587\) 7.45017i 0.307501i −0.988110 0.153751i \(-0.950865\pi\)
0.988110 0.153751i \(-0.0491352\pi\)
\(588\) 3.00000i 0.123718i
\(589\) 10.8248i 0.446026i
\(590\) 9.72508 0.400375
\(591\) 15.7251i 0.646843i
\(592\) −6.00000 −0.246598
\(593\) 30.8248i 1.26582i 0.774225 + 0.632910i \(0.218140\pi\)
−0.774225 + 0.632910i \(0.781860\pi\)
\(594\) 4.00000 0.164122
\(595\) −53.6495 −2.19942
\(596\) 1.45017i 0.0594011i
\(597\) 2.00000 0.0818546
\(598\) 0 0
\(599\) −12.5498 −0.512772 −0.256386 0.966574i \(-0.582532\pi\)
−0.256386 + 0.966574i \(0.582532\pi\)
\(600\) 13.2749i 0.541946i
\(601\) 11.4502i 0.467062i 0.972349 + 0.233531i \(0.0750280\pi\)
−0.972349 + 0.233531i \(0.924972\pi\)
\(602\) 25.0997i 1.02299i
\(603\) 1.72508i 0.0702508i
\(604\) 2.00000i 0.0813788i
\(605\) −21.3746 −0.869000
\(606\) −1.45017 −0.0589089
\(607\) −24.0000 −0.974130 −0.487065 0.873366i \(-0.661933\pi\)
−0.487065 + 0.873366i \(0.661933\pi\)
\(608\) 6.27492i 0.254481i
\(609\) 13.0997i 0.530825i
\(610\) 28.0000 1.13369
\(611\) 10.9003 0.440980
\(612\) 6.27492i 0.253648i
\(613\) 6.54983 0.264545 0.132273 0.991213i \(-0.457773\pi\)
0.132273 + 0.991213i \(0.457773\pi\)
\(614\) −2.90033 −0.117048
\(615\) −26.8248 + 5.45017i −1.08168 + 0.219772i
\(616\) 8.00000 0.322329
\(617\) 22.5498 0.907822 0.453911 0.891047i \(-0.350028\pi\)
0.453911 + 0.891047i \(0.350028\pi\)
\(618\) 10.8248i 0.435435i
\(619\) −17.0997 −0.687294 −0.343647 0.939099i \(-0.611662\pi\)
−0.343647 + 0.939099i \(0.611662\pi\)
\(620\) −7.37459 −0.296171
\(621\) 0 0
\(622\) 28.2749i 1.13372i
\(623\) −29.6495 −1.18788
\(624\) −4.27492 −0.171134
\(625\) 84.8488 3.39395
\(626\) 25.6495i 1.02516i
\(627\) 25.0997i 1.00238i
\(628\) 14.0000i 0.558661i
\(629\) 37.6495i 1.50118i
\(630\) 8.54983i 0.340634i
\(631\) 42.8248 1.70483 0.852413 0.522869i \(-0.175138\pi\)
0.852413 + 0.522869i \(0.175138\pi\)
\(632\) 6.54983i 0.260538i
\(633\) −1.72508 −0.0685659
\(634\) 30.5498i 1.21329i
\(635\) −26.8248 −1.06451
\(636\) 2.00000 0.0793052
\(637\) 12.8248i 0.508135i
\(638\) −26.1993 −1.03724
\(639\) 3.72508i 0.147362i
\(640\) −4.27492 −0.168981
\(641\) 20.5498i 0.811670i 0.913946 + 0.405835i \(0.133019\pi\)
−0.913946 + 0.405835i \(0.866981\pi\)
\(642\) 10.8248i 0.427219i
\(643\) 33.7251i 1.32999i −0.746849 0.664994i \(-0.768434\pi\)
0.746849 0.664994i \(-0.231566\pi\)
\(644\) 0 0
\(645\) 53.6495i 2.11245i
\(646\) −39.3746 −1.54917
\(647\) 41.0997 1.61579 0.807897 0.589323i \(-0.200606\pi\)
0.807897 + 0.589323i \(0.200606\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 9.09967i 0.357193i
\(650\) 56.7492i 2.22589i
\(651\) −3.45017 −0.135223
\(652\) −4.00000 −0.156652
\(653\) 7.64950i 0.299348i 0.988735 + 0.149674i \(0.0478224\pi\)
−0.988735 + 0.149674i \(0.952178\pi\)
\(654\) 11.0997 0.434031
\(655\) 68.3987 2.67256
\(656\) 1.27492 + 6.27492i 0.0497772 + 0.244994i
\(657\) −0.274917 −0.0107255
\(658\) 5.09967 0.198806
\(659\) 12.5498i 0.488872i 0.969665 + 0.244436i \(0.0786028\pi\)
−0.969665 + 0.244436i \(0.921397\pi\)
\(660\) 17.0997 0.665604
\(661\) −32.1993 −1.25241 −0.626205 0.779659i \(-0.715393\pi\)
−0.626205 + 0.779659i \(0.715393\pi\)
\(662\) 1.09967i 0.0427398i
\(663\) 26.8248i 1.04179i
\(664\) 6.27492 0.243514
\(665\) 53.6495 2.08044
\(666\) −6.00000 −0.232495
\(667\) 0 0
\(668\) 8.27492i 0.320166i
\(669\) 17.7251i 0.685291i
\(670\) 7.37459i 0.284905i
\(671\) 26.1993i 1.01141i
\(672\) −2.00000 −0.0771517
\(673\) 38.1993i 1.47248i −0.676723 0.736238i \(-0.736600\pi\)
0.676723 0.736238i \(-0.263400\pi\)
\(674\) 12.8248 0.493991
\(675\) 13.2749i 0.510952i
\(676\) −5.27492 −0.202881
\(677\) 30.4743 1.17122 0.585610 0.810593i \(-0.300855\pi\)
0.585610 + 0.810593i \(0.300855\pi\)
\(678\) 10.5498i 0.405164i
\(679\) 1.09967 0.0422014
\(680\) 26.8248i 1.02868i
\(681\) −11.4502 −0.438771
\(682\) 6.90033i 0.264227i
\(683\) 2.90033i 0.110978i 0.998459 + 0.0554890i \(0.0176718\pi\)
−0.998459 + 0.0554890i \(0.982328\pi\)
\(684\) 6.27492i 0.239927i
\(685\) 19.4502i 0.743153i
\(686\) 20.0000i 0.763604i
\(687\) 11.0997 0.423479
\(688\) −12.5498 −0.478458
\(689\) 8.54983 0.325723
\(690\) 0 0
\(691\) 13.0997i 0.498335i 0.968460 + 0.249167i \(0.0801570\pi\)
−0.968460 + 0.249167i \(0.919843\pi\)
\(692\) −7.09967 −0.269889
\(693\) 8.00000 0.303895
\(694\) 17.0997i 0.649095i
\(695\) 19.4502 0.737787
\(696\) 6.54983 0.248271
\(697\) 39.3746 8.00000i 1.49142 0.303022i
\(698\) 6.00000 0.227103
\(699\) 14.8248 0.560724
\(700\) 26.5498i 1.00349i
\(701\) −28.1993 −1.06507 −0.532537 0.846407i \(-0.678761\pi\)
−0.532537 + 0.846407i \(0.678761\pi\)
\(702\) −4.27492 −0.161346
\(703\) 37.6495i 1.41998i
\(704\) 4.00000i 0.150756i
\(705\) 10.9003 0.410530
\(706\) −10.5498 −0.397048
\(707\) −2.90033 −0.109078
\(708\) 2.27492i 0.0854966i
\(709\) 4.27492i 0.160548i −0.996773 0.0802739i \(-0.974420\pi\)
0.996773 0.0802739i \(-0.0255795\pi\)
\(710\) 15.9244i 0.597633i
\(711\) 6.54983i 0.245638i
\(712\) 14.8248i 0.555581i
\(713\) 0 0
\(714\) 12.5498i 0.469666i
\(715\) 73.0997 2.73377
\(716\) 21.0997i 0.788532i
\(717\) −7.72508 −0.288499
\(718\) −17.0997 −0.638154
\(719\) 12.8248i 0.478283i −0.970985 0.239141i \(-0.923134\pi\)
0.970985 0.239141i \(-0.0768659\pi\)
\(720\) −4.27492 −0.159317
\(721\) 21.6495i 0.806270i
\(722\) 20.3746 0.758264
\(723\) 12.8248i 0.476958i
\(724\) 3.72508i 0.138442i
\(725\) 86.9485i 3.22919i
\(726\) 5.00000i 0.185567i
\(727\) 1.45017i 0.0537837i −0.999638 0.0268918i \(-0.991439\pi\)
0.999638 0.0268918i \(-0.00856097\pi\)
\(728\) −8.54983 −0.316878
\(729\) −1.00000 −0.0370370
\(730\) −1.17525 −0.0434979
\(731\) 78.7492i 2.91264i
\(732\) 6.54983i 0.242089i
\(733\) 27.6495 1.02126 0.510629 0.859801i \(-0.329413\pi\)
0.510629 + 0.859801i \(0.329413\pi\)
\(734\) −8.00000 −0.295285
\(735\) 12.8248i 0.473048i
\(736\) 0 0
\(737\) 6.90033 0.254177
\(738\) 1.27492 + 6.27492i 0.0469304 + 0.230983i
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) −25.6495 −0.942894
\(741\) 26.8248i 0.985432i
\(742\) 4.00000 0.146845
\(743\) 32.0000 1.17397 0.586983 0.809599i \(-0.300316\pi\)
0.586983 + 0.809599i \(0.300316\pi\)
\(744\) 1.72508i 0.0632446i
\(745\) 6.19934i 0.227126i
\(746\) −7.09967 −0.259937
\(747\) 6.27492 0.229587
\(748\) −25.0997 −0.917735
\(749\) 21.6495i 0.791056i
\(750\) 35.3746i 1.29170i
\(751\) 3.09967i 0.113109i 0.998400 + 0.0565543i \(0.0180114\pi\)
−0.998400 + 0.0565543i \(0.981989\pi\)
\(752\) 2.54983i 0.0929829i
\(753\) 1.09967i 0.0400742i
\(754\) 28.0000 1.01970
\(755\) 8.54983i 0.311160i
\(756\) −2.00000 −0.0727393
\(757\) 16.9003i 0.614253i −0.951669 0.307126i \(-0.900633\pi\)
0.951669 0.307126i \(-0.0993675\pi\)
\(758\) −28.5498 −1.03698
\(759\) 0 0
\(760\) 26.8248i 0.973036i
\(761\) 13.4502 0.487568 0.243784 0.969830i \(-0.421611\pi\)
0.243784 + 0.969830i \(0.421611\pi\)
\(762\) 6.27492i 0.227316i
\(763\) 22.1993 0.803670
\(764\) 10.5498i 0.381680i
\(765\) 26.8248i 0.969851i
\(766\) 0.824752i 0.0297995i
\(767\) 9.72508i 0.351152i
\(768\) 1.00000i 0.0360844i
\(769\) 28.8248 1.03945 0.519724 0.854334i \(-0.326035\pi\)
0.519724 + 0.854334i \(0.326035\pi\)
\(770\) 34.1993 1.23246
\(771\) 16.5498 0.596028
\(772\) 20.0000i 0.719816i
\(773\) 37.4502i 1.34699i −0.739192 0.673494i \(-0.764793\pi\)
0.739192 0.673494i \(-0.235207\pi\)
\(774\) −12.5498 −0.451094
\(775\) −22.9003 −0.822604
\(776\) 0.549834i 0.0197379i
\(777\) −12.0000 −0.430498
\(778\) −21.9244 −0.786029
\(779\) −39.3746 + 8.00000i −1.41074 + 0.286630i
\(780\) −18.2749 −0.654347
\(781\) −14.9003 −0.533176
\(782\) 0 0
\(783\) 6.54983 0.234072
\(784\) 3.00000 0.107143
\(785\) 59.8488i 2.13610i
\(786\) 16.0000i 0.570701i
\(787\) −33.6495 −1.19948 −0.599738 0.800197i \(-0.704728\pi\)
−0.599738 + 0.800197i \(0.704728\pi\)
\(788\) −15.7251 −0.560183
\(789\) −29.9244 −1.06534
\(790\) 28.0000i 0.996195i
\(791\) 21.0997i 0.750218i
\(792\) 4.00000i 0.142134i
\(793\) 28.0000i 0.994309i
\(794\) 7.17525i 0.254640i
\(795\) 8.54983 0.303231
\(796\) 2.00000i 0.0708881i
\(797\) 13.9244 0.493228 0.246614 0.969114i \(-0.420682\pi\)
0.246614 + 0.969114i \(0.420682\pi\)
\(798\) 12.5498i 0.444259i
\(799\) −16.0000 −0.566039
\(800\) −13.2749 −0.469339
\(801\) 14.8248i 0.523807i
\(802\) 23.0997 0.815678
\(803\) 1.09967i 0.0388065i
\(804\) −1.72508 −0.0608390
\(805\) 0 0
\(806\) 7.37459i 0.259759i
\(807\) 8.27492i 0.291291i
\(808\) 1.45017i 0.0510166i
\(809\) 47.3746i 1.66560i −0.553573 0.832801i \(-0.686736\pi\)
0.553573 0.832801i \(-0.313264\pi\)
\(810\) −4.27492 −0.150205
\(811\) −8.54983 −0.300225 −0.150113 0.988669i \(-0.547964\pi\)
−0.150113 + 0.988669i \(0.547964\pi\)
\(812\) 13.0997 0.459708
\(813\) 25.0997i 0.880284i
\(814\) 24.0000i 0.841200i
\(815\) −17.0997 −0.598975
\(816\) 6.27492 0.219666
\(817\) 78.7492i 2.75508i
\(818\) 8.27492 0.289326
\(819\) −8.54983 −0.298755
\(820\) 5.45017 + 26.8248i 0.190328 + 0.936761i
\(821\) 33.9244 1.18397 0.591985 0.805949i \(-0.298344\pi\)
0.591985 + 0.805949i \(0.298344\pi\)
\(822\) −4.54983 −0.158694
\(823\) 21.4502i 0.747706i 0.927488 + 0.373853i \(0.121964\pi\)
−0.927488 + 0.373853i \(0.878036\pi\)
\(824\) −10.8248 −0.377098
\(825\) 53.0997 1.84869
\(826\) 4.54983i 0.158309i
\(827\) 4.54983i 0.158213i −0.996866 0.0791066i \(-0.974793\pi\)
0.996866 0.0791066i \(-0.0252068\pi\)
\(828\) 0 0
\(829\) −12.9003 −0.448047 −0.224024 0.974584i \(-0.571919\pi\)
−0.224024 + 0.974584i \(0.571919\pi\)
\(830\) 26.8248 0.931101
\(831\) 30.5498i 1.05976i
\(832\) 4.27492i 0.148206i
\(833\) 18.8248i 0.652239i
\(834\) 4.54983i 0.157548i
\(835\) 35.3746i 1.22419i
\(836\) 25.0997 0.868090
\(837\) 1.72508i 0.0596276i
\(838\) 34.2749 1.18401
\(839\) 41.9244i 1.44739i −0.690119 0.723696i \(-0.742442\pi\)
0.690119 0.723696i \(-0.257558\pi\)
\(840\) −8.54983 −0.294997
\(841\) −13.9003 −0.479322
\(842\) 3.17525i 0.109426i
\(843\) −2.27492 −0.0783523
\(844\) 1.72508i 0.0593798i
\(845\) −22.5498 −0.775738
\(846\) 2.54983i 0.0876651i
\(847\) 10.0000i 0.343604i
\(848\) 2.00000i 0.0686803i
\(849\) 21.6495i 0.743009i
\(850\) 83.2990i 2.85713i
\(851\) 0 0
\(852\) 3.72508 0.127619
\(853\) 9.45017 0.323568 0.161784 0.986826i \(-0.448275\pi\)
0.161784 + 0.986826i \(0.448275\pi\)
\(854\) 13.0997i 0.448261i
\(855\) 26.8248i 0.917387i
\(856\) 10.8248 0.369982
\(857\) 51.6495 1.76431 0.882157 0.470956i \(-0.156091\pi\)
0.882157 + 0.470956i \(0.156091\pi\)
\(858\) 17.0997i 0.583773i
\(859\) −6.19934 −0.211519 −0.105759 0.994392i \(-0.533727\pi\)
−0.105759 + 0.994392i \(0.533727\pi\)
\(860\) −53.6495 −1.82943
\(861\) 2.54983 + 12.5498i 0.0868981 + 0.427697i
\(862\) −19.4502 −0.662475
\(863\) 11.4502 0.389768 0.194884 0.980826i \(-0.437567\pi\)
0.194884 + 0.980826i \(0.437567\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) −30.3505 −1.03195
\(866\) 16.2749 0.553044
\(867\) 22.3746i 0.759881i
\(868\) 3.45017i 0.117106i
\(869\) −26.1993 −0.888752
\(870\) 28.0000 0.949289
\(871\) −7.37459 −0.249878
\(872\) 11.0997i 0.375882i
\(873\) 0.549834i 0.0186091i
\(874\) 0 0
\(875\) 70.7492i 2.39176i
\(876\) 0.274917i 0.00928859i
\(877\) 19.6495 0.663517 0.331758 0.943364i \(-0.392358\pi\)
0.331758 + 0.943364i \(0.392358\pi\)
\(878\) 39.0997i 1.31955i
\(879\) 2.00000 0.0674583
\(880\) 17.0997i 0.576430i
\(881\) −36.1993 −1.21959 −0.609793 0.792560i \(-0.708748\pi\)
−0.609793 + 0.792560i \(0.708748\pi\)
\(882\) 3.00000 0.101015
\(883\) 43.3746i 1.45967i −0.683623 0.729836i \(-0.739597\pi\)
0.683623 0.729836i \(-0.260403\pi\)
\(884\) 26.8248 0.902214
\(885\) 9.72508i 0.326905i
\(886\) −23.3746 −0.785285
\(887\) 25.9244i 0.870457i −0.900320 0.435228i \(-0.856668\pi\)
0.900320 0.435228i \(-0.143332\pi\)
\(888\) 6.00000i 0.201347i
\(889\) 12.5498i 0.420908i
\(890\) 63.3746i 2.12432i
\(891\) 4.00000i 0.134005i
\(892\) 17.7251 0.593480
\(893\) 16.0000 0.535420
\(894\) −1.45017 −0.0485008
\(895\) 90.1993i 3.01503i
\(896\) 2.00000i 0.0668153i
\(897\) 0 0
\(898\) −10.0000 −0.333704
\(899\) 11.2990i 0.376843i
\(900\) −13.2749 −0.442497
\(901\) −12.5498 −0.418096
\(902\) −25.0997 + 5.09967i −0.835728 + 0.169800i
\(903\) −25.0997 −0.835265
\(904\) 10.5498 0.350882
\(905\) 15.9244i 0.529346i
\(906\) 2.00000 0.0664455
\(907\) 42.7492 1.41946 0.709731 0.704472i \(-0.248816\pi\)
0.709731 + 0.704472i \(0.248816\pi\)
\(908\) 11.4502i 0.379987i
\(909\) 1.45017i 0.0480990i
\(910\) −36.5498 −1.21162
\(911\) 28.5498 0.945898 0.472949 0.881090i \(-0.343189\pi\)
0.472949 + 0.881090i \(0.343189\pi\)
\(912\) −6.27492 −0.207783
\(913\) 25.0997i 0.830678i
\(914\) 29.0997i 0.962531i
\(915\) 28.0000i 0.925651i
\(916\) 11.0997i 0.366743i
\(917\) 32.0000i 1.05673i
\(918\) 6.27492 0.207103
\(919\) 37.4502i 1.23537i 0.786427 + 0.617683i \(0.211929\pi\)
−0.786427 + 0.617683i \(0.788071\pi\)
\(920\) 0 0
\(921\) 2.90033i 0.0955692i
\(922\) 27.0997 0.892480
\(923\) 15.9244 0.524159
\(924\) 8.00000i 0.263181i
\(925\) −79.6495 −2.61886
\(926\) 26.5498i 0.872482i
\(927\) −10.8248 −0.355531
\(928\) 6.54983i 0.215009i
\(929\) 26.8248i 0.880092i 0.897975 + 0.440046i \(0.145038\pi\)
−0.897975 + 0.440046i \(0.854962\pi\)
\(930\) 7.37459i 0.241822i
\(931\) 18.8248i 0.616956i
\(932\) 14.8248i 0.485601i
\(933\) −28.2749 −0.925679
\(934\) 21.7251 0.710866
\(935\) −107.299 −3.50905
\(936\) 4.27492i 0.139730i
\(937\) 42.1993i 1.37859i 0.724480 + 0.689296i \(0.242080\pi\)
−0.724480 + 0.689296i \(0.757920\pi\)
\(938\) −3.45017 −0.112652
\(939\) −25.6495 −0.837040
\(940\) 10.9003i 0.355530i
\(941\) 2.62541 0.0855860 0.0427930 0.999084i \(-0.486374\pi\)
0.0427930 + 0.999084i \(0.486374\pi\)
\(942\) 14.0000 0.456145
\(943\) 0 0
\(944\) −2.27492 −0.0740422
\(945\) −8.54983 −0.278126
\(946\) 50.1993i 1.63212i
\(947\) −21.7251 −0.705970 −0.352985 0.935629i \(-0.614833\pi\)
−0.352985 + 0.935629i \(0.614833\pi\)
\(948\) 6.54983 0.212729
\(949\) 1.17525i 0.0381502i
\(950\) 83.2990i 2.70258i
\(951\) 30.5498 0.990646
\(952\) 12.5498 0.406742
\(953\) −30.5498 −0.989606 −0.494803 0.869005i \(-0.664760\pi\)
−0.494803 + 0.869005i \(0.664760\pi\)
\(954\) 2.00000i 0.0647524i
\(955\) 45.0997i 1.45939i
\(956\) 7.72508i 0.249847i
\(957\) 26.1993i 0.846904i
\(958\) 33.9244i 1.09605i
\(959\) −9.09967 −0.293844
\(960\) 4.27492i 0.137972i
\(961\) −28.0241 −0.904003
\(962\) 25.6495i 0.826973i
\(963\) 10.8248 0.348823
\(964\) −12.8248 −0.413057
\(965\) 85.4983i 2.75229i
\(966\) 0 0
\(967\) 17.4502i 0.561159i 0.959831 + 0.280580i \(0.0905267\pi\)
−0.959831 + 0.280580i \(0.909473\pi\)
\(968\) 5.00000 0.160706
\(969\) 39.3746i 1.26489i
\(970\) 2.35050i 0.0754699i
\(971\) 33.6495i 1.07986i 0.841709 + 0.539932i \(0.181550\pi\)
−0.841709 + 0.539932i \(0.818450\pi\)
\(972\) 1.00000i 0.0320750i
\(973\) 9.09967i 0.291722i
\(974\) −13.1752 −0.422162
\(975\) −56.7492 −1.81743
\(976\) −6.54983 −0.209655
\(977\) 8.62541i 0.275951i −0.990436 0.137976i \(-0.955940\pi\)
0.990436 0.137976i \(-0.0440596\pi\)
\(978\) 4.00000i 0.127906i
\(979\) −59.2990 −1.89520
\(980\) 12.8248 0.409672
\(981\) 11.0997i 0.354385i
\(982\) 14.8248 0.473077
\(983\) −41.0997 −1.31088 −0.655438 0.755249i \(-0.727516\pi\)
−0.655438 + 0.755249i \(0.727516\pi\)
\(984\) 6.27492 1.27492i 0.200037 0.0406429i
\(985\) −67.2234 −2.14192
\(986\) −41.0997 −1.30888
\(987\) 5.09967i 0.162324i
\(988\) −26.8248 −0.853409
\(989\) 0 0
\(990\) 17.0997i 0.543463i
\(991\) 47.0997i 1.49617i −0.663603 0.748085i \(-0.730973\pi\)
0.663603 0.748085i \(-0.269027\pi\)
\(992\) 1.72508 0.0547714
\(993\) −1.09967 −0.0348969
\(994\) 7.45017 0.236305
\(995\) 8.54983i 0.271048i
\(996\) 6.27492i 0.198828i
\(997\) 9.92442i 0.314310i 0.987574 + 0.157155i \(0.0502322\pi\)
−0.987574 + 0.157155i \(0.949768\pi\)
\(998\) 23.3746i 0.739910i
\(999\) 6.00000i 0.189832i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 246.2.d.b.163.4 yes 4
3.2 odd 2 738.2.d.h.163.1 4
4.3 odd 2 1968.2.j.c.1393.2 4
41.40 even 2 inner 246.2.d.b.163.2 4
123.122 odd 2 738.2.d.h.163.2 4
164.163 odd 2 1968.2.j.c.1393.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
246.2.d.b.163.2 4 41.40 even 2 inner
246.2.d.b.163.4 yes 4 1.1 even 1 trivial
738.2.d.h.163.1 4 3.2 odd 2
738.2.d.h.163.2 4 123.122 odd 2
1968.2.j.c.1393.2 4 4.3 odd 2
1968.2.j.c.1393.4 4 164.163 odd 2